首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
• Sludge fermentation liquid addition resulted in a high NAR of 97.4%. • Extra NH4+-N from SFL was removed by anammox in anoxic phase. • Nitrogen removal efficiency of 92.51% was achieved in municipal wastewater. • The novel system could efficiently treat low COD/N municipal wastewater. Biological nitrogen removal of wastewater with low COD/N ratio could be enhanced by the addition of wasted sludge fermentation liquid (SFL), but the performance is usually limited by the introducing ammonium. In this study, the process of using SFL was successfully improved by involving anammox process. Real municipal wastewater with a low C/N ratio of 2.8–3.4 was treated in a sequencing batch reactor (SBR). The SBR was operated under anaerobic-aerobic-anoxic (AOA) mode and excess SFL was added into the anoxic phase. Stable short-cut nitrification was achieved after 46d and then anammox sludge was inoculated. In the stable period, effluent total inorganic nitrogen (TIN) was less than 4.3 mg/L with removal efficiency of 92.3%. Further analysis suggests that anammox bacteria, mainly affiliated with Candidatus_Kuenenia, successfully reduced the external ammonia from the SFL and contributed approximately 28%–43% to TIN removal. Overall, this study suggests anammox could be combined with SFL addition, resulting in a stable enhanced nitrogen biological removal.  相似文献   

2.
城市污水处理脱磷滤料的研究   总被引:1,自引:0,他引:1  
生物法除磷投资省、成本低,但稳定性较差,当废水中磷酸盐浓度较高时,出水很难达标排放.化学法除磷工艺简单,运行可靠,能达标排放,但运行费用高,产生大量污泥,导致二次污染.文章进行了第三种除磷方法即滤料除磷的研究,并探讨了污水pH及水力停留时间对滤料除磷效果的影响.试验结果表明:煤渣和改性煤渣滤料对城市污水总磷的去除率可以达到54%和71%,但处理后的出水不能达标排放;碳酸钙滤料对城市污水总磷的去除率可以达到83%,能达标排放,但处理效果与城市污水pH值密切相关.城市污水pH值在8~9的范围,出水不能达标排放;pH值在5~8的范围,处理后的出水则可以达标排放,而且污水pH越低,总磷的去除率越高,其最佳水力停留时间为10 min.该方法具有处理效果好、处理成本低、无污染、投资省、占地面积小的特点.  相似文献   

3.
• Powdered resin was employed for ammonia recovery from municipal wastewater. • Powdered resin achievedefficient ammonia removal under various working conditions. • Co-existing cations indicated competitive adsorption of ammonia. • Ammonia was recoveredby two-stage crystallization coupled with ion exchange. Low-strength municipal wastewater is considered to be a recoverable nutrient resource with economic and environmental benefits. Thus, various technologies for nutrient removal and recovery have been developed. In this paper, powdered ion exchange resin was employed for ammonia removal and recovery from imitated low-strength municipal wastewater. The effects of various working conditions (powdered resin dosage, initial concentration, and pH value) were studied in batch experiments to investigate the feasibility of the approach and to achieve performance optimization. The maximum adsorption capacity determined by the Langmuir model was 44.39 mg/g, which is comparable to traditional ion exchange resin. Further, the effects of co-existing cations (Ca2+, Mg2+, K+) were studied. Based on the above experiments, recovery of ammonia as struvite was successfully achieved by a proposed two-stage crystallization process coupled with a powdered resin ion exchange process. Scanning electron microscopy (SEM) and X-ray diffractometry (XRD) results revealed that struvite crystals were successfully gained in alkaline conditions (pH= 10). This research demonstrates that a powdered resin and two-stage crystallization process provide an innovative and promising means for highly efficient and easy recovery from low-strength municipal wastewater.  相似文献   

4.
The objectives of this study were to establish an on-line controlling system for nitrogen and phosphorus removal synchronously of municipal wastewater in a sequencing batch reactor (SBR). The SBR for municipal wastewater treatment was operated in sequences: filling, anaerobic, oxic, anoxic, oxic, settling and discharge. The reactor was equipped with on-line monitoring sensors for dissolved oxygen (DO), oxidation-reduction potential (ORP) and pH. The variation of DO, ORP and pH is relevant to each phase of biological process for nitrogen and phosphorus removal in this SBR. The characteristic points of DO, ORP and pH can be used to judge and control the stages of process that include: phosphate release by the turning points of ORP and pH; nitrification by the ammonia valley of pH and ammonia elbows of DO and ORP; denitrification by the nitrate knee of ORP and nitrate apex of pH; phosphate uptake by the turning point of pH; and residual organic carbon oxidation by the carbon elbows of DO and ORP. The controlling system can operate automatically for nitrogen and phosphorus efficiently removal.  相似文献   

