首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
箍筋间距对钢筋混凝土梁的裂缝开展及剪切延性有重要影响,但对其抗剪强度及尺寸效应的影响研究较少.采用三维细观数值模拟方法,建立了钢筋混凝土梁剪切破坏力学分析模型,研究了箍筋间距及配箍率对钢筋混凝土梁剪切破坏及尺寸效应的影响机制与规律,并重点分析了箍筋间距对钢筋混凝土梁剪切延性及尺寸效应的影响.研究结果表明:箍筋间距对剪切破坏模式及抗剪强度的影响不大,主要影响钢筋混凝土梁的剪切延性;减小箍筋间距可以有效抑制梁的脆性行为;箍筋增大梁的抗剪承载能力,同时削弱梁抗剪强度尺寸效应.此外,将模拟结果与所提抗剪强度尺寸效应理论公式进行对比分析,验证了所提公式的适用性与准确性.  相似文献   

2.
通过长达2年的干湿循环试验,得到了48个锈蚀钢筋混凝土试件;采用数理统计相关知识,对试件的锈蚀特征进行了分析,建立了与保护层厚度、表面裂缝宽度、钢筋直径、混凝土强度等级及箍筋间距相关的混凝土中钢筋锈蚀深度预测模型;对模型进行参数敏感性分析表明,表面锈胀裂缝宽度是影响钢筋锈蚀深度的最主要因素,而较小的箍筋间距对纵向钢筋锈蚀深度也具有较明显影响;经试验数据验证表明,该模型具有较好的适用性。  相似文献   

3.
钢筋锈蚀是影响混凝土结构耐久性最重要的因素。钢筋锈胀体积膨胀,对周围混凝土产生压力,继而导致保护层的受拉开裂,出现锈胀裂缝,这对结构整体的安全性和耐久性十分有害。研究混凝土锈胀裂缝的抑制措施,对提高结构的耐久性具有重要意义。从结构构造入手,以快速通电加速纵向钢筋锈蚀的方法,研究了混凝土保护层厚度和箍筋间距对混凝土构件锈胀开裂的影响;同时通过计算机仿真,对试验构件进行了数值试验。在此基础上,建立了构件表面应力与混凝土保护层厚度及箍筋间距的相关关系,得到了不同保护层厚和箍筋间距对试件表面锈胀裂缝的影响规律。  相似文献   

4.
为验证现行相关规范(规程)是否适用于钢骨超高强混凝土结构,以钢骨超高强混凝土框架结构为研究对象,应用大型通用有限元分析软件ABAQUS进行地震弹塑性分析。以结构自振周期、顶点位移、基底剪力、层间位移角为评价指标,讨论了建筑高度、地震波作用方向、填充墙、混凝土强度等级对框架结构地震弹塑性的影响。结果表明:1随着框架结构建筑高度增加,结构自振周期增大,顶点位移增大,基底剪力最大值增大,层间位移角增大;2与Y向地震作用相比,X向地震作用下结构自振周期较小,顶点位移最大值较小,层间位移角最大值较小,基底剪力最大值比较接近;3增加填充墙后,自振周期减小,顶点位移最大值减小,基底剪力最大值增大,层间位移角最大值减小;4柱采用较低强度等级混凝土的框架结构,自振周期增大,顶点位移最大值增大,层间位移角最大值增大,基底剪力最大值比较接近;5框架模型层间位移角计算结果满足现行规范(规程)的限值要求。钢骨超高强混凝土框架结构设计可参考现行规范(规程)的要求进行。  相似文献   

5.
钢筋混凝土桥墩拟静力试验表明,弯曲破坏型桥墩墩顶位移主要由弯曲变形、滑移变形成分构成。为进一步探讨地震荷载作用下弯曲破坏型桥墩地震变形成分及其影响因素,首先基于Lehman以及李贵乾的桥墩试件拟静力试验,利用OpenSees平台采用纤维梁柱单元模型附加零长度截面单元对试验滞回曲线和墩顶变形成分进行数值模拟;其次建立原型桥墩数值模型,考虑近断层和远断层地震动进行了非线性动力时程分析,探讨了最大侧移角、位移延性系数等结构反应参数,以及剪跨比、纵筋配筋率等构件特征参数对桥墩地震变形成分的影响。结果表明,墩顶总位移中纵筋粘结滑移成分随最大侧移角和位移延性的增大而增大,随剪跨比和纵筋配筋率的增大而减小。考虑纵筋粘结滑移的数值模型与仅考虑弯曲变形纤维梁柱单元模型相比,将增大桥墩的地震位移反应。  相似文献   

