首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sulfamethoxazole (SMX) and trimethoprim (TMP) are two critical sulfonamide antibiotics with enhanced persistency that are commonly found in wastewater treatment plants. Recently, more scholars have showed interests in how SMX and TMP antibiotics are biodegraded, which is seldom reported previously. Novel artificial composite soil treatment systems were designed to allow biodegradation to effectively remove adsorbed SMX and TMP from the surface of clay ceramsites. A synergy between sorption and biodegradation improves the removal of SMX and TMP. One highly efficient SMX and TMP degrading bacteria strain, Bacillus subtilis, was isolated from column reactors. In the removal process, this bacteria degrade SMX and TMP to NH 4 + , and then further convert NH 4 + to NO 3 in a continuous process. Microbial adaptation time was longer for SMX degradation than for TMP, and SMX was also able to be degraded in aerobic conditions. Importantly, the artificial composite soil treatment system is suitable for application in practical engineering.
  相似文献   

2.
Investigation of demulsification of polybutadiene latex (PBL) wastewater by polyaluminum chloride (PAC) indicated that there was an appropriate dosage range for latex removal. The demulsification mechanism of PAC was adsorption-charge neutralization and its appropriate dosage range was controlled by zeta potential. When the zeta potential of the mixture was between -15 and 15 mV after adding PAC, the demulsification effect was good. Decreasing the latex concentration in chemical oxygen demand (COD) from 8.0 g/L to 0.2 g/L made the appropriate PAC dosage range narrower and caused the maximum latex removal efficiency to decrease from 95% to 37%. Therefore, more accurate PAC dosage control is required. Moreover, adding 50 mg/L sulfate broadened the appropriate PAC dosage range, resulting in an increase in maximum latex removal efficiency from 37% to 91% for wastewater of 0.2 g COD/L. The addition of sulfate will favor more flexible PAC dosage control in demulsification of PBL wastewater.
  相似文献   

3.
Mercury enrichment in response to elevated atmospheric mercury concentrations in the organs of rape (Brassica napus) was investigated using an open top chamber fumigation experiment and a soil mercury enriched cultivation experiment. Results indicate that the mercury concentration in leaves and stems showed a significant variation under different concentrations of mercury in atmospheric and soil experiments while the concentration of mercury in roots, seeds and seed coats showed no significant variation under different atmospheric mercury concentrations. Using the function relation established by the experiment, results for atmospheric mercury sources in rape field biomass showed that atmospheric sources accounted for at least 81.81%of mercury in rape leaves and 32.29% of mercury in the stems. Therefore, mercury in the aboveground biomass predominantly derives from the absorption of atmospheric mercury.
  相似文献   

4.
Effect of different carbon sources on purification performance and change of microbial community structure in a novel A2N-MBR process were investigated. The results showed that when fed with acetate, propionate or acetate and propionate mixed (1:1) as carbon sources, the effluent COD, NH4 +-N, TN and TP were lower than 30, 5, 15 and 0.5 mg?L–1, respectively. However, taken glucose as carbon source, the TP concentration of effluent reached 2.6 mg?L–1. Process analysis found that the amount of anaerobic phosphorus release would be the key factor to determine the above effectiveness. The acetate was beneficial to the growth of Candidatus Accumulibacter associated with biological phosphorus removal, which was the main cause of high efficiency phosphorus removal in this system. In addition, it could eliminate the Candidatus Competibacter associated with glycogen-accumulating organisms and guarantee high efficiency phosphorus uptake of phosphorus accumulating organisms in the system with acetate as carbon source.
  相似文献   

5.
The effect of microwave pretreatment on the anaerobic degradation of hyacinth was investigated using response surface methodology (RSM). The components of lignin and the other constituents of hyacinth were altered by microwave pretreatment. Comparison of the near-infrared spectra of hyacinth pretreated by microwave irradiation and water-heating pretreatment revealed that no new compounds were generated during hyacinth pretreatment by microwave irradiation. Atomic force microscopy observations indicated that the physical structures of hyacinth were disrupted by microwave pretreatment. The yield of methane per gram of the microwave-irradiated substrate increased by 38.3% as compared to that of the substrate pretreated via water-heating. A maximum methane yield of 221 mL?g-sub–1 was obtained under the optimum pretreatment conditions (substrate concentration (PSC) = 20.1 g?L–1 and pretreatment time (PT) = 14.6 min) using RSM analysis. A maximum methane production rate of 0.76 mL?h–1?g-sub–1 was obtained by applying PSC = 9.5 g?L–1 and PT = 11 min. Interactive item coefficient analysis showed that methane production was dependent on the PSC and PT, separately, whereas the interactive effect of the PSC and PT on methane production was not significant. The same trend was also observed for the methane production rate.
  相似文献   