5.
• The autotrophic nitrogen removal combining Feammox and Anammox was achieved. • Activated carbon can be used as an electron shuttle to enhance Feammox activity. • Fe(III) was reduced to Fe(II) and the secondary Fe(II) mineral (FeOOH) was obtained. • The iron-reducing bacteria and Anammox consortium was enriched simultaneously. Ferric iron reduction coupled with anaerobic ammonium oxidation (Feammox) is a novel ferric-dependent autotrophic process for biological nitrogen removal (BNR) that has attracted increasing attention due to its low organic carbon requirement. However, extracellular electron transfer limits the nitrogen transformation rate. In this study, activated carbon (AC) was used as an electron shuttle and added into an integrated autotrophic BNR system consisting of Feammox and anammox processes. The nitrogen removal performance, nitrogen transformation pathways and microbial communities were investigated during 194 days of operation. During the stable operational period (days 126–194), the total nitrogen (TN) removal efficiency reached 82.9%±6.8% with a nitrogen removal rate of 0.46±0.04 kg-TN/m3/d. The contributions of the Feammox, anammox and heterotrophic denitrification pathways to TN loss accounted for 7.5%, 89.5% and 3.0%, respectively. Batch experiments showed that AC was more effective in accelerating the Feammox rate than the anammox rate. X-ray photoelectron spectroscopy (XPS) analyses showed the presence of ferric iron (Fe(III)) and ferrous iron (Fe(II)) in secondary minerals. X-ray diffraction (XRD) patterns indicated that secondary iron species were formed on the surface of iron-AC carrier (Fe/AC), and Fe(III) was primarily reduced by ammonium in the Feammox process. The phyla Anaerolineaceae (0.542%) and Candidatus Magasanikbacteria (0.147%) might contribute to the Feammox process, and Candidatus Jettenia (2.10%) and Candidatus Brocadia (1.18%) were the dominative anammox phyla in the bioreactor. Overall, the addition of AC provided an effective way to enhance the autotrophic BNR process by integrating Feammox and anammox.  相似文献   

6.
传统单个PbO_2阳极用于污染物去除存在降解效率较差、能耗高的问题,本文构建了PbO_2/Fe双阳极体系,通过耦合电氧化技术和电絮凝技术实现对焦化废水同步除碳脱氮.研究发现,双阳极体系下6 h电解使得化学需氧量(COD)和总氮(TN)去除率分别达到50.3%±6.2%和34.9%±4.2%,高于单PbO_2阳极体系(21.9%±3.4%和21.1%±5.3%)和单Fe阳极体系(11.0%±1.2%和12.1%±3.1%).COD和TN去除速度与施加在两个阳极上的电流大小直接相关.采用焦化废水中主要污染物如苯酚、硫氰酸盐、氨氮进行配水实验时发现,Fe阳极加入不仅起到了电絮凝作用,还可以促进氧化反应的发生,提高了反应速度.从体系中氯离子、pH变化情况及电子自旋共振光谱结果可推测,Fe阳极释放出来的Fe(Ⅱ)与PbO_2阳极氧化氯离子产生的ClO~-发生类Fenton反应,生成强氧化性物质作用于污染物氧化降解.  相似文献   

7.
Forward osmotic membrane bioreactor is an emerging technology that combines the advantages of forward osmosis and conventional membrane bioreactor. In this paper, bisphenol A removal by using a forward osmotic membrane bioreactor and a conventional membrane bioreactor that shared one biologic reactor was studied. The total removal rate of bisphenol A by the conventional membrane bioreactor and forward osmotic membrane bioreactor was as high as 93.9% and 98%, respectively. Biodegradation plays a dominant role in the total removal of bisphenol A in both processes. In comparison of membrane rejection, the forward osmosis membrane can remove approximately 70% bisphenol A from the feed, much higher than that of the microfiltration membrane (below 10%). Forward osmosis membrane bioreactor should be operated with its BPA loading rate under 0.08 mg·g-1·d-1 to guarantee the effluent bisphenol A concentration less than10 μg·L-1.  相似文献   

