共查询到19条相似文献,搜索用时 93 毫秒
1.
徐州市冬季大气细颗粒物水溶性无机离子污染特征及来源解析 总被引:3,自引:12,他引:3
本研究于2015年12月至2016年2月在徐州市城区采集大气细颗粒物PM_(2.5)样品共32套,使用离子色谱法分析了颗粒物中的F~-、Cl~-、NO_3~-、SO2-4、Na~+、Mg~(2+)、NH_4~+、K~+和Ca~(2+)的质量浓度.观测期间,徐州市冬季PM_(2.5)的平均质量浓度为(164.8±77.3)μg·m-3,9种水溶性离子总质量浓度为(67.5±36.1)μg·m~(-3),占PM_(2.5)的40.9%,各离子浓度高低顺序为NO_3~-SO_4~(2-)NH_4~+Cl~-Ca~(2+)K~+Na~+Mg~(2+)F~-,其中NH_4~+、NO_3~-和SO_4~(2-)是最主要的水溶性离子.清洁大气、轻度霾和重度霾时期PM_(2.5)中总水溶性无机离子(WSIIs)质量浓度分别为(12.8±8.8)、(59.0±22.8)、(86.3±36.0)μg·m~(-3),SNA分别占WSIIs的86.4%、82.8%和78.9%.NH_4~+、NO_3-和SO_4~(2-)三者之间相关性显著,在PM_(2.5)中的结合方式为(NH_4)_2SO_4和NH_4NO_3.徐州市PM_(2.5)中水溶性离子的主要来源为二次转化、生物质燃烧、化石燃料燃烧和矿物粉尘等. 相似文献
2.
辽宁典型城市道路扬尘PM2.5中水溶性无机离子组分特征及来源解析 总被引:1,自引:1,他引:1
为了解辽宁省典型城市道路扬尘PM_(2.5)中水溶性无机离子组分特征及其来源,分别于2014年和2016年采集了鞍山市和盘锦市道路扬尘样品,利用再悬浮采样器将其悬浮到滤膜上,用离子色谱仪分析了其中的水溶性无机离子组分,分别用相关分析法和比值法分析了其污染特征,用主成分法初步解析了其主要污染源.结果表明,盘锦市和鞍山市8种水溶性无机离子分别占道路扬尘PM_(2.5)的5.83%±3.34%和5.84%±1.15%.盘锦市NH_4~+与SO_4~(2-)和NO_3~-的结合方式主要为(NH_4)2SO_4和NH_4NO_3,鞍山市NH_4~+与SO_4~(2-)和NO_3~-的主要结合方式为NH_4HSO_4和NH_4NO_3.盘锦市和鞍山市道路扬尘PM_(2.5)中NO_3~-/SO_4~(2-)的均值分别为0.52±0.55和0.46±0.13,表明固定源(燃煤)对其道路扬尘PM_(2.5)的影响较显著.盘锦市道路扬尘PM_(2.5)主要来源于生物质燃烧源、海盐粒子、建筑水泥尘和机动车尾气;鞍山市道路扬尘PM_(2.5)主要来源于燃煤源、生物质燃烧源、海盐粒子和钢铁冶炼尘. 相似文献
3.
为研究沈阳市冬季PM2.5和水溶性离子的污染特征,使用URG-9000D在线监测系统于2018年冬季对大气颗粒物和气体组分进行连续采样.结果表明,采样期间沈阳市PM2.5的平均质量浓度为80.67 μg·m-3,总水溶性离子质量浓度变化范围为2.68~132.79 μg·m-3.与清洁天相比,污染天NO3-、SO42-和NH4+(SNA)占比明显增加,占到PM2.5的43.7%.静稳天气时SO2短时间内的迅速累积使得沈阳市冬季大气PM2.5有暴发性增长现象.Pearson相关性分析可知,SNA、Cl-与PM2.5之间的相关系数均达0.78以上,表明沈阳市冬季PM2.5的主要贡献组分为SNA和Cl-.PMF源解析表明沈阳市冬季污染物来源主要包括二次反应源、燃煤和生物质燃烧源以及扬尘源. 相似文献
4.