6.
Nitrogen (N) and phosphorus (P) released from the sediment to the surface water is a major source of water quality impairment. Therefore, inhibiting sediment nutrient release seems necessary. In this study, red soil (RS) was employed to control the nutrients released from a black-odorous river sediment under flow conditions. The N and P that were released were effectively controlled by RS capping. Continuous-flow incubations showed that the reduction efficiencies of total N (TN), ammonium (NH 4 + -N), total P (TP) and soluble reactive P (SRP) of the overlying water by RS capping were 77%, 63%, 77% and 92%, respectively, and nitrification and denitrification occurred concurrently in the RS system. An increase in the water velocity coincided with a decrease in the nutrient release rate as a result of intensive water aeration.
  相似文献   

7.
A biofilm membrane bioreactor (BF-MBR) and a conventional membrane bioreactor (MBR) were parallelly operated for treating digested piggery wastewater. The removal performance of COD, TN, NH4 +-N, TP as well as antibiotics were simultaneously studied when the hydraulic retention time (HRT) was gradually shortened from 9 d to 1 d and when the ratio of influent COD to TN was changed. The results showed that the effluent quality in both reactors was poor and unstable at an influent COD/TN ratio of 1.0±0.2. The effluent quality was significantly improved as the influent COD/TN ratio was increased to 2.3±0.5. The averaged removal rates of COD, NH4 +-N, TN and TP were 92.1%, 97.1%, 35.6% and 54.2%, respectively, in the BF-MBR, significantly higher than the corresponding values of 91.7%, 90.9%, 17.4% and 31.9% in the MBR. Analysis of 11 typical veterinary antibiotics (from the tetracycline, sulfonamide, quinolone, and macrolide families) revealed that the BF-MBR removed more antibiotics than the MBR. Although the antibiotics removal decreased with a shortened HRT, high antibiotics removals of 86.8%, 80.2% and 45.3% were observed in the BF-MBR at HRTof 5–4 d, 3–2 d and 1 d, respectively, while the corresponding values were only 83.8%, 57.0% and 25.5% in the MBR. Moreover, the BF-MBR showed a 15% higher retention rate of antibiotics and consumed 40% less alkalinity than the MBR. Results above suggest that the BF-MBR was more suitable for digested piggery wastewater treatment.
  相似文献   

8.
Biofilm is an effective simultaneous denitrification and in situ sludge reduction system, and the characteristics of different biofilm carrier have important implications for biofilm growth and in situ sludge reduction. In this study, the performance and mechanism of in situ sludge reduction were compared between FSC-SBBR and SC-SBBR with constructed by composite floating spherical carriers (FSC) and multi-faceted polyethylene suspension carriers (SC), respectively. The variation of EPS concentration indicated that the biofilm formation of FSC was faster than SC. Compared with SCSBBR, the FSC-SBBR yielded 0.16 g MLSS/g COD, almost 27.27% less sludge. The average removal rates of COD and NH4+-N were 93.39% and 96.66%, respectively, which were 5.21% and 1.43% higher than the average removal rate of SC-SBBR. Investigation of the mechanisms of sludge reduction revealed that, energy uncoupling metabolism and sludge decay were the main factors for sludge reduction inducing 43.13% and 49.65% less sludge, respectively, in FSC-SBBR. EEM fluorescence spectroscopy and SUVA analysis showed that the hydrolytic capacity of biofilm attached in FSC was stronger than those of SC, and the hydrolysis of EPS released more DOM contributed to lysis-cryptic growth metabolism. In additional, Bacteroidetes and Mizugakiibacter associated with sludge reduction were the dominant phylum and genus in FCS-SBBR. Thus, the effect of simultaneous in situ sludge reduction and pollutant removal in FSC-SBBR was better.
  相似文献   

