首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper results of various measurement campaigns at different municipal waste incineration (MWI) plants concerning the change of the PCDD/PCDF isomer distribution in the crude gas during transiently impaired combustion conditions are presented. The focus is on the Cl4DD isomer distributions exemplarily for all other homologue groups to demonstrate the change in PCDD/PCDF formation mechanism at transient combustion conditions. Additionally to crude gas samples, at one plant filter and boiler ash were investigated simultaneously to determine if there is any difference in the isomer distribution between the matrices. For the ash from an electrostatic precipitator (ESP ash), the boiler ash and the corresponding crude gas sample, nearly identical changes in the Cl4DD isomer distribution under transient combustion conditions in relation to the normal operation process could be detected. By comparing the Cl4DD isomer distributions from different incineration plants (two municipal waste incinerators and one little incinerator burning wood chips for heating domestic household) under transient combustion conditions, in all cases the 1,3,6,8- and 1,3,7,9-Cl4DD were dominating the isomer distribution, whereas under normal operation other isomers were predominant. Obviously PCDD/PCDF formation mechanisms under transient combustion conditions are independent from the type of incinerator and of the burned fuel, respectively. Data sets were analyzed with respect to the possible reaction mechanism via chlorophenols and a good correlation of 2,4,6-trichlorophenol during the second phase of a start-up process and during a CO experiment was found. To get more detailed information about possible formation mechanisms, at one plant the dependence of the PCDD/PCDF isomer distribution on the different matrices was studied. Separate analysis of fly ash collected at the boiler exit, subsequent gas phase, ESP ash and boiler ash under normal operation conditions showed that, apart from the fly ash, the Cl4DD isomer distributions are nearly the same in the different matrices. Surprisingly, the Cl4DD isomer distribution of the fly ash was more similar to the distributions found under transient combustion conditions.  相似文献   

2.
Oberg T  Bergbäck B  Filipsson M 《Chemosphere》2008,71(6):1135-1143
Polychlorinated benzenes, dibenzo-p-dioxins (PCDD), and dibenzofurans (PCDF) may be formed below the combustion temperature in fly ash from municipal solid waste incinerators (MSWI). Copper catalyzes this formation, possibly by the Deacon reaction. Many other elements are also Deacon catalysts or promoters, and here we report results from a statistically designed experiment with 15 metal oxides added to fly ash and heated at 300 degrees C for 2h in an air atmosphere. A resolution IV fractional factorial design with four replicates was completed in 36 runs with the oxides of magnesium, yttrium, titanium, vanadium, niobium, chromium, molybdenum, tungsten, manganese, iron, cobalt, nickel, copper, zinc, and tin. All samples were analyzed for chlorinated benzenes and the results were evaluated by analysis of variance. The addition of copper significantly increased the amounts of the chlorinated benzenes, while cobalt, chromium and vanadium decreased the net formation. The oxides of zinc and iron seemed to have a slightly positive and negative effect respectively. The findings in this study seem to corroborate our previously reported results regarding the different catalytic effects of copper and chromium, and lack of a significant effect by nickel. Besides chromium, it also identifies cobalt and vanadium as potent catalysts for oxidative degradation of the chlorinated aromatic compounds found in MSWI fly ash.  相似文献   

3.
Formation and destruction of PCDD/F inside a grate furnace   总被引:1,自引:0,他引:1  
Hunsinger H  Jay K  Vehlow J 《Chemosphere》2002,46(9-10):1263-1272
Formation and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans PCDD/F during the combustion process was investigated experimentally in a pilot plant. All important process steps like the burnout of the fuel bed on the grate, the burnout of the flue gas inside the combustion chamber, the heat recovery in a boiler as well as influences of the fuel composition are described in detail.

High concentrations especially of PCDF are formed during the burnout of the fuel bed. The formation reaction is mainly influenced by the fuel composition and the burnout characteristic of the fuel bed. Fuels with low chlorine and low metal content (Cu) result only in negligible concentrations of PCDD/F.

Under stable combustion conditions characterized by an excellent flue gas burnout PCDD/F will almost be completely destroyed already inside the combustion chamber. “Cold strands” of unburned flue gas (high CO concentrations) caused by disturbed combustion conditions will result in high concentrations of PCDD and especially of PCDF in the raw gas.