成都平原大气颗粒物中无机水溶性离子污染特征 总被引:7,自引:6,他引:7
为探讨成都平原大气颗粒物中水溶性离子的污染特征,识别水溶性离子的组成、分布和时空变化,有针对性地控制重污染和灰霾天气,于2013年8月~2014年7月,在成都平原的5个监测点位共采集1 476个颗粒物样品,应用离子色谱法对PM10和PM_(2.5)中8种无机水溶性离子(SO_4~(2-)、NO_3~-、NH_4~+、K~+、Na~+、Ca~(2+)、Mg~(2+)、Cl~-)进行测量.结果表明在观测期间,PM_(2.5~10)和PM_(2.5)中无机水溶性离子总量分别为11.35μg·m-3和36.93μg·m-3,分别占ρ(PM_(2.5)~10)和ρ(PM_(2.5))的37.8%和46.6%;其中二次离子(SO_4~(2-)、NO_3~-和NH~+4,SNA)约占各自水溶性离子总量的81.1%和89.9%.水溶性离子质量浓度冬季最高,春秋季相当,夏季最低.ρ(SO2-4)/ρ(PM_(2.5))夏秋季较高,而ρ(NO_3~-)/ρ(PM_(2.5))冬季最高,夏季最低.SNA、Cl~-、K~+大多分布在PM_(2.5)中,Ca~(2+)和Mg~(2+)主要分布在PM_(2.5~10)中.PM_(2.5)基本呈中性,水溶性离子主要以(NH_4)_2SO_4、NH_4NO_3、KNO_3、NaCl、KCl等形式存在.ρ(NO_3~-)/ρ(SO_4~(2-))揭示固定源依然是PM_(2.5)的主要来源.硫氧化速率(SOR)和氮氧化速率(NOR)年均值分别为0.31和0.13,SOR夏季最高,NOR冬季最高,二者变化趋势相反.成都平原PM_(2.5)呈区域性复合污染特征,SNA是造成ρ(PM_(2.5))增加的主导因素. 相似文献
5.
为探究新乡市大气PM2.5中水溶性无机离子(WSIIs)的污染演变、来源特征及其气象影响,利用URG-9000在线监测系统于2022年1月(冬季)、4月(春季)、7月(夏季)和10月(秋季)对PM2.5组分进行在线观测.结果表明,TWSIIs(总水溶性无机离子)与PM2.5的季节变化特征一致,季度ρ(TWSIIs)均值变化范围为19.62~72.15 μg·m-3,在PM2.5中的占比超过66%,WSIIs是大气PM2.5的重要组分.年均NO3-/SO42-(质量浓度比)为2.11,且呈现逐年增加的趋势,移动源对二次无机气溶胶(SNA)的影响不容忽视,年均[NH4+]/[NO3-](量比)为1.95,说明农业源是大气中氮的主要贡献者.后向轨迹分析表明,在盛行东北风且风速较大时,PM2.5中Ca2+和Mg2+的浓度较高.低温高湿的气象条件下(T<8℃,RH>60%),SOR和NOR值均较高,更多的气态前体物SO2和NO2转化为颗粒态的SO42-和NO3-.与SOR不同,在高温条件下(T>24℃),NOR并没有表现出高值特征,与高温条件下NH4NO3的分解有关.结合PMF和后向轨迹分析,来自西北方向的气团所对应的扬尘源对WSIIs的贡献较大,观测站点周边区域的低空低速气团所对应的二次硫酸盐以及二次硝酸盐和生物质源对WSIIs的贡献较大. 相似文献
6.
为探究遵义市PM2.5中水溶性离子的污染特征及来源,于2018年6月~2019年5月采集了遵义市两个采样点共120个PM2.5样品,并利用离子色谱法对样品中8种水溶性离子进行了分析。结果表明:采样期间,遵义市PM2.5平均值为47.6±19.3 μg/m3,呈现冬春高、夏秋低的季节变化特征;8种水溶性离子平均质量浓度顺序为SO42- > NO3- > NH4+ > Ca2+ > K+ > Cl- > Na+ > Mg2+,平均值为13.74 μg/m3,水溶性离子质量浓度的季节变化与PM2.5变化趋势相似;SO42-、NO3-、NH4+(SNA)是PM2.5中主要水溶性离子,占比为83.8%,说明遵义市大气PM2.5二次污染较严重;相关性分析表明,PM2.5中NH4+主要以(NH4)2SO4、NH4HSO4的形式存在,部分以NH4NO3的形式存在;[NO3-]/[SO42-]小于1,表明固定源为主要污染源;主成分分析结果表明,PM2.5中水溶性离子主要来源于燃煤、交通混合源、土壤、建筑扬尘及农业源。 相似文献
7.