6.
基于通用有限元软件ABAQUS,分别在准静态和动态加载条件下,对不同剪跨比和箍筋率的钢筋混凝土柱进行了数值模拟。对比现有试验结果发现,ABAQUS的模拟效果与试验结果吻合较好;加载速率的影响随着剪跨比和箍筋率的增大而降低;钢筋混凝土柱的峰值承载力随着加载速率增大而增大的趋势明显,刚度无明显变化,延性比趋于稳定。因此,在进行地震作用下钢筋混凝土结构的抗震分析时,对加载速率的影响效应要给予足够的考虑。  相似文献   

7.
针对足尺有粘结预应力混凝土梁板高温后的抗弯承栽力开展了非线性计算分析。结果表明,综合配筋指标、有效预应力对高温后极限弯矩与常温下极限弯矩比值M_u~A/M_u的影响不大,预应力度和预应力筋的保护层厚度对M_u~A/M_u影响显著。高宽比近似相同的有粘结预应力混凝土梁,当第一排钢筋的保护层厚度相同时,受火时间为3 h,高度为700 mm的梁高温后截面承栽力下降幅度最大约为30%,高度为4500 mm的梁高温后截面承栽力下降幅度不到10%,高温后大尺度梁的力学性能优于小尺度梁。给出了考虑预应力筋保护层厚度和预应力度影响的有粘结预应力混凝土板M_u~A/M_u的计算公式,以及综合考虑预应力筋、非预应力筋合力点到梁底距离和预应力筋梁侧保护层厚度影响的有粘结预应力混凝土梁M_u~A/M_u的计算公式。  相似文献   

8.
为了克服传统确定性抗剪承载力模型无法合理考虑随机性所存在的不足,综合考虑力学机制和多种随机性, 研究建立了锈蚀钢筋混凝土(RC)柱抗剪承载力分析的概率模型,并据此提出了可以校准传统确定性模型的概率方法。首先依据桁架?拱模型的剪力传递机制,综合考虑锈蚀对纵筋和箍筋的截面积、箍筋有效屈服强度、混凝土有效抗剪截面积的影响,建立了锈蚀 RC 柱的确定性抗剪承载力模型;然后综合考虑模型假定、试验数据和材料参数等方面所存在的随机性,建立了抗剪承载力分析的概率模型;最后基于概率模型的置信区间,提出了传统确定性抗剪承载力模型的概率校准方法。分析表明,该模型可以描述抗剪承载力的概率特性,并评估传统确定性抗剪承载力模型的预测精度。  相似文献   

9.
本文对钢筋混凝土柱的抗火性能研究成果进行了综述。首先,分析了钢筋混凝土柱耐火极限和高温作用时和作用后的受力性能。其次,根据大量试验研究结果确定了钢筋混凝土柱抗火性能的影响因素包括:(1)温度和受火时间;(2)受火方式;(3)截面尺寸;(4)混凝土强度、骨料种类;(5)轴压比和荷载偏心距;(6)纵向配筋;(7)混凝土保护层厚度、箍筋、长细比、柱端约束条件等。其后,介绍了钢筋混凝土柱抗火性能的一些理论计算方法,评估这些计算方法的准确度及可行性。最后,对欧洲、美国、澳大利亚和中国抗火设计规范中钢筋混凝土柱的耐火极限计算方法进行评估,并对该领域的发展提出了建议和展望。  相似文献   

10.
进行了4根GFRP筋混凝土简支梁在ISO834标准升温曲线下的火灾实验,试件依据ACI440.1R-06进行截面设计,分别考虑了不同荷载比、保护层厚度、端部锚固方式对梁耐火性能的影响。试验结果表明,GFRP筋混凝土梁在火灾中的裂纹开展深度较传统的钢筋混凝土结构明显偏大。由于GFRP筋横向膨胀大更易造成梁底混凝土的开裂与剥落,建议在满足纵筋锚固性能要求的前提下,尽量减少端部J型锚固筋。GFRP筋在高温下的材料性能衰减严重,合理的设计保护层厚度和限制GFRP筋的使用内力,可使GFRP筋混凝土梁的耐火性能满足实际工程的需要。  相似文献   