8.
9.
Nitrous oxide (N2O) is a greenhouse gas that can be released during biological nitrogen removal from wastewater. N2O emission from a sequencing batch reactor (SBR) for biological nitrogen and phosphorus removal from wastewater was investigated, and the aims were to examine which process, nitrification or denitrification, would contribute more to N2Oemission and to study the effects of heterotrophic activities on N2O emission during nitrification. The results showed that N2O emission was mainly attributed to nitrification rather than to denitrification. N2O emission during denitrification mainly occurred with stored organic carbon as the electron donor. During nitrification, NaO emission was increased with increasing initial ammonium or nitrite concentrations. The ratio of N2O emission to the removed ammonium nitrogen (N2O- N/NH4-N) was 2.5% in the SBR system with high heterotrophic activities, while this ratio was in the range from 0.14% to 1.06% in batch nitrification experiments with limited heterotrophic activities.  相似文献   

10.
We studied the removal of cadmium and copper from industrial wastewaters by a microalloyed aluminium composite. The composite was highly efficient, resulting in water concentrations of cadmium and copper below the maximal allowed concentrations for drinking water. Moreover, our results show that the removal mechanism is mainly based on reduction and coprecipitation, since Cd and Cu were removed from the wastewater in reduced forms as metals and hydroxides.Selected article from the Regional Symposium on Chemistry and Environment, Krusevac, Serbia, June 2003, organised by Dr. Branimir Jovancicevic  相似文献   

11.
通过室外及室内控制试验,研究5种常见填料作为原材料制成的仿生植物对污染水体氮素的去除性能,结果表明,仿生植物原材料的差异将直接影响其附着生物膜特性,其附着生物膜量、硝化强度、反硝化强度以及硝化细菌、反硝化细菌均表现为:软性填料﹥组合填料﹥悬浮填料﹥立体弹性填料﹥半软性填料。水深对仿生植物附着生物膜亦有不同程度的影响,其中生物膜量随水深的增加并未表现出明显的分层效应,而生物膜硝化作用强度、硝化细菌随水深的增加逐渐降低,但生物膜反硝化作用强度、反硝化细菌则随水深的增加则呈现出逐渐增加的趋势。5种不同材质的仿生植物对水体TN、NH4+-N、NO3--N具有较好的去除效果,去除率表现为:软性填料﹥组合填料﹥悬浮填料﹥立体弹性填料﹥半软性填料﹥对照系统。同时,仿生植物种植密度也影响其对水体氮素的去除效果,表现为CK〈7株·m-3〈13株·m-3〈20株·m-3,研究结果将为仿生植物的野外实际应用及我国城市重污染河道水质原位修复提供技术支持。  相似文献   

12.
A technique of soilless culture for removal of total nitrogen (TN) and total phosphorus (TP) from textile wastewater using Lolium multiflorum was conducted in this research. The TN concentration decreased from 50.72 mg/L to 24.64–27.89 mg/L and TP decreased from 6.9 mg/L to 3.7–4.1 mg/L in the experimental tank with the size of 4.7 m x 1.2 m x 0.75 m. The results suggested that L. multiflorum could absorb a large amount of N and P elements from the wastewater. This technique of soilless culture has many advantages such as simple equipment, low cost, easy operation, low energy consumption, convenient management and flexible disposition.  相似文献   

13.
Dielectrophoresis (DEP) process could enhance the removal the Cd2+ and Pb2+ with less absorbent. The removal rates of both Cd2+ and Pb2+ increased with the increase of voltage. The overall removal rate of Cd2+ and Pb2+ in the binary system is higher than that of Cd2+ or Pb2+ in the single system. DEP could cause considerable changes of the bentonite particles in both surface morphology and microstructure. Dielectrophoresis (DEP) was combined with adsorption (ADS) to simultaneously and effectively remove Cd2+ and Pb2+ species from aqueous solution. To implement the process, bentonite particles of submicro-meter size were used to first adsorb the heavy metal ions. These particles were subsequently trapped and removed by DEP. The effects of the adsorbent dosage, DEP cell voltage and the capture pool numbers on the removal rate were investigated in batch processes, which allowed us to determine the optimal experimental conditions. The high removal efficiency, 97.3% and 99.9% for Cd2+ and Pb2+, respectively, were achieved when the ions are coexisting in the system. The microstructure of bentonite particles before and after ADS/DEP was examined by scanning electron microscopy. Our results suggest that the dielectrophoresis-assisted adsorption method has a high capability to remove the heavy metals from wastewater.  相似文献   