9.
In this study, a new water treatment system that couples (photo-) electrochemical catalysis (PEC or EC) in a microbial fuel cell (MFC) was configured using a stainless-steel (SS) cathode coated with Fe0/TiO2. We examined the destruction of methylene blue (MB) and tetracycline. Fe0/TiO2 was prepared using a chemical reduction-deposition method and coated onto an SS wire mesh (500 mesh) using a sol technique. The anode generates electricity using microbes (bio-anode). Connected via wire and ohmic resistance, the system requires a short reaction time and operates at a low cost by effectively removing 94% MB (initial concentration 20 mg?L–1) and 83% TOC/TOC0 under visible light illumination (50 W; 1.99 mW?cm–2 for 120 min, MFC-PEC). The removal was similar even without light irradiation (MFC-EC). The E Eo of the MFC-PEC system was approximately 0.675 kWh?m–3?order–1, whereas that of the MFC-EC system was zero. The system was able to remove 70% COD in tetracycline solution (initial tetracycline concentration 100 mg?L–1) after 120 min of visible light illumination; without light, the removal was 15% lower. The destruction of MB and tetracycline in both traditional photocatalysis and photoelectrocatalysis systems was notably low. The electron spinresonance spectroscopy (ESR) study demonstrated that ?OH was formed under visible light, and ?O 2 was formed without light. The bio-electricity-activated O2 and ROS (reactive oxidizing species) generation by Fe0/TiO2 effectively degraded the pollutants. This cathodic degradation improved the electricity generation by accepting and consuming more electrons from the bio-anode.
  相似文献   

10.
Although Beijing has carried out municipal solid waste (MSW) source separation since 1996, it has largely been ineffective. In 2012, a “Green House” program was established as a new attempt for central sorting. In this study, the authors used material flow analysis (MFA) and cost benefit analysis (CBA) methods to investigate Green House’s environment and economic feasibility. Results showed that the program did have significant environmental benefits on waste reduction, which reduced the amount of waste by 34%. If the Green House program is implemented in a residential community with wet waste ratio of 66%, the proportion of waste reduction can reach 37%. However, the Green House is now running with a monthly loss of 1982 CNY. This is mainly because most of its benefits come from waste reduction (i.e., 5878 CNY per month), which does not turn a monetary benefit, but is instead distributed to the whole of society as positive environmental externalities. Lack of government involvement, small program scale, and technical/managerial deficiency are three main barriers of the Green House. We, thus, make three recommendations: involve government authority and financial support, expand the program scale to separate 91.4 tons of waste every month, and use more professional equipment/technologies. If the Green House program can successfully adopt these suggestions, 33.8 tons of waste can be reduced monthly, and it would be able to flip the loss into a profit worth 35034 CNY.
  相似文献   

11.
A novel, functionalized bubble surface can be obtained in dissolved air flotation (DAF) by dosing chemicals in the saturator. In this study, different cationic chemicals were used as bubble surface modifiers, and their effects on natural organic matter (NOM) removal from river water were investigated. NOM in the samples was fractionated based on molecular weight and hydrophobicity. The disinfection byproduct formation potentials of each fraction and their removal efficiencies were also evaluated. The results showed that chitosan was the most promising bubble modifier compared with a surfactant and a synthetic polymer. Tiny bubbles in the DAF pump system facilitated the adsorption of chitosan onto microbubble surfaces. The hydrophobic NOM fraction was preferentially removed by chitosan-modified bubbles. Decreasing the recycle water pH from 7.0 to 5.5 improved the removal of hydrophilic NOM with low molecular weight. Likewise, hydrophilic organic compounds gave high dihaloacetic acid yields in raw water. An enhanced reduction of haloacetic acid precursors was obtained with recycle water at pH values of 5.5 and 4.0. The experimental results indicate that NOM fractions may interact with bubbles through different mechanisms. Positive bubble modification provides an alternative approach for DAF to enhance NOM removal.
  相似文献   

12.
A membrane-aerated biofilm reactor was employed to investigate the nitrogen removal of one typical municipal reverse osmosis(RO) concentrate with a high total nitrogen (TN) concentration and a low C/ N ratio. The effects of operational conditions, including the aeration pressure, the hydraulic retention time and the C/N ratio, on the systematic performance were evaluated. The nitrogen removal mechanism was evaluated by monitoring the effluent concentrations of nitrogen contents. Furthermore, the microbial tolerance with elevated salinity was identified. The results indicated that the optimal TN removal efficiency of 79.2% was achieved of the aeration pressure of 0.02 MPa, hydraulic retention time of 24 h, and the C/N ratio of 5.8, respectively. It is essential to supplement the carbon source for the targeted RO concentrate to promote the denitrification process. The inhibitory effect of salinity on denitrifying bacteria and nitrite oxidizing bacteria was significant, revealing the limited TN removal capacity of the conditions in this work. The TN removal efficiency remained more than 70% with the addition of salt (NaCl) amount below 20 g/L. This work preliminarily demonstrated the MABR feasibility for the nitrogen removal of municipal RO concentrate with low C/N ratio and provided technical guidance for further scale-up application.
  相似文献   