为研究天津市道路扬尘PM_(2.5)中水溶性无机离子组分特征及其来源,于2015年4月采集天津市道路扬尘样品,利用再悬浮采样器将采集的样品悬浮到滤膜上,用离子色谱仪分析其水溶性无机离子组分,利用相关分析和比值分析及主成分法对其污染特征和来源进行探讨.结果表明,天津市8种水溶性无机离子占道路扬尘PM_(2.5)的6.13%±2.32%;不同道路类型道路扬尘PM_(2.5)中水溶性无机离子总量差异较大.相关性分析表明Na~+、K~+、Mg~(2+)和Ca~(2+)这4种离子同源性较高.NO_3~-/SO_4~(2-)比值显示固定源对天津市春季道路扬尘PM_(2.5)的影响更为显著.通过主成分分析法可知,天津市春季道路扬尘PM_(2.5)主要来源于燃煤源、移动源、生物质燃烧源和建筑施工扬尘. 相似文献
8.
为探讨盘锦市冬季PM_(2.5)水溶性离子污染特征和来源,于2017年1月采集3个点位的PM_(2.5)样品,用ICS-900离子色谱仪分析了8种离子(Na~+、Mg~(2+)、Ca~(2+)、K~+、NH_4~+、SO_4~(2-)、Cl~-和NO_3~-).开展了PM_(2.5)和离子浓度特征分析、硫氧化率(SOR)和氮氧化率(NOR)计算、离子平衡计算、主成分分析等.结果表明:盘锦市冬季PM_(2.5)浓度与水溶性离子浓度特征为文化公园开发区第二中学;SO_4~(2-)、NO_3~-、NH_4~+质量浓度较大;冬季硫氧化率(SOR)和氮氧化率(NOR)的均值均大于0.10,说明SO_4~(2-)、NO_3~-主要由SO_2和NO_x转化而来;阳离子和阴离子当量相关性较强;开发区整体上呈现出中性,文化公园与第二中学呈现出偏碱性;盘锦市PM_(2.5)中水溶性离子主要来源于煤烟尘,生物质燃烧,二次粒子以及扬尘. 相似文献
9.
为探究南京江北新区PM2.5中水溶性离子的季节特征和来源,于2019年共采集了113个有效PM2.5样品.用称重法和离子色谱法分别测定出PM2.5和10种水溶性离子的质量浓度,并使用PMF源解析法对其进行来源解析.结果表明,观测期间南京江北新区PM2.5和水溶性离子年平均浓度分别为(78.34±29.64)和(35.68±18.30)μg·m-3,其四季变化趋势相同,冬季浓度高,夏季浓度低.10种水溶性离子中NO3-、SO42-和NH4+的浓度远远高于其他离子,其在总离子中的含量高达89.9%.南京江北新区四季PM2.5中NH4+主要与HSO4-和NO3-结合存在.硫氧化率(SOR)和氮氧化率(NOR)的年均值分别为0.53和0.28,说明观测期间大气中氮硫的二次生成率较高.南京江北新区PM2.5中水溶性离子主要来源为二次转化、海盐和扬尘. 相似文献
10.
泉州市大气PM2.5中水溶性离子季节变化特征及来源解析 总被引:2,自引:0,他引:2
为掌握泉州市大气PM_(2.5)中无机水溶性离子的季节变化特征,于2014年3月~2015年1月同步采集了泉州市5个采样点共116个PM_(2.5)样品.用离子色谱法分析了PM_(2.5)中Na~+、NH_4~+、K~+、Ca~(2+)、Mg~(2+)、F~-、Cl~-、NO_3~-和SO_4~(2-)等9种水溶性无机离子.观测期间,总水溶性离子浓度季节变化特征为春季(14.24±6.43)μg·m~(-3)冬季(8.54±7.61)μg·m~(-3)夏季(4.10±2.67)μg·m~(-3)秋季(3.91±2.58)μg·m~(-3);SO_4~(2-)、NO_3~-和NH_4~+(SNA)是PM_(2.5)中主要的3种离子,占水溶性离子总质量浓度比例分别为春季(90.3±3.3)%、夏季(68.8±11.7)%、秋季(78.9±7.1)%和冬季(74.0±18.4)%,说明春季二次污染较为严重;PM_(2.5)中阴、阳离子电荷平衡分析显示,阴离子相对亏损,大气细颗粒物组分呈弱碱性;春、冬季NH_4~+主要以(NH_4)_2SO_4、NH_4HSO_4和NH_4NO_3等形式存在,而夏、秋季则主要以NH_4HSO_4和NH_4NO_3形式存在;PMF源解析结果表明,泉州市大气PM_(2.5)中水溶性离子主要来自海盐、二次源、建筑扬尘、垃圾焚烧源和生物质燃烧源. 相似文献
11.
