首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data collected from 172 sites in 20 major river basins between 1993 and 1995 as part of the US Geological Survey's National Water-Quality Assessment Program were analyzed to assess relations among basinwide land use (agriculture, forest, urban, range), water physicochemistry, riparian condition, and fish community structure. A multimetric approach was used to develop regionally referenced indices of fish community and riparian condition. Across large geographic areas, decreased riparian condition was associated with water-quality constituents indicative of nonpoint source inputs—total nitrogen and suspended sediment and basinwide urban land use. Decreased fish community condition was associated with increases in total dissolved solids and rangeland use and decreases in riparian condition and agricultural land use. Fish community condition was relatively high even in areas where agricultural land use was relatively high (>50% of the basin). Although agricultural land use can have deleterious effects on fish communities, the results of this study suggest that other factors also may be important, including practices that regulate the delivery of nutrients, suspended sediments, and total dissolved solids into streams. Across large geographic scales, measures of water physicochemistry may be better indicators of fish community condition than basinwide land use. Whereas numerous studies have indicated that riparian restorations are successful in specific cases, this analysis suggests the universal importance of riparian zones to the maintenance and restoration of diverse fish communities in streams.  相似文献   

2.
/ Lapwai Creek, an agriculturally impacted stream in northern Idaho, was sampled seasonally over a two-year period to determine if macroinvertebrate community composition changed along the longitudinal gradient and if changes followed predictions of the river continuum concept. Possible relationships between changes in food resource availability and community structure were also examined. Benthic invertebrates were collected at eight locations along the longitudinal gradient of Lapwai Creek using a Hess sampler. Random skewer analysis suggested there was no longitudinal gradient for either number of individuals or functional feeding group composition. Cluster analysis revealed that all locations, excluding a site receiving outflow from a small, eutrophic reservoir, had a similar community structure, further suggesting that invertebrate community composition remained consistent along the longitudinal gradient of the stream. The community was dominated at all sites, excluding the site below the reservoir, by functionalgrazers. Shredders were rare throughout Lapwai Creek, even in areas where healthy riparian vegetation still remained. Studies of other streams within the drainage basin show that many species found in the upper reaches of these streams, where agricultural impacts are low, were absent throughout the length of Lapwai Creek. Data collected concurrently with macroinvertebrates indicated that the input, storage, and transport of particulate organic matter was low throughout the stream, whereas periphyton abundance was high. The absence of longitudinal changes, despite flowing through three distinct geomorphological regions, and the grouping of all sites except one by cluster analysis for both dominant taxa and functional feeding groups suggest that agricultural alteration has influenced community structure of Lapwai Creek, resulting in a relatively homogeneous assemblage of macroinvertebrates capable of tolerating agricultural nonpoint source pollution. Additional support for this hypothesis is the high abundance of one food source, periphyton, and the small quantities of terrestrially derived organic matter. The abundance of the former and the rarity of the latter can be attributed to alteration of the drainage basin resulting from agricultural activities through inputs of fertilizers that generated high nutrient concentrations and the removal of riparian vegetation to clear more land for agriculture and provide increase access to the stream.KEY WORDS: Agriculture; Longitudinal patterns; Macroinvertebrates; Nonpoint source; River continuum  相似文献   

3.
ABSTRACT: Forestation of riparian areas has long been promoted to restore stream ecosystems degraded by agriculture in central North America. Although trees and shrubs in the riparian zone can provide many benefits to streams, grassy or herbaceous riparian vegetation can also provide benefits and may be more appropriate in some situations. Here we review some of the positive and negative implications of grassy versus wooded riparian zones and discuss potential management outcomes. Compared to wooded areas, grassy riparian areas result in stream reaches with different patterns of bank stability, erosion, channel morphology, cover for fish, terrestrial runoff, hydrology, water temperature, organic matter inputs, primary production, aquatic macroinvertebrates, and fish. Of particular relevance in agricultural regions, grassy riparian areas may be more effective in reducing bank erosion and trapping suspended sediments than wooded areas. Maintenance of grassy riparian vegetation usually requires active management (e.g., mowing, burning, herbicide treatments, and grazing), as successional processes will tend ultimately to favor woody vegetation. Riparian agricultural practices that promote a dense, healthy, grassy turf, such as certain types of intensively managed livestock grazing, have potential to restore degraded stream ecosystems.  相似文献   