14.
马宏瑞  连坤宙  马秀 《环境化学》2013,32(1):118-124
用Zr(OH)4模拟锆鞣废水中的沉淀物作为吸附剂处理低浓度铬鞣废水,考察了吸附时间、Zr(OH)4投加量、溶液pH值、盐离子(Na+、Ca2+)浓度等因素对Cr3+去除效果的影响,结果表明,在pH<4.5时,Cr3+的去除为吸附过程,当pH>4.5后,为沉淀和吸附混合过程;Cr3+在Zr(OH)4上的吸附过程可以用Freundlich模型进行模拟;Na+和Ca2+对铬的吸附有一定的抑制作用.实际锆鞣废水中的杂质成分与Cr3+产生竞争吸附,使去除率略有降低,最低去除率可达71.29%以上.  相似文献   

15.
A membrane-aerated biofilm reactor was employed to investigate the nitrogen removal of one typical municipal reverse osmosis(RO) concentrate with a high total nitrogen (TN) concentration and a low C/ N ratio. The effects of operational conditions, including the aeration pressure, the hydraulic retention time and the C/N ratio, on the systematic performance were evaluated. The nitrogen removal mechanism was evaluated by monitoring the effluent concentrations of nitrogen contents. Furthermore, the microbial tolerance with elevated salinity was identified. The results indicated that the optimal TN removal efficiency of 79.2% was achieved of the aeration pressure of 0.02 MPa, hydraulic retention time of 24 h, and the C/N ratio of 5.8, respectively. It is essential to supplement the carbon source for the targeted RO concentrate to promote the denitrification process. The inhibitory effect of salinity on denitrifying bacteria and nitrite oxidizing bacteria was significant, revealing the limited TN removal capacity of the conditions in this work. The TN removal efficiency remained more than 70% with the addition of salt (NaCl) amount below 20 g/L. This work preliminarily demonstrated the MABR feasibility for the nitrogen removal of municipal RO concentrate with low C/N ratio and provided technical guidance for further scale-up application.
  相似文献   

16.
Removal of selenate in saline wastewater by activated sludge was examined. Sequencing batch reactor was operated under alternating anoxic/oxic conditions. Above 97% removal of soluble selenium (Se) was achieved continuously. Major Se removal mechanism varied depending on the length of aeration period. Various Se-reducing bacteria likely contributed to coordinately to Se removal. Selenium (Se)-containing industrial wastewater is often coupled with notable salinity. However, limited studies have examined biological treatment of Se-containing wastewater under high salinity conditions. In this study, a sequencing batch reactor (SBR) inoculated with activated sludge was applied to treat selenate in synthetic saline wastewater (3% w/v NaCl) supplemented with lactate as the carbon source. Start-up of the SBR was performed with addition of 1–5 mM of selenate under oxygen-limiting conditions, which succeeded in removing more than 99% of the soluble Se. Then, the treatment of 1 mM Se with cycle duration of 3 days was carried out under alternating anoxic/oxic conditions by adding aeration period after oxygen-limiting period. Although the SBR maintained soluble Se removal of above 97%, considerable amount of solid Se remained in the effluent as suspended solids and total Se removal fluctuated between about 40 and 80%. Surprisingly, the mass balance calculation found a considerable decrease of Se accumulated in the SBR when the aeration period was prolonged to 7 h, indicating very efficient Se biovolatilization. Furthermore, microbial community analysis suggested that various Se-reducing bacteria coordinately contributed to the removal of Se in the SBR and main contributors varied depending on the operational conditions. This study will offer implications for practical biological treatment of selenium in saline wastewater.  相似文献   

