首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 186 毫秒
1.
蒋勇  邱榕  董刚  张和平  范维澄 《火灾科学》2003,12(4):203-208
研究激波着火现象,推导激波加热点燃可燃气控制方程组。针对甲烷预混气激波火焰结构进行数值模拟,计算了激波燃烧时的压力、温度、及不同组分随时间的变化历程。其中甲烷燃烧采用美国BERKELEY大学GRI-MECH机理,该反应机理包含177个基元反应,涉及32种组分。程序采用美国SANDIA国家实验室发展的大型化学反应动力学软件包CHEMKIN III中相关的模型、子程序和热力学数据库。计算结果表明激波火焰有其自身的结构特征。  相似文献   

2.
李一涵  邱榕  蒋勇 《火灾科学》2005,14(4):199-206
本文使用了详细化学反应动力学机理计算模拟了混合有乙醇及典型自由基引导的甲烷预混火焰结构.该反应机理由Marinov研究组研究发表,包含有56个组分以及372个反应.本文的计算使用了CHEMKIN-3以及预混火焰代码,热力学及输运部分的计算基于Sandia国家实验室和Marinov研究室发布的数据库.火焰结构中主要产物的变化,关键中间产物和次要组分的计算结果显示加入乙醇和自由基都可以减少着火延迟.本文计算了三种不同条件下的火焰结构,分别为预混CH4/O2/N2火焰;预混甲烷/乙醇火焰;和加入引导自由基在甲烷/乙醇混合燃料中.此外还有含有自由基的甲烷火焰和加入乙醇的甲烷火焰比较.  相似文献   

3.
利用化学动力学软件CHEMKIN4.1,在不同初始温度、浓度、湿度和压强下,对甲烷热着火进行了详细化学动力学 模拟。通过对主要组分摩尔浓度分析和温度敏感性分析,得到了甲烷热着火过程的主要基元反应和引发热着火发生的主 要原因。通过对甲烷热着火的延迟时间、热着火发生后主要生成物摩尔浓度和反应后的温度的对比分析,揭示了初始浓 度、湿度和压强对甲烷热着火的影响规律。本研究可以为甲烷为主的气体如瓦斯、天然气等可燃气体的燃烧和爆炸提供 理论支撑,从而有效利用这些可燃气体,降低灾害的发生。  相似文献   

4.
采用差热分析仪对梯萘42炸药进行差热分析,测定其反应动力学过程。得到实验样品在不同的升温速率下的DTA曲线和相关的特征数据,以及开始加速分解的温度和峰值温度。采用Kissinger法计算了梯萘42炸药的动力学参数,得出活化能E和指前因子A分别为88 kJ/mol、9.3×107s-1。  相似文献   

5.
为确定空气中氮气对钛粉发生粉尘爆炸时的惰化抑制作用和反应机理,利用热重分析仪分别研究了5,10,15,20℃/min 4种升温速率下微米钛粉在空气和纯氮气氛下的化学反应过程。研究结果表明:两种反应条件下钛粉的热重曲线具有相似性,均包含吸气脱附和吸气增重两个阶段,但纯氮气氛下钛粉的着火温度比空气条件下高7℃,反应放热量比空气条件下低375 J/g,氮气对钛粉着火爆炸具有抑制作用。利用KAS法计算纯氮气氛下钛粉反应的表观活化能为202.2 kJ/mol。由于微米钛粉在空气中氧化生成稳定的二氧化钛前存在多种不稳定的氧化物,KAS法仅能获得高转化率下的表观活化能为285 kJ/mol。Coats-Redfern法计算结果表明:钛粉的氧化和氮化过程均为非均相的表面反应,反应模式为Jander。  相似文献   

6.
最小点火能、着火延迟时间和火焰传播速度是表征可燃气体着火危险性的重要参数。根据可燃气体的着火机理,通过建立数学模型并数值计算揭示了环境温度、火花能量对甲烷/空气混合物在电火花作用下着火过程的影响机制。结果表明:随环境温度上升,甲烷/空气混合物的最小点火能降低,着火延迟时间缩短,火焰传播速度增大;火花能量对火焰传播速度无影响,当火花能量逐渐接近最小点火能时,火花能量对着火延迟时间影响显著。  相似文献   