4.
ABSTRACT: Thirteen years of annual habitat and fish sampling were used to evaluate the response of a small warm water stream in eastern Wisconsin to agricultural best management practices (BMPs). Stream physical habitat and fish communities were sampled in multiple reference and treatment stations before, during, and after upland and riparian BMP implementation in the Otter Creek subwatershed of the Sheboygan River watershed. Habitat and fish community measures varied substantially among years, and varied more at stations that had low habitat diversity, reinforcing the notion that the detection of stream responses to BMP implementation requires long term sampling. Best management practices increased substrate size; reduced sediment depth, embeddedness, and bank erosion; and improved overall habitat quality at stations where a natural vegetative buffer existed or streambank fencing was installed as a riparian BMP. There were lesser improvements at locations where only upland BMPs were implemented. Despite the habitat changes, we could not detect significant improvements in fish communities. It is speculated that the species needed to improve the fish community, mainly pollution intolerant species, suckers (Castomidae), and darters (Percidae), had been largely eliminated from the Sheboygan River watershed by broadscale agricultural nonpoint source pollution and could not colonize Otter Creek, even though habitat conditions may have been suitable.  相似文献   

5.
Best management practices (BMPs) have been developed to address soil loss and the resulting sedimentation of streams, but information is lacking regarding their benefits to stream biota. We compared instream physical habitat and invertebrate and fish assemblages from farms with BMP to those from farms with conventional agricultural practices within the Whitewater River watershed of southeastern Minnesota, USA, in 1996 and 1997. Invertebrate assemblages were assessed using the US EPA's rapid bioassessment protocol (RBP), and fish assemblages were assessed with two indices of biotic integrity (IBIs). Sites were classified by upland land use (BMP or conventional practices) and riparian management (grass, grazed, or wooded buffer). Physical habitat characteristics differed across buffer types, but not upland land use, using an analysis of covariance, with buffer width and stream as covariates. Percent fines and embeddedness were negatively correlated with buffer width. Stream sites along grass buffers generally had significantly lower percent fines, embeddedness, and exposed streambank soil, but higher percent cover and overhanging vegetation when compared with sites that had grazed or wooded buffers. RBP and IBI scores were not significantly different across upland land use or riparian buffer type but did show several correlations with instream physical habitat variables. RBP and IBI scores were both negatively correlated with percent fines and embeddedness and positively correlated with width-to-depth ratio. The lack of difference in RBP or IBI scores across buffer types suggests that biotic indicators may not respond to local changes, that other factors not measured may be important, or that greater improvements in watershed condition are necessary for changes in biota to be apparent. Grass buffers may be a viable alternative for riparian management, especially if sedimentation and streambank stability are primary concerns.  相似文献   

6.
Well-established perennial vegetation in riparian areas of agricultural lands can stabilize the end points of gullies and reduce their overall erosion. The objective of this study was to investigate the impacts of riparian land management on gully erosion. A field survey documented the number of gullies and cattle access points in riparian forest buffers, grass filters, annual row-cropped fields, pastures in which the cattle were fenced out of the stream, and continuously, rotationally and intensive rotationally grazed pastures in three regions of Iowa. Gully lengths, depths and severely eroding bank areas were measured. Gullies exhibited few significant differences among riparian management practices. The most significant differences were exhibited between conservation and agricultural management practices, an indication that conservation practices could reduce gully erosion. Changes in pasture management from continuous to rotational or intensive rotational grazing showed no reductions in gully erosion. It is important to recognize that more significant differences among riparian management practices were not exhibited because the conservation and alternative grazing practices had recently been established. As gully formation is more impacted by upland than riparian management, gully stabilization might require additional upland conservation practices. The existence of numerous cattle access points in pastures where cattle have full access to the stream also indicates that these could be substantial sources of sediment for streams. Finally, the gully banks were less important sediment contributors to streams than the streambanks. The severely eroding bank areas in streams were six times greater than those in the gullies in the monitored reaches.  相似文献   