A second place of PCDD/F formation is the well-known boiler section. Here fly ash deposits containing residual carbon (mainly soot particles) are the source for the formation reaction. Under stationary effective combustion conditions, they are dominant for PCDD/F concentrations in the raw gas over a very long period of time.

Stationary efficient flue gas burnout (especially soot) together with effective boiler cleaning will guaranty low concentrations of PCDD/F in the flue gas in front of the flue gas cleaning system.  相似文献   


4.
PCDD/PCDF were determined in solid samples from wood combustion. The samples included grate ashes, bottom ashes, furnace ashes as well as fly and cyclone ashes. The solid waste samples were classified into bottom and fly ash from native wood and bottom and fly ash from waste wood. For each of the four classes concentration distribution patterns from individual congeners, the sums of PCDD/PCDF and the international toxicity equivalents (I-TEQ) values are given. The I-TEQ levels of fly ash from waste wood burning can be approximately up to two thousand times higher than the values from fly ashes of natural wood. The I-TEQ levels in bottom ashes from waste wood combustion systems are as low as the corresponding ashes from the combustion of native wood. Grate ash samples from waste wood combustion systems with low carbon burnout show high levels of PCDD/PCDF.  相似文献   

5.
Chang MB  Huang TF 《Chemosphere》2000,40(2):159-164
In this study, the effects of the temperature, oxygen content in the gas stream and carbon content in ash particles on PCDD/Fs formation on the fly ash surface were investigated. The optimum temperatures for dioxin formation were found at 350 degrees C for boiler ash, 300 degrees C for cyclone ash and 250 degrees C for ESP ash, respectively. Preliminary results indicate that the optimum temperature will decrease as the particle size decreases. When the O2 concentration is varied between 0% and 100%, the optimum oxygen content for PCDD/Fs formation is found to be at 7.5% for cyclone ash, and the PCDD/PCDF ratio increases with the increase of oxygen content. Dioxin formation is observed even for the gas containing no oxygen passed through the fly ash. Hence, other reacted routes that do not need O2 for dioxin formation take place on fly ash. The carbon content in fly ash is varied between 0% and 20% in this study, and the results have indicated that the maximum dioxin formation is to be found at 5%. The precursors are not injected into the fly ash or gas stream in all formation experiments, however, dioxin is still formed in fly ash. Consequently, other chlorinated routes besides Deacon reactions may take place on the fly ash surface.  相似文献   

6.
Leclerc D  Duo WL  Vessey M 《Chemosphere》2006,63(4):676-689
This paper discusses the effects of combustion conditions on PCDD/PCDF emissions from pulp and paper power boilers burning salt-laden wood waste. We found no correlation between PCDD/PCDF emissions and carbon monoxide emissions. A good correlation was, however, observed between PCDD/PCDF emissions and the concentration of stack polynuclear aromatic hydrocarbons (PAHs) in the absence of TDF addition. Thus, poor combustion conditions responsible for the formation of products of incomplete combustion (PICs), such as PAHs and PCDD/PCDF precursors, increase PCDD/PCDF emissions. PAH concentrations increased with higher boiler load and/or low oxygen concentrations at the boiler exit, probably because of lower available residence times and insufficient excess air. Our findings are consistent with the current understanding that high ash carbon content generally favours heterogeneous reactions leading to either de novo synthesis of PCDD/PCDFs or their direct formation from precursors. We also found that, in grate-fired boilers, a linear increase in the grate/lower furnace temperature produces an exponential decrease in PCDD/PCDF emissions. Although the extent of this effect appears to be mill-specific, particularly at low temperatures, the results indicate that increasing the combustion temperature may decrease PCDD/PCDF emissions. It must be noted, however, that there are other variables, such as elevated ESP and stack temperatures, a high hog salt content, the presence of large amounts of PICs and a high Cl/S ratio, which contribute to higher PCDD/PCDFs emissions. Therefore, higher combustion temperatures, by themselves, will not necessarily result in low PCDD/PCDFs emissions.  相似文献   