7.
硫化亚铁引发储油罐火灾危险性的研究   总被引:10,自引:1,他引:9  
笔者通过模拟储油罐中硫化亚铁的生成方式 ,分析和研究了硫化氢气体与氢氧化铁、三氧化二铁和四氧化三铁反应 ,生成的硫化亚铁的氧化倾向性 ,并采用自然氧化绝热装置 ,测定了硫化亚铁的温度变化曲线。实验研究结果表明 ,不同方式生成的硫化亚铁 ,其氧化性不同 ,自燃性也不同 ,均有较显著差异。硫化亚铁的温度变化曲线表明 ,氧化反应随着时间增加 ,其他应进行得越来越快 ,将会造成热量的聚集 ,使油品温度快速上升 ,导致油品自燃和储罐发生着火爆炸。实验研究证明 ,硫化亚铁氧化反应放出热量是构成油罐着火危险性的最大因素。  相似文献   

8.
木材热解是木材类火灾事件的先导过程,是引起后续的阴燃、着火、燃烧和火焰蔓延等各种现象的重要因素,因此研究木材的热解非常重要。采用热重分析法对番龙眼木的热重特性及反应动力学进行研究。在空气气氛下,研究样品粒径、试验气氛和升温速率对番龙眼木热解特性的影响。对番龙眼木的热解反应过程的分析,采用Flynn-Wall-Ozawa积分法、Kissinger最大速率法和atava-esták积分法对动力学进行处理。试验得到了一些热解动力学的参数,并推断出不同温升速率下番龙眼木的动力学最概然机理方程为反应级数函数,n=4  相似文献   

9.
7-氨基头孢烷酸(7-ACA)粉体在生产过程中存在燃爆危险性,为探究7-ACA粉体的燃爆机制,开展粉体燃烧特性试验。采用热重分析(TGA)方法研究10、20和30℃/min等3种升温速率下,7-ACA粉体燃烧的热动力学过程。结果表明:在升温速率为10℃/min下,7-ACA粉体最低着火温度为220℃,升温速率越大,最小着火温度越高,最大失重速率对应的温度越高。在整个反应过程中,裂解阶段活化能为7.347 kJ/mol,频率因子为1.4×10~7,反应为1.5级反应;燃烧阶段活化能为146.99 kJ/mol,频率因子为9.18×10~(11),反应为2级反应。整个过程热动力学参数值都不高,7-ACA粉体能被较小能量点燃,有燃爆危险。  相似文献   

10.
本文借助CFD技术对低热值气体在旋流燃烧器内的燃烧过程进行数值模拟。通过改变旋流燃烧器的导流叶片安装角度、燃料-空气预热温度、过量空气系数等参数,对热值为4.2 MJ/m3的低热值气体的多个冷热态工况进行数值计算,研究燃烧器结构参数及着火条件对燃烧过程的影响。本文为低热值气体燃料的利用以及相关燃烧器具的开发提供了参考依据。  相似文献   

11.
A novel computational approach based on the coupled 3D Flame-Tracking–Particle (FTP) method is used for numerical simulation of confined explosions caused by preflame autoignition. The Flame-Tracking (FT) technique implies continuous tracing of the mean flame surface and application of the laminar/turbulent flame velocity concepts. The Particle method is based on the joint velocity–scalar probability density function approach for simulating reactive mixture autoignition in the preflame zone. The coupled algorithm is supplemented with the database of tabulated laminar flame velocities as well as with reaction rates of hydrocarbon fuel oxidation in wide ranges of initial temperature, pressure, and equivalence ratio. The main advantage of the FTP method is that it covers both possible modes of premixed combustion, namely, frontal and volumetric. As examples, combustion of premixed hydrogen–air, propane–air, and n-heptane–air mixtures in enclosures of different geometry is considered. At certain conditions, volumetric hot spots ahead of the propagating flame are identified. These hot spots transform to localized exothermic centers giving birth to spontaneous ignition waves traversing the preflame zone at very high apparent velocities, i.e., nearly homogeneous preflame explosion occurs. The abrupt pressure rise results in the formation of shock waves producing high overpressure peaks after reflections from enclosure walls.  相似文献   