7.
Fish, habitat, and water chemistry data were collected from 98 streams in the midwestern United States, an area dominated by intense cultivation of row crops, in order to identify important water‐quality stressors to fish communities. We focused on 10 stressors including riparian disturbance, riparian vegetative cover, instream fish cover, streambed sedimentation, streamflow variability, total nitrogen, total phosphorus, minimum dissolved oxygen, pesticides, and bed sediment contaminants. Fish community response variables included a measure of observed/expected taxonomic completeness; species‐specific tolerances to nitrogen, phosphorus, dissolved oxygen, and water temperature; the percent of species classified as macrohabitat generalists; and an index of pesticide toxicity to fish. Multivariate analysis indicated that total nitrogen was the most important stressor, signifying that fish communities were responding to total nitrogen despite relatively high levels common to an agricultural setting. Individually, fish taxonomic completeness decreased with increasing streambed sedimentation, whereas fish community tolerance to total phosphorus increased with increasing streambed sedimentation, riparian disturbance, and total nitrogen. These findings underscore the importance of multiple biological response metrics to better understand the effects of water‐quality stressors on fish communities and highlight the complex relations between total phosphorus and fish communities.  相似文献   

8.
Management of riparian habitats has been recognized for its importance in reducing instream effects of agricultural nonpoint source pollution. By serving as a buffer, well structured riparian habitats can reduce nonpoint source impacts by filtering surface runoff from field to stream. A system has been developed where key characteristics of riparian habitat, vegetation type, height, width, riparian and shoreline bank slope, and land use are classified as discrete categorical units. This classification system recognizes seven riparian vegetation types, which are determined by dominant plant type. Riparian and shoreline bank slope, in addition to riparian width and height, each consist of five categories. Classification by discrete units allows for ready digitizing of information for production of spatial maps using a geographic information system (GIS). The classification system was tested for field efficiency on Tom Beall Creek watershed, an agriculturally impacted third-order stream in the Clearwater River drainage, Nez Perce County, Idaho, USA. The classification system was simple to use during field applications and provided a good inventory of riparian habitat. After successful field tests, spatial maps were produced for each component using the Professional Map Analysis Package (pMAP), a GIS program. With pMAP, a map describing general riparian habitat condition was produced by combining the maps of components of riparian habitat, and the condition map was integrated with a map of soil erosion potential in order to determine areas along the stream that are susceptible to nonpoint source pollution inputs. Integration of spatial maps of riparian classification and watershed characteristics has great potential as a tool for aiding in making management decisions for mitigating off-site impacts of agricultural nonpoint source pollution.  相似文献   

9.
ABSTRACT: The relation offish community composition to riparian cover at two spatial scales was compared at 18 streams in the agricultural Minnesota River Basin. The two spatial scales were: (1) local riparian zone (a 200 meter wide buffer extending 2 to 3 kilometers upstream of the sampling reach); and (2) the upstream riparian zone (a 200 m wide buffer on the mainstem and all perennial tributaries upstream of the sampling reach). Analysis of variance indicated that streams with wooded‐local riparian zones had greater fish species richness (means = 20 and 15, respectively) and Index of Biotic Integrity (IBI) scores (means = 40 and 26, respectively) than streams with open‐local riparian zones. Streams with wooded‐upstream riparian zones tended (were not statistically significant) to have greater numbers of species (means = 19 and 15, respectively) and IBI scores (means = 33 and 28, respectively) than streams with open‐upstream riparian zones. There was no significant interaction between the riparian zone conditions at the two scales. This study suggests that maintenance of wooded riparian cover along streams could be effective in maintaining or improving fish community composition in streams draining heavily agricultural areas.  相似文献   

10.
ABSTRACT: Multivariate analyses and correlations revealed strong relations between watershed and riparian‐corridor land cover, and reach‐scale habitat versus fish and macroinvertebrate assemblages in 38 warmwater streams in eastern Wisconsin. Watersheds were dominated by agricultural use, and ranged in size from 9 to 71 km2 Watershed land cover was summarized from satellite‐derived data for the area outside a 30‐m buffer. Riparian land cover was interpreted from digital orthophotos within 10‐, 10‐to 20‐, and 20‐to 30‐m buffers. Reach‐scale habitat, fish, and macroinvertebrates were collected in 1998 and biotic indices calculated. Correlations between land cover, habitat, and stream‐quality indicators revealed significant relations at the watershed, riparian‐corridor, and reach scales. At the watershed scale, fish diversity, intolerant fish and EPT species increased, and Hilsenhoff biotic index (HBI) decreased as percent forest increased. At the riparian‐corridor scale, EPT species decreased and HBI increased as riparian vegetation became more fragmented. For the reach, EPT species decreased with embeddedness. Multivariate analyses further indicated that riparian (percent agriculture, grassland, urban and forest, and fragmentation of vegetation), watershed (percent forest) and reach‐scale characteristics (embeddedness) were the most important variables influencing fish (IBI, density, diversity, number, and percent tolerant and insectivorous species) and macroinvertebrate (HBI and EPT) communities.  相似文献   