7.
At a MSWI (municipal solid waste incinerator) plant PCDD/PCDF samples (gasphase and particulates) were taken simultaneously be a shock-freezing method in the incinerator combustion chamber at approx. 800°C and in four sampling sections in the boiler at about 490°C, 370°C, 330°C and 270°C. In this way PCDD/PCDF-formation in the flow through the boiler was determined. Two data sets were evaluated. A considerable PCDD/PCDF-formation had occurred already at boiler temperatures of about 490°C; the highest concentration, however, was found at the end of the boiler at about 300°C. The accompanying measuring program of plant parameters made the calculation of the PCDD/PCDF mass flows possible, which allowed the inclusion of the PCDD/PCDF-content in the ESP dust in the mass flow calculations.  相似文献   

8.
Dioxin contents in fly ash from large-scale MSW incinerators in Taiwan   总被引:6,自引:0,他引:6  
In this study, fly ash samples were collected from three municipal waste incinerators (MWI) in Taiwan. These MWIs investigated are equipped with different air pollution control devices (APCDs). Preliminary results indicated that 2,3,7,8-PCDD/Fs homologue patterns of various types of fly ash were quite similar for all three MWIs. Concentrations of higher-chlorinated congeners of PCDDs and PCDFs were remarkably higher than those of lower-chlorinated congeners. In the case of MSW-A, the PCDD/PCDF ratios of ashes were found in the decreasing order for cyclone, boiler and baghouse. The PCDD/PCDF ratios in various types of fly ash of MWI-B was boiler-A < boiler-B < ESP < boiler-C. As for MSW-C, no obvious trend has been observed for PCDD/PCDF ratio. However, the ratio in boiler ash was higher than that in baghouse ash of MWI-A. The dioxin contents in fly ash would increase as the fly ash passed through APCD zones. In other words, the environmental conditions of APCD may actually cause the increase of the dioxin contents in fly ash. The trend for dioxin contents in fly ash collected from three MSW incinerators investigated was MSW-C < MSW-A < MSW-B.  相似文献   

9.
Brominated aromatic compounds like brominated benzenes, diphenylethers and dibenzodioxins adsorbed on the surface of fly ash from a municipal waste incininerator give mixed brominated/chlorinated und completely chlorinated aromatic compounds. These consecutive halogenation-dehalogenation reactions proceed by a nucleophilic mechanism, which is favoured by a high concentration of chloride on the fly ash. Results of kinetic and stereoselective behavior of these reactions will be discussed. The relevance of these results for PCDD/PCDF formation from bromine precursors in municipal waste incinerators will be discussed.  相似文献   

10.
One option of recycling used contaminated packaging is to recover its high energy content. This can be performed in a normal multi-fuel power plant by co-combustion of packaging-derived fuel (PDF) or refuse-derived fuel (RDF) with fossil fuels, such as coal or peat. This work includes the results of 17 co-combustion tests and an evaluation of the results by the Principal Component Analysis (PCA) and the Partial Least Squares Projections to Latent Structures (PLS). PCA and PLS calculations showed that especially Pb, but also Cr, and Cu correlated with lower chlorinated furans (PCDFs) in the fly ash. Correlation between Sn and lower chlorinated dioxins (PCDDs) in the fly ash was also noticed. CO and PAH emission in the flue gas correlated with total PCDD/Fs in the flue gas. In a real full-scale combustion process, a single parameter in fuel, flue gas or a combustion parameter did not provide a guide to PCDD/F formation or to a level of the total PCDD/F emission, but correlations between different parameters and PCDD/Fs could be found. Although PDFs and RDF had catalytic heavy metals and chlorine, the co-combustion results showed that they can be co-combusted with peat and coal in a fluidized-bed boiler at least up to 26 % with very low total PCDD and PCDF emissions.  相似文献   

11.
Hell K  Altwicker ER  Stieglitz L  Addink R 《Chemosphere》2000,40(9-11):995-1001
We performed experiments on two different matrices with 2,4,6-trichlorophenol as precursor to Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD)/F. A municipal solid waste incinerators (MSWI) and a model fly ash were spiked in two different ways. The experiments demonstrated a three times higher formation potential of the trichlorophenol to PCDD on MSWI fly ash compared with the model fly ash used. For both fly ashes the PCDD yield was higher when gaseous trichlorophenol was fed continuously compared to mixing the fly ashes prior to the experiments with the total amount of the precursor. Despite dilution of the fly ashes tenfold with an inactive matrix the conversion of the chlorophenol was very high.  相似文献   