13.
Benzotriazole (BTA) is an emerging contaminant that also is a recalcitrant compound. Sequential and intimate coupling of UV-photolysis with biodegradation were investigated for their impacts on BTA removal and mineralization in aerobic batch experiments. Special attention was given to the role of its main photolytic products, which were aminophenol (AP), formic acid (FA), maleic acid (MA), and phenazine (PHZ). Experiments with sequential coupling showed that BTA biodegradation was accelerated by photolytic pretreatment up to 9 min, but BTA biodegradation was slowed with longer photolysis. FA and MA accelerated BTA biodegradation by being labile electron-donor substrates, but AP and PHZ slowed the rate because of inhibition due to their competition for intracellular electron donor. Because more AP and PHZ accumulated with increasing photolysis time, their inhibitory effects began to dominate with longer photolysis time. Intimately coupling photolysis with biodegradation relieved the inhibition effect, because AP and PHZ were quickly biodegraded and did not accumulate, which accentuated the beneficial effect of FA and MA.
  相似文献   

14.
Dust and Sand Storms (DSS) originating in deserts in arid and semi-arid regions are events raising global public concern. An important component of atmospheric aerosols, dust aerosols play a key role in climatic and environmental changes at the regional and the global scale. Deserts and semi-deserts are the main source of dust and sand, but regions that undergo vegetation deterioration and desertification due to climate change and human activities also contribute significantly to DSS. Dust aerosols are mainly composed of dust particles with an average diameter of 2 mm, which can be transported over thousands of kilometers. Dust aerosols influence the radiation budget of the earthatmosphere system by scattering solar short-wave radiation and absorbing surface long-wave radiation. They can also change albedo and rainfall patterns because they can act as cloud condensation nuclei (CCN) or ice nuclei (IN). Dust deposition is an important source of both marine nutrients and contaminants. Dust aerosols that enter marine ecosystems after long-distance transport influence phytoplankton biomass in the oceans, and thus global climate by altering the amount of CO2 absorbed by phytoplankton. In addition, the carbonates carried by dust aerosols are an important source of carbon for the alkaline carbon pool, which can buffer atmospheric acidity and increase the alkalinity of seawater. DSS have both positive and negative impacts on human society: they can exert adverse impacts on human’s living environment, but can also contribute to the mitigation of global warming and the reduction of atmospheric acidity.
  相似文献   

15.
Ibuprofen (IBU) is widely used in the world as anti-inflammatory drug, which posed health risk to the environment. A bacterium capable of degrading IBU was isolated from activated sludge in a sewage treatment plant. According to its morphological, physiologic, and biochemical characteristics, as well as 16S rRNA sequence analysis, the strain was identified as Serratia marcescens BL1 (BL1). Degradation of IBU required the presence of primary substrate. After a five-day cultivation with yeast powder at 30°C and pH 7, the highest degradation (93.47%±2.37%) was achieved. The process of BL1 degrading IBU followed first-order reaction kinetics. The BL1 strain was applied to a small biological aerated filter (BAF) device to form a biofilm with activated sludge. IBU removal by the BAF was consistent with the results of static tests. The removal of IBU was 32.01% to 44.04% higher than for a BAF without BL1. The indigenous bacterial community was able to effectively remove CODMn (permanganate index) and ammonia nitrogen in the presence of BL1.
  相似文献   

16.
It is common that 2,4,6-trichlorophenol (TCP) coexists with nitrate or nitrite in industrial wastewaters. In this work, simultaneous reductive dechlorination of TCP and denitrification of nitrate or nitrite competed for electron donor, which led to their mutual inhibition. All inhibitions could be relieved to a certain degree by augmenting an organic electron donor, but the impact of the added electron donor was strongest for TCP. For simultaneous reduction of TCP together with nitrate, TCP’s removal rate value increased 75% and 150%, respectively, when added glucose was increased from 0.4 mmol?L–1 to 0.5 mmol?L–1 and to 0.76 mmol?L–1. For comparison, the removal rate for nitrate increased by only 25% and 114% for the same added glucose. The relationship between their initial biodegradation rates versus their initial concentrations could be represented well with the Monod model, which quantified their half-maximum-rate concentration (K S value), and K S values for TCP, nitrate, and nitrite were larger with simultaneous reduction than independent reduction. The increases in K S are further evidence that competition for the electron donor led to mutual inhibition. For bioremediation of wastewater containing TCP and oxidized nitrogen, both reduction reactions should proceed more rapidly if the oxidized nitrogen is nitrite instead of nitrate and if readily biodegradable electron acceptor is augmented.
  相似文献   