11.
为了研究使用随机化Pushover方法进行RC框架结构整体抗震可靠度计算过程中相关参数的适应性,使用Matlab调用SAP2000编制出基于随机化Pushover的结构整体抗震可靠度程序,以一榀11层RC框架结构为例,通过该程序统计出不同参数下结构最大层间位移角的分布情况及整体失效概率,并以大样本实际地震波进行时程分析所统计出的相应结果为基准进行对比。结果表明,在常规参数设置下随机化Pushover方法统计出的最大层间位移角分布情况和结构整体失效概率与大样本时程分析结果有较大差异,然后提出了一种修正方式,有效地减小了两者的差异,并以某算例验证了该修正方式的适用性。  相似文献   

12.
介绍了一种新桩型-卡扣式机械连接预应力混凝土实心方桩,然后针对卡扣式机械连接预应力混凝土实心方桩和承台处节点试验中没有考虑的因素进行了数值模拟分析,包括预应力方桩配箍率、增加的普通钢筋配筋率以及不同有效预应力等因素,以探究这些因素对预应力方桩承台节点力学性能的影响。研究结果表明:不同箍筋间距对节点的水平最大承载能力影响较小;箍筋间距越小,对混凝土的约束能力就越大,节点水平承载力的下降段越平缓;箍筋间距越大,水平承载力的下降段越陡峭,刚度退化越快。提高有效预压应力可以提高节点处的水平承载能力;有效预应力越大,桩身会发生更大的损伤,有效预应力越小,承台会发生更大的损伤;增加普通钢筋,能有效改善预应力方桩的延性和水平承载能力;使用大直径钢筋能增加节点的锚固性能,桩身承受更多的损伤。数值模拟成果可为卡扣式机械连接混凝土实心方桩的后期改进和应用推广提供可靠的依据。  相似文献   

13.
楼板对钢筋混凝土框架结构受力性能影响   总被引:1,自引:0,他引:1  
汶川8级地震震害调查发现,这次地震中现浇钢筋混凝土框架结构多发生"强梁弱柱"型破坏,这与规范中"强柱弱梁"抗震设计原则相悖。为探究其原因,采用ABAQUS软件对钢筋混凝土带楼板框架和空框架结构进行了侧向加载情况的性能分析。通过对比纵向梁端钢筋应力变化和柱端钢筋应力变化,以及分析不同侧向位移对应的楼板钢筋的应力变化情况,指出楼板对梁端抗负弯矩能力的增强有很大贡献。研究了节点类型、楼板钢筋材性、侧向位移、梁高、梁跨和板厚等因素对纵向梁端处楼板有效宽度的影响规律,提出了负弯矩作用下梁端处楼板有效宽度的取值方法。  相似文献   

14.
易损性分析是柱承式筒仓结构开展基于性能设计研究的重要基础。为此,选用某钢筋混凝土柱承式筒仓为研究对象,通过有限元软件 ABAQUS,分别采用混凝土损伤塑性模型和理想弹塑性模型(Dracker-Prager)模拟筒仓结构及仓内粮食颗粒,建立考虑粮食-仓体相互作用的柱承式筒仓非线性有限元模型。根据增量动力分析法 (IDA),按照谱相容性原则选取 10 条地震动记录,分别以最大层间位移角和地面峰值加速度作为筒仓结构工程需求参数和地震动强度参数,进行空仓、半仓、满仓三种储粮工况的柱承式筒仓结构地震易损性分析以及地震损伤风险评估。结果表明:(1)三种储粮工况下柱承式筒仓结构最大层间位移角均发生在柱顶位置,支承柱进入塑性状态的层间位移角分别为 0.015、0.013、0.011 rad;(2)储粮质量大小是决定柱承式筒仓结构损伤刚度退化的重要因素; (3)三种储粮工况下的柱承式筒仓结构均满足“小震不坏、中震可修、大震不倒”的抗震设防目标;(4)满仓工况筒仓 50 年超越倒塌极限状态的概率为 0.45%,小于 FEMA P750 中定义的 50 年倒塌风险的限值 1%。研究成果可为筒仓结构基于性能的设计研究及抗震性能评估提供依据。  相似文献   

