共查询到7条相似文献,搜索用时 0 毫秒
1.
Data collected from 172 sites in 20 major river basins between 1993 and 1995 as part of the US Geological Survey's National
Water-Quality Assessment Program were analyzed to assess relations among basinwide land use (agriculture, forest, urban, range),
water physicochemistry, riparian condition, and fish community structure. A multimetric approach was used to develop regionally
referenced indices of fish community and riparian condition. Across large geographic areas, decreased riparian condition was
associated with water-quality constituents indicative of nonpoint source inputs—total nitrogen and suspended sediment and
basinwide urban land use. Decreased fish community condition was associated with increases in total dissolved solids and rangeland
use and decreases in riparian condition and agricultural land use. Fish community condition was relatively high even in areas
where agricultural land use was relatively high (>50% of the basin). Although agricultural land use can have deleterious effects
on fish communities, the results of this study suggest that other factors also may be important, including practices that
regulate the delivery of nutrients, suspended sediments, and total dissolved solids into streams. Across large geographic
scales, measures of water physicochemistry may be better indicators of fish community condition than basinwide land use. Whereas
numerous studies have indicated that riparian restorations are successful in specific cases, this analysis suggests the universal
importance of riparian zones to the maintenance and restoration of diverse fish communities in streams. 相似文献
2.
Effects of Local Land Use on Physical Habitat, Benthic Macroinvertebrates, and Fish in the Whitewater River, Minnesota, USA 总被引:7,自引:0,他引:7
Best management practices (BMPs) have been developed to address soil loss and the resulting sedimentation of streams, but information is lacking regarding their benefits to stream biota. We compared instream physical habitat and invertebrate and fish assemblages from farms with BMP to those from farms with conventional agricultural practices within the Whitewater River watershed of southeastern Minnesota, USA, in 1996 and 1997. Invertebrate assemblages were assessed using the US EPA's rapid bioassessment protocol (RBP), and fish assemblages were assessed with two indices of biotic integrity (IBIs). Sites were classified by upland land use (BMP or conventional practices) and riparian management (grass, grazed, or wooded buffer). Physical habitat characteristics differed across buffer types, but not upland land use, using an analysis of covariance, with buffer width and stream as covariates. Percent fines and embeddedness were negatively correlated with buffer width. Stream sites along grass buffers generally had significantly lower percent fines, embeddedness, and exposed streambank soil, but higher percent cover and overhanging vegetation when compared with sites that had grazed or wooded buffers. RBP and IBI scores were not significantly different across upland land use or riparian buffer type but did show several correlations with instream physical habitat variables. RBP and IBI scores were both negatively correlated with percent fines and embeddedness and positively correlated with width-to-depth ratio. The lack of difference in RBP or IBI scores across buffer types suggests that biotic indicators may not respond to local changes, that other factors not measured may be important, or that greater improvements in watershed condition are necessary for changes in biota to be apparent. Grass buffers may be a viable alternative for riparian management, especially if sedimentation and streambank stability are primary concerns. 相似文献
3.
Use of Microbial Community to Evaluate Performance of a Wetland System in Treating Pb/Zn Mine Drainage 总被引:2,自引:0,他引:2
The performance of a wetland system in treating lead (Pb)/zinc (Zn) mine drainage was evaluated by using the polyurethane
foam unit (PFU) microbial community (method), which has been adopted by China as a standardized procedure for monitoring water
quality. The wetland system consisted of four cells with three dominant plants: Typha latifolia, Phragmites australis and Paspalum distichum. Physicochemical characteristics [pH, EC, content of total suspended solid (TSS) and metals (Pb, Zn, Cd, and Cu)] and PFU
microbial community in water samples had been investigated from seven sampling sites. The results indicated that the concentrations
of Pb, Zn, Cd, Cu, and TSS in the mine drainage were gradually reduced from the inlet to the outlet of the wetland system
and 99%, 98%, 75%, 83%, and 68% of these metals and TSS respectively, had been reduced in concentration after the drainage
passed through the wetland system. A total of 105 protozoan species were identified, the number of protozoa species and the
diversity index (DI) gradually increased, while the heterotrophic index (HI) gradually decreased from the inlet to the outlet
of the wetland system. The results indicated that DI, HI, and total number species of protozoa could be used as biological
indicators indicating the improvement of water quality. 相似文献
4.