采用大流量气溶胶采样器采集了重庆市万州城区2013年夏季和冬季大气中PM_(2.5)样品,并运用气相色谱-质谱联用技术对PM_(2.5)中22种(C12~C33)正构烷烃的含量进行了测定,进而对万州城区PM_(2.5)中正构烷烃的污染特征及来源进行了分析.结果表明,万州城区夏、冬季大气PM_(2.5)中均检测出C12~C33正构烷烃,主峰碳均为C29和C31.夏、冬季PM_(2.5)中正构烷烃日均总浓度分别为158.70 ng·m-3和257.20 ng·m-3,碳优势指数CPI分别为1.63和1.82,CPI1分别为0.61和0.67,CPI2分别为1.83和1.96,植物蜡参数Wax C平均值分别为53.44%和55.53%.万州城区大气细颗粒物中n-alkanes受到来源于陆源高等植物蜡的排放等生物源及化石燃料燃烧等人为源的共同影响,且生物源的影响较大. 相似文献
12.
为了解天津市不同区域PM2.5中水溶性离子污染特征,于2015年7月、10月及2016年1月、4月,在天津市南开区(简称“市区”)及武清区采集PM2.5样品,结合气象因素、气态污染物研究,分析了样品中水溶性离子污染特征及来源.结果表明:①天津市市区及武清区PM2.5中水溶性离子组分主要为二次离子(SO42-、NO3-、NH4+);不同区域PM2.5中二次离子各季节占比略有不同,市区为夏季(54.0%)>秋季(42.5%)>春季(41.3%)>冬季(40.7%),武清区为夏季(53.0%)>春季(44.6%)>秋季(43.4%)>冬季(33.2%).②冬季市区、武清区PM2.5中水溶性离子组成差异较大,其他季节水溶性离子组成相似;夏季市区及武清区颗粒物呈酸性,其他季节均呈碱性,冬季武清区颗粒物碱性强于市区.③不同季节市区及武清区PM2.5中SO42-均以(NH4)2SO4形式存在,NO3-冬季以NH4NO3形式存在,其他季节NO3-主要以NH4NO3和HNO3形式共存;市区Cl-主要以NH4Cl、KCl和NaCl形式存在,武清区Cl-主要以NH4Cl、KCl形式存在.④对市区及武清区来说,均相反应和非均相反应是SO42-重要生成途径,均相反应是生成NO3-的主要途径.研究显示,代表一次排放的机动车源、燃煤源和二次无机粒子混合源对天津市PM2.5中水溶性离子贡献率最高,工业源和扬尘源对市区的影响较大,农业源对武清区的影响较大. 相似文献
13.
成都城区PM2.5季节污染特征及来源解析 总被引:16,自引:0,他引:16
于2009—2010年各季节典型月在成都城区采集了大气PM2.5样品,对PM2.5的质量浓度及其主要化学成分(含碳组分、水溶性无机离子和元素)进行了测定. 结果显示:成都城区PM2.5平均质量浓度高达(165.1±85.1)μg·m-3,是国家环境空气质量标准年均PM2.5限值的4.7倍. OC、EC和水溶性二次离子(SO42-,NO3-和NH4+)的平均浓度分别为(22.6±10.2)μg·m-3,(9.0±5.4)μg·m-3和(62.8±44.3)μg·m-3,分别占PM2.5浓度的13.7%、5.5%和38.0%. PM2.5及其主要化学成分浓度季节特征明显,即秋冬季高于春夏季. 利用正交矩阵因子分析(PMF)对成都城区PM2.5的来源进行解析,结果表明,土壤尘及扬尘、生物质燃烧、机动车源和二次硝酸盐/硫酸盐的贡献率分别为14.3%、28.0%、24.0%和31.3%. 就季节变化而言,生物质燃烧源贡献率在四个季节均维持在较高水平;土壤尘及扬尘的贡献率在春季显著提高;机动车源的贡献率在夏季中表现突出;而二次硝酸盐/硫酸盐的贡献率在秋冬季中则最为显著. 相似文献
14.