12.
Weber R  Sakurai T  Ueno S  Nishino J 《Chemosphere》2002,49(2):127-134
The correlation of PCDD/PCDF levels with the CO emissions in a full-scale municipal waste incinerator was assessed during a four-week measurement effort. PCDD/PCDF concentrations in fly ashes-containing more than 99% of the total PCDD/PCDF burden of the fluidized bed incinerator (FBI)-were measured and compared with the emitted CO concentrations. The CO concentration during the sampling time showed no significant correlation to the PCDD/ PCDF amount in fly ash (R2 = 0.078). However, a comparison of the time integrated CO concentration several hours before sampling lead to a correlation with the PCDD/PCDF burden. Maximum correlation was found for the time integrated CO values of 3 and 4 h before sampling (R2 = 0.467 and R2 = 0.457 respectively). This indicates a memory effect in the high temperature cooling section of several hours. Possible mechanisms leading to the memory effect are discussed. The correlation of PCDD/PCDF with CO concentration demonstrate that the combustion conditions play an important role for PCDD/PCDF formation in FBIs. However the variability in the correlation of CO to PCDD/PCDF levels show that other factors have a significant influence on PCDD/PCDF formation.  相似文献   

13.
H. Vogg  L. Stieglitz 《Chemosphere》1986,15(9-12):1373-1378
The effect of thermal treatment of fly ash on the behaviour of PCDD/PCDF was studied in the range between 120 and 600° C. Annealing at 300° C (2 hrs) resulted in an increase of PCDD/PCDF concentration by a factor of 10 to 15. At 600° C degradation to concentrations below 0.1 ng/g is observed.  相似文献   

14.
This study shows the catalyzing effects of iron and copper on the formation of chlorinated compounds such as chlorobenzenes (ClBzs), chlorophenols (CIPhs), polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). Both total concentrations and congener distributions have been studied. The parameters and conditions varied during the combustion tests were the complete and incomplete combustion and the metal and chlorine addition. The incomplete combustion promoted the formation of organic chlorinated compounds in flue gas particles. Highly chlorinated congeners of PCDD/F were dominant in the flue gas particles, whereas the importance of lower chlorinated congener were increased in the gas phase. In the complete combustion conditions the concentrations of PCDD/Fs increased when the degree of chlorination were high, nevertheless the concentrations of tetra and penta PCDD/Fs were higher in the gas phase than the concentrations in the fly ash particles. Organic chlorine promoted the formation of chlorinated compounds more effectively than inorganic chlorine, which instead promoted the formation of PCDD/Fs in the gas phase, especially with copper catalyst. Different concentration levels of chlorinated compounds were observed in the gas phase and in particles when the chlorine source and combustion conditions were varied from incomplete to optimum conditions. Both copper and iron seem to have a catalytic effect on PCDD/F formation.  相似文献   

15.
In heating treatment of fly ash to reduce PCDD/Fs, cooling process is important to inhibit de novo formation of PCDD/Fs. In this study, assuming that residual carbon is the dominant factor of de novo synthesis, the relation between PCDD/Fs and residual carbon was examined. Firstly, by using MSWI fly ash which was treated in an actually operated facility, both the content of PCDD/Fs and residual carbon were decreased as heating temperature increased. At temperatures higher than 400 degrees C, the reduction rate of residual carbon was higher than 20% and more than 95% of PCDD/Fs was decomposed. In order to simulate a heating treatment process, fly ash was heated at different temperatures and gas atmospheres, oxygen or nitrogen. Heated fly ash was placed for 2 h at 300 degrees C in oxygen to promote de novo synthesis, or cooled immediately. As a result, good correlation between PCDD/Fs and residual carbon was found, therefore it was shown experimentally that residual carbon was the main factor for PCDD/Fs formation by de novo synthesis in fly ash.  相似文献   

16.
Three laboratories participated in a PCDD and PCDF sampling experiment on the stack of a municipal waste incinerator and six laboratories examined a fly ash sample for PCDDS and PCDFS in order to assess analytical precision.