15.
针对中小学砌体结构教学楼的受力特点,提出横墙和开洞纵墙的等代框架模型,分析了模型的抗弯、抗剪和轴向刚度计算方法;结合国内外对钢筋混凝土结构性能水平的划分标准,将砌体结构的性能水平划分为正常使用、中等破坏和生命安全三个阶段,并通过对大量砌体墙片试验数据的统计,得出其各性能水平对应的层间位移角限值。最后利用所提模型对一砌体结构教学楼进行Pushover分析,将其实际层间位移与所提性能指标进行比较,结果表明结构在不同地震水平下均满足预定的性能目标。  相似文献   

16.
提出一种结构局部地震损伤过程的多尺度监测方法。首先,在混凝土材料尺度上,针对混凝土材料细观随机性影响问题,基于压电智能骨料进行混凝土压应力监测,通过试验方法建立了混凝土损伤全过程中压电智能骨料应力与混凝土宏观应力的概率统计关系;其次,在截面尺度上,基于MEMS倾角仪转动监测方法,提出混凝土压弯构件截面曲率的监测方法,并通过试验验证了该方法的可行性;最后,在构件尺度上,提出基于转动积分的层间变形监测方法并给出了转动监测位置的设计原理,通过构件试验验证了该监测方法的可靠性。  相似文献   

17.
复杂环境下深基坑钢筋混凝土支撑梁的安全、高效拆除是城市建设过程中极为关键的环节。基于箍筋对支撑梁侧向约束作用机制的理论分析,揭示解除箍筋侧向约束效应前后梁内砼单元应力状态的演变规律及对支撑梁爆破效果的影响,并研发新的支撑梁线性切割预处理方法、布孔方法及其毫秒延时起爆网路,形成较为系统的支撑梁爆破拆除技术。工程应用结果表明,支撑梁线性切割预处理方法可显著增强拆除效果;多向协同布孔法可改善爆炸能量耦合状态,减小爆破飞石危害;基于爆破网路连接单元的毫秒延时起爆网路可有效控制振动强度,提高网路可靠性。  相似文献   

18.
针对现浇钢筋混凝土框架梁出现裂缝的问题,从设计、施工等诸多影响因素进行分析,找出裂缝原因,提出修补和控制措施。结果表明:(1)裂缝产生原因是钢筋混凝土框架梁支柱的刚度大,梁截面刚度相对较小,形成了强柱弱梁,因而在梁的应力复杂部位产生了收缩裂缝。(2)通过改善约束条件,优化混凝土配合比,加强混凝土振捣等方法,可避免钢筋混凝土框架梁出现裂缝。  相似文献   

19.
为了研究国产的工程水泥基复合材料(Engineered Cementitious Composites,ECC)和普通聚乙烯醇(Polyvi-nyl Alcohol,PVA)纤维混凝土对结构增韧和控裂的效果,分别采用材料试验和构件试验进行研究。通过四点弯曲试验,发现ECC的峰值荷载和峰值荷载对应的拉应变要远远大于普通混凝土、PVA纤维混凝土,而且ECC起裂以后,裂缝宽度较小,且发展较慢,控制较好;采用不同高度的ECC、PVA纤维混凝土作为钢筋混凝土梁底保护层,发现1/4h ECC对钢筋混凝土增韧的效果最好,且裂缝宽度为0.2mm时,1/4h ECC的承载能力比普通钢筋混凝土提高1.6倍,峰值荷载比普通钢筋混凝土提高约12%;同时发现,在相同荷载作用下,采用ECC作为梁底保护层时,裂缝宽度比钢筋混凝土小,且可以有效地控制裂缝宽度的快速增长,间接提高结构的耐久性。  相似文献   

20.
基于三维瞬态温度场和二维平面有限元力学模型,编制了钢筋混凝土框架结构高温反应的全过程分析程序;利用前人的试验结果,程序的正确性得到了验证。选取一榀单层3跨的钢筋混凝土中框架。针对不同梁柱线刚度比和不同柱子轴压比的情况分别进行了该框架的高温反应分析,定性给出了部分控制点位移随时间的变化规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号