12.
在本研究中,对碳钢、铍青铜和铜镍锰合金等三种金属与砂轮和45号钢轮摩擦时产生火花的能力和引燃能力作了对比实验。用于实验的可燃混合气为液化石油气/空气和氢/空气。实验表明,碳钢和砂轮摩擦产生的火花最强烈,但仍很难引燃液化石油气/空气混合气;铍青铜与砂轮摩擦时几乎看不到火花,铜镍锰合金在同样条件下产生火花的几率销大。在摩擦时间较长的条件下,两者均能引燃极易爆炸的氢/空气混合气,但爆炸却并不是在火花出现时立即发生的。可以推断:在上述条件下,摩擦造成的炽热表面是引燃的主要原因,而材料的引燃能力的强弱,不能只以是否产生火花为判断基准。  相似文献   

13.
Quantifying the risk of accidental ignition of flammable mixtures is extremely important in industry and aviation safety. The concept of a minimum ignition energy (MIE), obtained using a capacitive spark discharge ignition source, has traditionally formed the basis for determining the hazard posed by fuels. While extensive tabulations of historical MIE data exist, there has been little work done on ignition of realistic industrial and aviation fuels, such as gasoline or kerosene. In the current work, spark ignition tests are performed in a gaseous kerosene–air mixture with a liquid fuel temperature of 60 °C and a fixed spark gap of 3.3 mm. The required ignition energy was examined, and a range of spark energies over which there is a probability of ignition is identified and compared with previous test results in Jet A (aviation kerosene). The kerosene results are also compared with ignition test results obtained in previous work for traditional hydrogen-based surrogate mixtures used in safety testing as well as two hexane–air mixtures. Additionally, the statistical nature of spark ignition is discussed.  相似文献   

14.
The paper outlines an experimental study of influence of the ignition position and obstacles on explosion development in premixed methane–air mixtures in an elongated explosion vessel. As the explosion vessel, 1325 mm length tube with 128.5 mm diameter was used. Location of the ignition was changeable, i.e., fitted in the centre or at one of ends of the tube, when the tube was in a horizontal position. When it was in a vertical position, three locations of the ignition (bottom, centre and top) were used. In the performed study, the influence of obstacles on the course of pressure was investigated. Two identical steel grids were used as the obstacles. They were placed 405 mm from either end of the tube. Their blockage ratio (grid area to tube cross-section area) was determined as 0.33 for most of experiments. A few additional experiments (with smaller blockage ratio—0.16) were also conducted in order to compare the influence of the blockage ratio on the explosion development. Also some experiments were conducted in a semi-cylindrical vessel with volume close to 40 l.

All the experiments were performed under stabilized conditions, with the temperature and pressure inside the vessel settled to room values and controlled by means of electronic devices. The pressure–time profiles from two transducers placed in the centreline of the inner wall of the explosion vessel were obtained for stoichiometric (9.5%), lean (7%) and rich (12%) methane–air mixture. The results obtained in the study, including maximum pressures and pressure–time profiles, illustrate a quite distinct influence of the above listed factors upon the explosion characteristics. The effect of ignition position, obstacles location and their BR parameters is discussed.

The additional aim of the performed experiments was to find the data necessary to validate a new computer code, developed to calculate an explosion hazard in industrial installations.  相似文献   


15.
High temperature flame fronts generated in methane–air explosions are one of the major hazards in underground coal mines. However, the distribution laws of the flame region in explosions of this type and the factors influencing such explosions have rarely been studied. In this work, the commercial software package AutoReaGas, a finite-volume computational code for fluid dynamics suitable for gas explosion and blast problems, was used to carry out numerical simulations of a series of methane–air explosion processes for various initial premixed methane–air regions and cross-sectional areas in full-scale coal tunnels. Based on the simulated results and related experiments, the mechanism of flame propagation beyond the initial premixed methane–air region and the main factors influencing the flame region were analyzed. The precursor shock wave and turbulence disturb the initial unburned methane–air mixture and the pure air in front of the flame. The pure air and unburned mixture subsequently move backward along the axial direction and mix partially. The enlargement of the region containing methane induces that the range of the methane–air flame greatly exceeds the initial premixed methane–air region. The flame speed beyond the initial region is nonzero but appreciably lower than that in the original premixed methane–air region. The length of the initial premixed methane–air region has substantial influence on the size of the flame region, with the latter increasing exponentially as the former increases. For realistic coal tunnels, the cross-sectional tunnel area is not an important influencing factor in the flame region. These conclusions provide a theoretical framework in which to analyze accident causes and effectively mitigate loss arising from the repetition of similar accidents.  相似文献   