17.
以天津市公路绿化带大叶黄杨为修复植物,采用生物解吸法及火焰原子吸收分光光度法,研究了标准筛筛径、浸泡温度、浸泡时间、真空度和减压时间对脱除材料内重金属Cr、Cu、Zn和Pb的脱除作用。结果表明,真空度、浸泡时间对Cr、Cu、Zn和Pb的脱除作用较明显,减压时间对Cr、Cu、Zn和Pb的相对脱除率最为显著。Zn和Cu的迁移性较高,调节各操作参数对脱除Zn、Cu的作用较明显,其平均脱除值和平均脱除率均较高。本底值高低对脱除Zn、Cu和Cr、Pb影响较大。Cr和Pb对筛径和减压时间敏感性较强,对浸泡温度、浸泡时间及真空度敏感性较差。认为基于生物解吸法通过选择适宜的操作参数对脱除修复植物内部分重金属有积极的作用。  相似文献   

18.
Zinc is known as an essential element of human life. However, excessive zinc discharge into water and soil causes water pollution, leading to serious health issues such as septicemia, meningitis and iron-deficiency anemia. Here, a novel material made of struvite-supported diatomite was obtained from eutrophic water treated by mesoporous MgO-modified diatomite. This material was applied for zinc remediation in aqueous solutions and contaminated soils to test the reuse of P-containing products. Struvite-supported diatomite was characterized by field emission scanning electron microscopy and X-ray diffraction. Results show that the maximum removal efficiency of Zn(II) from wastewater streams reached 90.54% at an initial pH of 5 and struvite-supported diatomite dosage of 0.3 g/L. Moreover, the X-ray diffraction patterns of precipitates after Zn(II) sorption show that the combination between zinc and the phosphate group played a key role for zinc removal in solution. For Zn-contaminated soils amended with 10% struvite-supported diatomite, available Zn decreased by 65.38% and acid soluble Zn decreased by 56.9% after 56 days.  相似文献   

19.
A. sydowii strain bpo1 exhibited 99.8% anthracene degradation efficiency. • Four unique metabolic products were obtained after anthracene degradation. • Ligninolytic enzymes induction played vital roles in the removal of anthracene. • Laccase played a crucial role in comparison with other enzymes induced. The present study investigated the efficiency of Aspergillus sydowii strain bpo1 (GenBank Accession Number: MK373021) in the removal of anthracene (100 mg/L). Optimal degradation efficiency (98.7%) was observed at neutral pH, temperature (30℃), biomass weight (2 g) and salinity (0.2% w/v) within 72 h. The enzyme analyses revealed 131%, 107%, and 89% induction in laccase, lignin peroxidase, and manganese peroxidase respectively during anthracene degradation. Furthermore, the degradation efficiency (99.8%) and enzyme induction were significantly enhanced with the addition of 100 mg/L of citric acid and glucose to the culture. At varying anthracene concentrations (100–500 mg/L), the degradation rate constants (k1) peaked with increasing concentration of anthracene while the half-life (t1/2) decreases with increase in anthracene concentration. Goodness of fit (R2 = 0.976 and 0.982) was observed when the experimental data were subjected to Langmuir and Temkin models respectively which affirmed the monolayer and heterogeneous nature exhibited by A. sydwoii cells during degradation. Four distinct metabolites; anthracene-1,8,9 (2H,8aH,9aH)-trione, 2,4a-dihydronaphthalene-1,5-dione, 1,3,3a,7a-tetrahydro-2-benzofuran-4,7-dione and 2-hydroxybenzoic acid was obtained through Gas Chromatography-Mass spectrometry (GC-MS). A. sydowii exhibited promising potentials in the removal of PAHs.  相似文献   

20.
NH 4 + is typically an inhibitor to hydrogen production from organic wastewater by photo-bacteria. In this experiment, biohydrogen generation with wild-type anoxygenic phototrophic bacterium Rhodobacter sphaeroideswas found to be sensitive to NH 4 + due to the significant inhibition of NH 4 + to its nitrogenase. In order to avoid the inhibition of NH 4 + to biohydrogen generation by R. sphaeroides, a glutamine auxotrophic mutant R. sphaeroides AR-3 was obtained by mutagenizing with ethyl methane sulfonate. The AR-3 mutant could generate biohydrogen efficiently in the hydrogen production medium with a higher NH 4 + concentration, because the inhibition of NH 4 + to nitrogenase of AR-3 was released. Under suitable conditions, AR-3 effectively produced biohydrogen from tofu wastewater, which normally contains 50–60 mg/L NH 4 + , with an average generation rate of 14.2 mL/L·h. This generation rate was increased by more than 100% compared with that from wild-type R. sphaeroides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号