17.
Pharmaceutically active compounds in wastewater released from human consumption have received considerable attention because of their possible risks for aquatic environments. In this study, the occurrence and removal of 10 pharmaceuticals in three municipal wastewater treatment plants in southern China were investigated and the environmental risks they posed were assessed. Nifedipine, atenolol, metoprolol, valsartan and pravastatin were detected in the influent wastewater. The highest average concentration in the influents was observed for metoprolol (164.6 ng/L), followed by valsartan (120.3 ng/L) in August, while median concentrations were higher in November than in August. The total average daily mass loadings of the pharmaceuticals in the three plants were 289.52 mg/d/person, 430.46 mg/d/person and 368.67 mg/d/person, respectively. Elimination in the treatment plants studied was incomplete, with metoprolol levels increasing during biological treatment. Biological treatment was the most effective step for PhACs removal in all of the plants studied. Moreover, the removal of PhACs was observed with higher efficiencies in August than in November. The WWTP equipped with an Unitank process exhibited similar removals of most PhACs as other WWTPs equipped with an anoxic/oxic (A/O) process or various anaerobic-anoxic-oxic (A2/O) process. The environmental risk assessment concluded that all of the single PhAC in the effluents displayed a low risk (RQ<0.1) to the aquatic environments.
  相似文献   

18.
Inflow and infiltration (I/I) are serious problems in hybrid sewerage systems. Limited sewerage information impedes the estimation accuracy of I/I for each catchment. A new method dealing with I/I of a large-scale hybrid sewerage system with limited infrastructure facility data is proposed in this study. The catchment of representative pump stations was adopted to demonstrate the homological catchments that have similar wastewater fluctuation characteristics. Homological catchments were clustered using the self-organizing map (SOM) analysis based on long-term daily flow records of 50 pumping stations. An assessment index was applied to describe the I/I and overflow risk in the catchment based on the hourly wastewater quality and quantity data of representative pump stations. The potential operational strategy of homological catchments was determined by the assessment index of representative pump stations. The simulation results of the potential operational strategy indicated that the optimized operation strategy could reduce surcharge events and significantly improve the quality of wastewater treatment plant effluent.
  相似文献   

19.
Aromatics-contaminated soil is of particular environmental concern as it exhibits carcinogenic and mutagenic properties. Bioremediation, a biological approach for the removal of soil contaminants, has several advantages over traditional soil remediation methodologies including high efficiency, complete pollutant removal, low expense and limited or no secondary pollution. Bioaugmentation, defined as the introduction of specific competent strains or consortia of microorganisms, is a widely applied bioremediation technology for soil remediation. In this review, it is concluded which several successful studies of bioaugmentation of aromatics-contaminated soil by single strains or mixed consortia. In recent decades, a number of reports have been published on the metabolic machinery of aromatics degradation by microorganisms and their capacity to adapt to aromatics-contaminated environments. Thus, microorganisms are major players in site remediation. The bioremediation/bioaugmentation process relies on the immense metabolic capacities of microbes for transformation of aromatic pollutants into essentially harmless or, at least, less toxic compounds. Aromatics-contaminated soils are successfully remediated with adding not only single strains but also bacterial or fungal consortia. Furthermore several novel approaches, which microbes combined with physical, chemical or biological factors, increase remediation efficiency of aromatics-contaminated soil. Meanwhile, the environmental factors also have appreciable impacts on the bioaugmentation process. The biostatistics method is recommended for analysis of the effects of bioaugmentation treatments.
  相似文献   

20.
Eutrophication with a large number of Microcystis aeruginosa commonly occurs worldwide, thereby threatening the aquatic ecosystem and human health. In this study, four kinds of algicides were tested to explore their influence on cell density and chlorophyll-a of M. aeruginosa. Results showed that aluminum silicate agent, which inhibited more than 90% cell growth compared with the control group, demonstrated the strongest inhibition effect immediately on M. aeruginosa growth. Furthermore, the production and release of microcystin (MC)-LR were investigated. Aluminum silicate, CuSO4, and Emma-11 were more effective than pyrogallic acid in disrupting the cells of M. aeruginosa, thereby increasing the extracellular MC-LR concentration. Aluminum silicate caused the highest extracellular MC-LR concentration of more than 45 mg·L–1. Biotoxicity was also detected to evaluate the environmental risks of MC-LR release, which were related to the usages of different algicides. Extracellular MC-LR concentration mostly increased when the biotoxicity of algae solution increased. The experiments were also designed to reveal the effects of physical conditions in riverways, such as natural sunlight, aeration and benthal sludge, on MC-LR degradation. These findings indicated that UV rays in sunlight, which can achieve a MC-LR removal efficiency of more than 15%, played an important role in MC-LR degradation. Among all the physical pathways of MC-LR removal, benthal sludge adsorption presented the optimal efficiency at 20%.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号