11.
ABSTRACT: Cattle grazing practices in the western United States have contributed to widespread riparian degradation resulting in unstable channel morphologies and the loss of fish habitat. Because of prolonged disturbance, numerous riparian areas on both public and private lands have been fenced to exclude cattle in order to promote vegetation establishment and riparian improvement. We selected four gravel-bedded, steep alluvial streams in eastern Oregon with cattle exclosures greater than 14 years old for an analysis of geomorphic adjustments following the removal of cattle grazing. We compare channels inside exclosures and in adjacent grazed reaches to identify the salient stream channel properties that respond to the removal of riparian stresses and to document the magnitude of these changes. Results indicate that significant changes occur, with reductions in bankfull dimensions and increases in pool area being the most common and identifiable changes. At all four sites, bankfull widths are narrower by 10 to 20 percent, and the percentage of channel area occupied by pools is higher in the exclosure by 8 to 15 percent. The increase in pool area is primarily offset by a reduction in the percent glide area. Not all of the channel properties demonstrate adjustment, indicating that perhaps 14 years is an insufficient duration for these variables to adjust.  相似文献   

12.
Fourteen streams in the Sierra Nevada in the USA were sampled to determine whether diversions of streamflow for hydroelectric development had caused significant changes in riparian vegetation. Several streams showed significant differences in vegetation cover, community composition, or community structure between pairs of diverted and undiverted reaches. On some streams, environmental conditions rather than streamflow diversions may have been responsible for vegetation differences. Streams in the Sierra Nevada respond individualistically to diversions. Prediction of vegetation responses must take into consideration environmental characteristics of specific stream reaches.  相似文献   

13.
ABSTRACT: The U.S. Geological Survey examined 25 agricultural streams in eastern Wisconsin the determine relations between fish, invertebrate, and algal metrics and multiple spatial scales of land cover, geologic setting, hydrologic, aquatic habitat, and water chemistry data. Spearman correlation and redundancy analyses were used to examine relations among biotic metrics and environmental characteristics. Riparian vegetation, geologic, and hydrologic conditions affected the response of biotic metrics to watershed agricultural land cover but the relations were aquatic assemblage dependent. It was difficult to separate the interrelated effects of geologic setting, watershed and buffer land cover, and base flow. Watershed and buffer land cover, geologic setting, reach riparian vegetation width, and stream size affected the fish IBI, invertebrate diversity, diatom IBI, and number of algal taxa; however, the invertebrate FBI, percentage of EPT, and the diatom pollution index were more influenced by nutrient concentrations and flow variability. Fish IBI scores seemed most sensitive to land cover in the entire stream network buffer, more so than watershed‐scale land cover and segment or reach riparian vegetation width. All but one stream with more than approximately 10 percent buffer agriculture had fish IBI scores of fair or poor. In general, the invertebrate and algal metrics used in this study were not as sensitive to land cover effects as fish metrics. Some of the reach‐scale characteristics, such as width/depth ratios, velocity, and bank stability, could be related to watershed influences of both land cover and geologic setting. The Wisconsin habitat index was related to watershed geologic setting, watershed and buffer land cover, riparian vegetation width, and base flow, and appeared to be a good indicator of stream quality Results from this study emphasize the value of using more than one or two biotic metrics to assess water quality and the importance of environmental characteristics at multiple scales.  相似文献   

14.
This paper integrates economic, biological, and physical models to explore the efficient combination and spatial allocation of conservation efforts to protect water quality and increase salmonid populations in the Grande Ronde basin, Oregon. We focus on the effects of shade on water temperatures and the subsequent impacts on endangered juvenile salmonid populations. The integrated modeling system consists of a physical model that links riparian conditions and hydrological characteristics to water temperature; a biological model that links water temperature and riparian conditions to salmonid abundance, and an economic model that incorporates both physical and biological models to estimate minimum cost allocations of conservation efforts. Our findings indicate that conservation alternatives such as passive and active riparian restoration, the width of riparian restoration zones, and the types of vegetation used in restoration activities should be selected based on the spatial distribution of riparian characteristics in the basin. The relative effectiveness of passive and active restoration plays an important role in determining the efficient allocations of conservation efforts. The time frame considered in the restoration efforts and the magnitude of desired temperature reductions also affect the efficient combinations of restoration activities. If the objective of conservation efforts is to maximize fish populations, then fishery benefits should be directly targeted. Targeting other criterion such as water temperatures would result in different allocations of conservation efforts, and therefore are not generally efficient.  相似文献   