2018年6月7日—7月10日,利用在线气体和气溶胶成分监测仪(IGAC)在珠海市沿海站对PM2.5中水溶性离子浓度和气体开展连续观测分析.结果发现,夏初沿海地区水溶性离子处于较低水平,SO42-、NH4+、NO3-、Cl-、Na+、Ca2+、K+、Mg2+浓度分别为4.78、1.87、1.16、0.92、0.37、0.27、0.11和0.11μg·m-3,其中,代表海洋来源的Na+和Cl-浓度与珠江口东海岸的深圳沿海地区相当. Na+和Cl-呈明显的白天高、夜晚低的日变化特征,与海盐排放在海陆风环流下的输送有关.基于天气形势分析、气团来源分析和PMF来源解析方法研究了观测期间发生的两次污染过程,一次是受到强热带风暴外... 相似文献
15.
在哈尔滨市2014年1—3月的供暖期间对城区、郊区及周边农村地区的室内外PM2.5样品进行了同时采集,分析了样品中碳质组分、水溶性离子及无机元素后,通过颗粒物热力学模型计算了颗粒物原位酸度,并通过基于标记的正矩阵分解(PMF)模型对室内外颗粒物的来源进行了表征.计算结果表明,3个地点室外PM2.5原位酸度均低于室内,且室内外颗粒物原位酸度均为市区最高.PMF结果表明,哈尔滨市区、郊区及农村地区二次源对室外PM2.5的贡献均排第3位.交通源对市区及郊区的贡献在16%~20%,对于农村地区则是最弱的影响因素.生物质燃烧是农村地区室内外PM2.5的首要来源;燃煤和工业排放则是市区室内外PM2.5的主要来源;工业排放是郊区室外PM2.5的首要来源,与郊区的石化及金属工业有密切联系.因此,为提升哈尔滨市供暖期的空气质量,在进行农村散煤与生物质燃烧治理,推进农村地区清洁能源利用的同时,应多措并举注重城市交通状况改善和促进燃煤锅炉与工业超低排放技术的升级改造,促进区域协同治理. 相似文献
16.
为了探明昆山市不同污染条件下PM2.5中水溶性无机离子的污染特征以及本地源排放占主导时对污染过程的贡献,本研究使用昆山市2017年3月—2018年2月期间PM2.5、水溶性无机离子及其气态前体物数据,分别探讨了水溶性无机离子及其气态前体物在污染天气和清洁天气情况下的变化特征,揭示了它们在污染天气和清洁天气下的变化机制.同时结合周围城市PM2.5浓度筛选出昆山市秋、冬季局地污染事件,利用主成分分析(principle component analysis,PCA)方法对筛选出的局地污染事件中的水溶性无机离子数据进行了来源解析,定量评估了本地源排放占主导时不同水溶性无机离子对灰霾污染事件过程中PM2.5浓度的贡献.结果表明:①SO42-、NO3-、NH4+(合称SNA)是PM2.5的重要组分,且其相对贡献随着大气污染加重而变化.3种离子在清洁和污染条件下对PM2.5的相对贡献分别是49.4%~62.3%和52.7%~65.9%.在3种主要的水溶性无机离子中,NO3-浓度最高,其次是SO42-和NH4+.随着污染加重,SO42-的贡献率下降,而NO3-的贡献率上升.②污染天气下3种离子日变化规律不同,且存在明显季节差异.其中秋冬季SO42-和NH4+与各自气态前体物变化趋势一致且为单峰型;NO3-为单峰型而其前体物则为双峰型.另外,NO3-与NH4+日变化趋势较为一致,表明昆山地区SNA多以NH4NO3形式存在.③2017—2018年秋冬季由本地源排放占主导的污染天气下,PM2.5的主要来源是二次气粒转化、建筑扬尘、生物质燃烧和燃煤;除了Mg2+和Ca2+,其他水溶性离子浓度均低于非本地源排放占主导的污染天气下的浓度. 相似文献
17.