The flue gas sampling results are in agreement for the three laboratories and show that the PCDDS and PCDFS are predominantly in the gas phase, whereas emitted particulate account for 20% of the total PCDD/PCDF concentration.  相似文献   


17.
Lundin L  Aurell J  Marklund S 《Chemosphere》2011,84(3):305-310
The polychlorinated dibenzo-p-dioxin (PCDD) and polychlorinated dibenzofuran (PCDF) content of three fly ash samples with different elemental compositions from different municipal waste incinerators were analyzed before and after thermal treatment at 300 °C or 500 °C. Gas phase emissions during the treatments were also collected and analyzed. Substantial reductions in the total PCCD/F content of the ashes were observed after treatment at 500 °C, seemingly due to degradation rather than dechlorination. Treatment at 300 °C resulted in an increase in the PCDD/F content of the three ashes. Initial concentration of PCDD/F in the untreated ashes did not reflect the outcome of the treatment at the different temperatures. In addition, the composition of the ash was found to influence the rate of decomposition and formation of PCDD and PCDF during thermal treatment; the results showed that Cu, Fe, Ca and S play important roles in these processes.  相似文献   

18.
Chlorinated aromatics are unintentionally formed and released from combustion and other thermal processes involving organic matter and chlorine. The catalytic activity of incinerator fly ash in the low-temperature formation of chlorinated aromatics has been demonstrated in both laboratory experiments and full-scale trials. Copper has been shown to be an effective catalyst, but several other transition metals possess a similar activity. Here results are reported from a series of full-scale combustion trials with different fractions of household and industrial wastes, with waste from forestry as a reference fuel. The composition of elements and chlorinated aromatics in the fly ash was evaluated with principal component analysis and partial least squares regression. The observed correlation pattern indicates that metals other than copper are of equal importance for the catalytic activity. Chromium and nickel are two of these metals, which may contribute to the de novo formation of chlorinated benzenes, phenols, PCDD and PCDF.  相似文献   

19.
Xu MX  Yan JH  Lu SY  Li XD  Chen T  Ni MJ  Dai HF  Cen KF 《Chemosphere》2008,71(6):1144-1155
Isomer-specific data were investigated in order to identify the sources of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in agricultural soils, including Fluvo-aquic and paddy soils, in the vicinity of a Chinese municipal solid waste incineration (MSWI) plant. Homologue and isomer profiles of PCDD/Fs in soils were compared with those of potential sources, including combustion sources, i.e., MSWI flue gas and fly ash; and the impurities in agrochemicals, such as the pentachlorophenol (PCP), sodium pentachlorophenate (PCP-Na) and 1,3,5-trichloro-2-(4-nitrophenoxy) benzene (CNP). The results showed that the PCDD/F isomer profiles of combustion sources and agricultural soils were very similar, especially for PCDFs, although their homologue profiles varied, indicating that all the isomers within each homologue behave identically in the air and soil. Moreover, factor analysis of the isomer compositions among 33 soil samples revealed that the contamination of PCDD/Fs in agricultural soils near the MSWI plant were primarily influenced by the combustion sources, followed by the PCP/PCP-Na and CNP sources. This implication is consistent with our previous findings based on chemometric analysis of homologue profiles of soil and flue gas samples, and identifies PCP/PCP-Na as an additional important source of PCDD/Fs in the local area. This makes the similarities and differences of isomer profiles between Fluvo-aquic and paddy soils more explainable. It is, therefore, advisable to use isomer-specific data for PCDD/F source identifications where possible.  相似文献   

20.
Cunliffe AM  Williams PT 《Chemosphere》2007,68(9):1723-1732
The influence of temperature on the levels of PCDD and PCDF remaining in, and desorbed from, a municipal solid waste incinerator flyash was investigated by heating the ash to between 200 and 400 degrees C under a simulated flue gas for four days reaction time. Considerable desorption of PCDD/PCDF from the flyash was seen at 275 degrees C and above. Maximum desorption occurred at 350 degrees C, with the equivalent of nearly eight times the total PCDD/PCDF concentration of the original flyash being lost to the vapour phase per unit mass of initial flyash. The I-TEQ value of the desorbed PCDD/PCDF was considerable, being over fourteen times that of the original flyash at 325 degrees C. The results indicate that formation of PCDD/PCDF on flyash deposits in the post-combustion plant of incinerators can result in the release of significant amounts of PCDD/PCDF to the flue gas stream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号