15.
The Willamette Valley of Oregon has extensive areas of poorly drained, commercial grass seed lands. Little is know about the ability of riparian areas in these settings to reduce nitrate in water draining from grass seed fields. We established two study sites with similar soils and hydrology but contrasting riparian vegetation along an intermittent stream that drains perennial ryegrass (Lolium perenne L.) fields in the Willamette Valley of western Oregon. We installed a series of nested piezometers along three transects at each site to examine NO3-N in shallow ground water in grass seed fields and riparian areas. Results showed that a noncultivated riparian zone comprised of grasses and herbaceous vegetation significantly reduced NO3-N concentrations of shallow ground water moving from grass seed fields. Darcy's law-based estimates of shallow ground water flow through riparian zone A/E horizons revealed that this water flowpath could account for only a very small percentage of the streamflow. Even though there is great potential for NO3-N to be reduced as water moves through the noncultivated riparian zone with grass-herbaceous vegetation, the potential was not fully realized because only a small proportion of the stream flow interacts with riparian zone soils. Consequently, effective NO3-N water quality management in poorly drained landscapes similar to the study watershed is primarily dependent on implementation of sound agricultural practices within grass seed fields and is less influenced by riparian zone vegetation. Wise fertilizer application rates and timing are key management tools to reduce export of NO3-N in stream waters.  相似文献   

16.
The growing use of global freshwater supplies is increasing the need for improved modeling of the linkage between groundwater and riparian vegetation. Traditional groundwater models such as MODFLOW have been used to predict changes in regional groundwater levels, and thus riparian vegetation potential attributable to anthropogenic water use. This article describes an approach that improves on these modeling techniques through several innovations. First, evapotranspiration from riparian/wetland systems is modeled in a manner that more realistically reflects plant ecophysiology and vegetation complexity. In the authors’ model programs (RIP-ET and PRE-RIP-ET), the single, monotonically increasing evapotranspiration flux curve in traditional groundwater models is replaced with a set of ecophysiologically based curves, one for each plant functional group present. For each group, the curve simulates transpiration declines that occur both as water levels decline below rooting depths and as waters rise to levels that produce anoxic soil conditions. Accuracy is further improved by more effective spatial handling of vegetation distribution, which allows modeling of surface elevation and depth to water for multiple vegetation types within each large model cell. The use of RIP-ET in groundwater models can improve the accuracy of basin scale estimates of riparian evapotranspiration rates, riparian vegetation water requirements, and water budgets. Two case studies are used to demonstrate that RIP-ET produces significantly different evapotranspiration estimates than the traditional method. When combined with vegetation mapping and a supporting program (RIP-GIS), RIP-ET also enables predictions of riparian vegetation response to water use and development scenarios. The RIP-GIS program links the head distribution from MODFLOW with surface digital elevation models, producing moderate- to high-resolution depth-to-groundwater maps. Together with information on plant rooting depths, these can be used to predict vegetation response to water allocation decisions. The different evapotranspiration outcomes produced by traditional and RIP-ET approaches affect resulting interpretations of hydro-vegetation dynamics, including the effects of groundwater pumping stress on existing habitats, and thus affect subsequent policy decisions.  相似文献   

17.
Although changes in depth to groundwater occur naturally, anthropogenic alterations may exacerbate these fluctuations and, thus, affect vegetation reliant on groundwater. These effects include changes in physiology, structure, and community dynamics, particularly in arid regions where groundwater can be an important water source for many plants. To properly manage ecosystems subject to changes in depth to groundwater, plant responses to both rising and falling groundwater tables must be understood. However, most research has focused exclusively on riparian ecosystems, ignoring regions where groundwater is available to a wider range of species. Here, we review responses of riparian and other species to changes in groundwater levels in arid environments. Although decreasing water tables often result in plant water stress and reduced live biomass, the converse is not necessarily true for rising water tables. Initially, rising water tables kill flooded roots because most species cannot tolerate the associated low oxygen levels. Thus, flooded plants can also experience water stress. Ultimately, individual species responses to either scenario depend on drought and flooding tolerance and the change in root system size and water uptake capacity. However, additional environmental and biological factors can play important roles in the severity of vegetation response to altered groundwater tables. Using the reviewed information, we created two conceptual models to highlight vegetation dynamics in areas with groundwater fluctuations. These models use flow charts to identify key vegetation and ecosystem properties and their responses to changes in groundwater tables to predict community responses. We then incorporated key concepts from these models into EDYS, a comprehensive ecosystem model, to highlight the potential complexity of predicting community change under different fluctuating groundwater scenarios. Such models provide a valuable tool for managing vegetation and groundwater use in areas where groundwater is important to both plants and humans, particularly in the context of climate change.  相似文献   