武汉市大气PM2.5中水溶性离子污染特征及来源 总被引:1,自引:0,他引:1
于2016年8月—2017年4月采集了武汉市PM2.5样品,使用离子色谱法分析了PM2.5中的水溶性离子(F-、Cl-、SO2-4、NO-3、Na+、NH+4、K+、Mg2+、Ca2+),并研究其污染特征及来源.结果表明,武汉市PM2.5质量浓度变化范围为24.8~215.7μg·m-3,均值为(81.3±38.1)μg·m-3.9种水溶性离子的年均质量浓度占PM2.5质量浓度的29.3%,其中,SO2-4、NO-3、NH+4(三者合称SNA)为主要的水溶性离子,SNA占PM2.5质量浓度的23.3%~32.0%.硫氧化率(SOR)和氮氧化率(NOR)年均值分别为0.4、0.1,说明武汉市大气存在较强的SO2向SO2-4、NO2向NO-3转化的二次过程.观测期间,武汉市的细颗粒物整体呈弱碱性.Ca2+与Mg2+,以及NH+4与NO-3、SO2-4等均有显著相关性,NH+4、NO-3、SO2-4主要以(NH4)2SO4和NH4NO3的形式存在.武汉市全年NO-3/SO2-4比值为0.9,表明固定源贡献相对较大.主成分分析结果表明,武汉市大气PM2.5中水溶性离子主要来自于燃煤及机动车排放、工业生产、扬尘等. 相似文献
18.
本研究基于采样分析与WRF-CAMx-PSAT模式分析了2018年1月北京和唐山PM2.5的组分特征、传输特征和来源解析.结果表明,2018年1月北京和唐山水溶性无机离子占PM2.5质量浓度的49.59%和39.13%,两地NO3-/SO42-分别为2.02和1.51,均受移动源主导,北京和唐山PM2.5外来贡献分别占总浓度的48.74%和30.67%,除此之外主要受到邻近局地、西北通道和西南通道这3个方面的污染输送.在污染日时段,两地受西南通道污染贡献分别上升9.65%和15.02%.北京PM2.5污染浓度贡献最大的是移动源和扬尘源,二次离子受区域输入影响较为明显,唐山则以移动源和工业源为主,且一次颗粒物和SO42-的本地贡献十分显著.与2013年相比,水溶性离子主导组分由SO42-向NO3-转变,主要污染源由燃煤源和工业源向移动源和扬尘源转变,同时2018年气象条件对于污染的缓解也比2013年更为有利,其中二次离子的气象影响变化与这两年的相对湿度变化差异紧密相关. 相似文献
19.
东莞市大气亚微米粒子PM1及其中水溶性无机离子的污染特征 总被引:1,自引:2,他引:1
2011年8月—2012年7月期间,利用中流量(100 L·min-1)大气采样器对东莞市A和B两点(A:生活区,B:工业区)进行PM1、PM1~2.5、PM2.5~10采样,并定量分析颗粒物上F-、Cl-、NO-3、SO2-4、NH+4、Na+、K+、Ca2+、Mg2+等9种水溶性无机离子.分析结果显示,工业区B点的细粒子污染较生活区A点严重,B点PM1质量浓度年均值为48μg·m-3,其浓度是A点的1.2倍.A、B两点PM1对PM2.5和PM10的质量贡献率无明显差异,平均贡献率分别高达69%和45%.二次离子SO2-4、NO-3、NH+4及与燃烧行为有关的K+、Cl-等5种离子在细粒子PM1上富集,这5种离子对PM1质量的贡献率分别为18.82%~19.76%、4.98%~5.47%、3.98%~4.12%、2.03%~2.27%和3.39%~3.78%.而其他4种离子,Ca2+、Mg2+、F-和Na+积聚在粗粒子PM2.5~10上.PM10/PM2.5/PM1三种粒子中,PM1粒子酸性值AE/CE(阴离子当量浓度/阳离子当量浓度)比值和硫转化率SOR、氮转化率NOR值均是最高. 相似文献