干旱河谷地区农业产业结构的调整对环境及经济的影响分析--以汉源地区为例 总被引:1,自引:1,他引:1
中国农业产业结构的调整,是中国改革开放、市场化发展的集中体现。本文以汉源地区为例,总结分析了典型的干旱河谷地带农业产业结构的调整情况,不仅促进了当地农村发展方式的根本转变、改善了农村经济、提高了农民收入,同时还解决了当地剩余劳动力的就地消化问题。本文指出了农业产业结构的调整可能对当地生态环境造成的影响,其中诸如不舍理用药用肥造成的水污染、土壤和农产品的硝酸盐污染以及土壤退化、大气污染等环境问题。需要在实践中更加审慎地调整农业产业结构。 相似文献
5.
Assessing Biotic Integrity of Streams: Effects of Scale in Measuring the Influence of Land Use/Cover and Habitat Structure on Fish and Macroinvertebrates 总被引:19,自引:2,他引:19
/ Fish and macroinvertebrate assemblage composition, instream habitat features and surrounding land use were assessed in an agriculturally developed watershed to relate overall biotic condition to patterns of land use and channel structure. Six 100-m reaches were sampled on each of three first-order warm-water tributaries of the River Raisin in southeastern Michigan. Comparisons among sites and tributaries showed considerable variability in fish assemblages measured with the index of biotic integrity, macroinvertebrate assemblages characterized with several diversity indexes, and both quantitative and qualitative measurements of instream habitat structure. Land use immediate to the tributaries predicted biotic condition better than regional land use, but was less important than local habitat variables in explaining the variability observed in fish and macroinvertebrate assemblages. Fish and macroinvertebrates appeared to respond differently to landscape configuration and habitat variables as well. Fish showed a stronger relationship to flow variability and immediate land use, while macroinvertebrates correlated most strongly with dominant substrate. Although significant, the relationships between instream habitat variables and immediate land use explained only a modest amount of the variability observed. A prior study of this watershed ascribed greater predictive power to land use. In comparison to our study design, this study covered a larger area, providing greater contrast among subcatchments. Differences in outcomes suggests that the scale of investigation influences the strength of predictive variables. Thus, we concluded that the importance of local habitat conditions is best revealed by comparisons at the within-subcatchment scale. KEY WORDS: Stream; Biomonitoring; Land use; Scale; Habitat; Fish; Macroinvertebrates 相似文献
6.
7.
A straightened stream stretch with poor habitat heterogeneity was divided into a “control” section with a low amount of submerged woody debris and an experimentally “wood-enriched” downstream section to study the effect of enhanced habitat diversity on the benthic invertebrate community. The downstream section was enriched by fixing 25 wood packages constructed from 9–10 branches on the stream bottom. Succession processes occurring in the two stream sections were compared by chironomid exuviae drift from July to November 2000 and from April to August 2001. During the first sampling period, more drifting chironomid exuviae (medians of control vs. wood-enriched: 446 vs. 331, no significant difference) and total number of taxa (44 vs. 36, Wilcoxon signed-rank test P = 0.019) were recorded for the control section. Although species compositions of both stream sections were highly similar (Sørensen index: 0.83) the diversity in the wood-enriched section was distinctly lower compared to the control section (Shannon–Weaver index: 1.19 vs. 1.50). During the second sampling period, exuviae numbers remained higher in the control section (median: 326 vs. 166), but total numbers of taxa were nearly equal (51 vs. 49), as well as species diversity (Shannon–Weaver index: 1.67 vs. 1.64). The lower chironomid diversity observed during the first sampling period coincided with a gradual but significant change of the streambed morphology in the wood-enriched section. There, the initially more U-shaped profile (V/U = 0.81 ± 0.37) had turned into a pronounced V shape (V/U = 1.14 ± 0.21), whereas the control section retained its unaltered U shape (V/U = 0.62–0.75). This small-scale study on experimental of woody debris in sandy lowland streams showed that the negative impact of increased hydraulic disturbance of the existing streambed more than outweighed any positive impact resulting from the increase in woody debris. 相似文献