16.
The history of the development of the process industry has been punctuated by a number of hazardous explosions, sometimes very severe. A few of them are still in the memory and certainly contributed to the birth of safety engineering. It has been known for more than one century than combustible dusts suspended in air are responsible for a part of those explosions but contrariwise to gas explosions, the available knowledge and practise seems still contain a significant part of empirism. The work summarised into this paper is an attempt to contribute to a better understanding of the explosion mechanisms of dust clouds. Hopefully, such additional information may help to refine the safety analysis exercise in the future. A specific effort has been devoted to combustion processes in the flame and the results indicate similarities with premixed gaseous flames. Several fundamental questions are addressed such as the incidence of thermal radiation, turbulence,… This information is important to treat ignition aspects. For spark type of ignition, it is shown that an absolute minimum ignition energy should exist for some dust clouds with a similar meaning than for premixed gaseous flames. For hot surface ignition, the standard ignition temperature (Godbert–Greenwald) seems to be reasonably correlated to the size and critical ignition temperature of the heating body. The possible implications of this new information within the scope of industrial safety are addressed in conclusion.  相似文献   

17.
This study investigates the effect of the ignition position on vented hydrogen-air deflagration in a 1 m3 vessel and evaluates the performance of the commercial computational fluid dynamics (CFD) code FLACS in simulating the vented explosion of hydrogen-air mixtures. First, the differences in the measured pressure-time histories for various ignition locations are presented, and the mechanisms responsible for the generation of different pressure peaks are explained, along with the flame behavior. Secondly, the CFD software FLACS is assessed against the experimental data. The characteristic phenomena of vented explosion are observed for hydrogen-air mixtures ignited at different ignition positions, such as Helmholtz oscillation for front ignition, the interaction between external explosion and combustion inside the vessel for central ignition, and the wall effect for back-wall ignition. Flame-acoustic interaction are observed in all cases, particularly in those of front ignition and very lean hydrogen-air mixtures. The predicted flame behavior agree well with the experimental data in general while the simulated maximum overpressures are larger than the experimental values by a factor of 1.5–2, which is conservative then would lead to a safe design of explosion panels for instance. Not only the flame development during the deflagration was well-simulated for the different ignition locations, but also the correspondence between the pressure transients and flame behavior was also accurately calculated. The comparison of the predicted results with the experimental data shows the performance of FLACS to model vented mixtures of hydrogen with air ignited in a lab scale vessel. However, the experimental scale is often smaller than that used in practical scenarios, such as hydrogen refueling installations. Thus, future large-scale experiments are necessary to assess the performance of FLACS in practical use.  相似文献   

18.
The investigation of the ignition conditions of kerosene vapors in the air contained in an aircraft fuel tank contributes to the definition of onboard safety requirements. Civil and military kerosene are characterized by specification. The specification of civil aviation kerosene is based upon usage requirements and property limits. while military kerosene is primarily controlled by specific chemical composition. Characterization of the flammability properties is a first step for the establishment of aircraft safety conditions. Flash point, vapor pressure, gas chromatography analysis, and flammability properties of the kerosene used by the French Military aviation (F-34 and F-35 kerosene) are compared with the flammability properties of civil kerosene. The empirical law established by the Federal Aviation Administration (FAA) in 1998, expressing the ignition energy in terms of fuel, temperature, flash point and altitude is modified and expressed in terms of fuel temperature, flash point and pressure.  相似文献   

19.
DME is thought to be a good alternative fuel due to its cleanliness and more excellent fuel economy. Although the prediction and loss prevention of flammability hazard is very important for safety of DME installations, the evaluation method with sufficient accuracy has not been established. In this study, a numerical combustion model is constructed and a 3-dimensional computational fluid dynamics (CFD) simulation of a premixed DME/air explosion in a large-scale domain is conducted. The main feature of the numerical model is the solution of a transport equation for the reaction progress variable using a function for turbulent flame velocity which characterizes the turbulent regime of propagation of free flames derived by introducing the fractal theory. The model enables the calculation of premixed gaseous explosion without using fine mesh of the order of micrometer, which would be necessary to resolve the details of all instability mechanisms. The value of the empirical constant contained in the function for turbulent flame velocity is evaluated by analyzing the experimental data of LPG/air and DME/air premixed explosions. The comparison of flame behavior between the experimental result and numerical simulation shows good agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号