18.
The importance of riparian vegetation to support stream function and provide riparian bird habitat in semiarid landscapes suggests that standardized assessment tools that include vegetation criteria to evaluate stream health could also be used to assess habitat conditions for riparian-dependent birds. We first evaluated the ability of two visual assessments of woody vegetation in the riparian zone (corridor width and height) to describe variation in the obligate riparian bird ensemble along 19 streams in eastern Oregon. Overall species richness and the abundances of three species all correlated significantly with both, but width was more important than height. We then examined the utility of the riparian zone criteria in three standardized and commonly used rapid visual riparian assessment protocols—the USDI BLM Proper Functioning Condition (PFC) assessment, the USDA NRCS Stream Visual Assessment Protocol (SVAP), and the U.S. EPA Habitat Assessment Field Data Sheet (HAFDS)—to assess potential riparian bird habitat. Based on the degree of correlation of bird species richness with assessment ratings, we found that PFC does not assess obligate riparian bird habitat condition, SVAP provides a coarse estimate, and HAFDS provides the best assessment. We recommend quantitative measures of woody vegetation for all assessments and that all protocols incorporate woody vegetation height. Given that rapid assessments may be the only source of information for thousands of kilometers of streams in the western United States, incorporating simple vegetation measurements is a critical step in evaluating the status of riparian bird habitat and provides a tool for tracking changes in vegetation condition resulting from management decisions.  相似文献   

19.
Abstract: The joint influences of riparian vegetation and urbanization on fish assemblages were analyzed by depletion sampling in paired forested and nonforested reaches of 25 small streams along an urbanization gradient. Nonforested reaches were narrower than their forested counterparts, so densities based on surface area differ from linear densities (based on reach length). Linear densities (based on number or biomass of fish) of American eel, white sucker and tesselated darter, and the proportion of biomass of benthic invertivores were significantly higher in nonforested reaches, while linear densities of margined madtom and the number of pool species were significantly higher in forested reaches. Observed riparian effects may reflect differences in habitat and algal productivity between forested and nonforested reaches. These results suggest that relatively small‐scale riparian restoration projects can affect local geomorphology and the abundance of fish. Dense vegetative cover in riparian zones and similar or analogous habitats in both forested and nonforested reaches, the relatively small scale of the nonforested reaches, and the low statistical power to detect differences in abundance of rare species may have limited the observed differences between forested and nonforested reaches. There was a strong urbanization gradient, with reductions of intolerant species and increases of tolerant species and omnivores with increasing urbanization. Interactions between riparian vegetation type and urbanization were found for blacknose dace, creek chub, tesselated darter, and the proportion of biomass of lithophilic spawners. The study did not provide consistent support for the hypotheses that responses of fish to riparian vegetation would be overwhelmed by urban degradation or insignificant at low urbanization.  相似文献   

20.
ABSTRACT: A detailed but simple hydrologic budget for the entire Rattlesnake Creek basin (3,768 km2) in south-central Kansas was developed. With this budget, using minimal daily-weather input data and the soil-plant-water system-analysis methodology, we were able to characterize the spatial distribution of the hydrologic components of the water balance within the basin. A combination of classification and meteorological methods resulted in a basinwide integration methodology. Using this methodology, we found that, in addition to obvious climatic controls, soil, vegetation, and land-use factors also exert considerable influence on the water balance of the area. The available-water capacity (AWC) of soil profiles plays a dominant role in soil-water-deficit development and deep drainage. Vegetation and dryland or irrigated farming particularly affect the evapotranspiration (ET) components, with ET from irrigated corn and alfalfa being two to three times that from wheat. Deep drainage from irrigated wheat fields was found to be significantly higher than that from grassland and dryland wheat; deep drainage from alfalfa is practically nonexistent. We demonstrated how vegetation changes may affect components of the hydrologic cycle. We also showed that different portions of the watershed have different water-balance components and that use of single average values of hydrologic variables in management practices may not be realistic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号