首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 104 毫秒
1.
为研究兰州市夏季大气挥发性有机物(VOCs)污染特征和来源,采用实时在线监测仪器TH-300B (GC-MS/FID)等多种设备联用,于2021年7月开展为期1个月的综合观测.结果表明,监测期间总挥发性有机物ρ(TVOCs)为99.77μg·m-3,烷烃占比最大,其次是芳香烃和含氧挥发性有机物(OVOCs),烯炔烃和卤代烃占比较小,各组分浓度呈现早晚高,中午低的日变化特征.VOCs臭氧生成潜势(OFP)前10种物质贡献率占57.3%,二次有机气溶胶(SOA)生成潜势前10种物质贡献率占93.10%,以芳香烃和高碳烷烃为主,其中,甲苯和间/对-二甲苯对OFP和SOA贡献最大.采用正交矩阵因子分解法(PMF)进行污染来源解析,其中工业溶剂源(22.25%)、油漆涂料源(21.70%)和机动车尾气源(16.25%)是研究区环境空气中VOCs的主要来源;基于污染源排放清单法,2017年兰州市VOCs排放量为94761.6 t,主要来自溶剂使用源和移动源,贡献率分别为56.70%和18.03%.因此解决兰州大气复合污染问题,实现O3和PM2.5协同控制,应以工业溶剂排放和机动车管控为主,重点减少VOCs中甲苯和间/对-二甲苯等芳香烃化合物排放.  相似文献   

2.
某石化企业利用在线监测设备对VOCs进行连续监测,分析了VOCs的排放特征、光化学反应活性及污染来源。结果表明,该石化企业VOCs以烷烃、卤代烃、含氧有机物为主,夏季总VOCs浓度明显高于冬季、秋季。主要污染物以癸烷、正庚烷、1,2-二氯丙烷、间对-二甲苯等为主。从光化学活性角度分析,烯烃、芳烃、含氧有机物的臭氧生成潜势更大。利用正定矩阵因子分析模型对VOCs排放源进行解析,确定了异构化单元(31.4%)、炼油生产区(29.6%)、外部化工企业(24.4%)及芳烃精馏装置区(14.6%)为VOCs的4个主要排放源。  相似文献   

3.
采用"GCMS/FID"在线分析方法,对广州市区2016年7月大气VOCs的污染特征及来源进行了研究,共检出了73种VOCs组分.结果表明,观测期间总VOCs的小时平均浓度为(118.83±79.40)μg·m-3,最高值为492.42 μg·m-3,最低值为10.54 μg·m-3.07:00左右TVOC浓度出现高峰,说明早高峰的机动车污染对该站点的VOCs具有较大贡献;14:00左右浓度最低,与光化学损耗相关;21:00~24:00间VOCs浓度又出现高值,可能和污染源排放或边界层压缩有关.运用PMF模型解析出VOCs的5个主要来源分别是:交通污染源、溶剂使用污染、加油站污染、植物排放和餐厨废气,其贡献分别为29.79%、26.61%、24.86%、9.91%、8.84%;白天交通废气源贡献最大,而中午植物排放的贡献也明显增大;夜间溶剂污染源和加油站污染源占比上升,为该时段VOCs的主要来源.  相似文献   

4.
邯郸市秋季大气挥发性有机物污染特征   总被引:11,自引:1,他引:11       下载免费PDF全文
大气中VOCs(volatile organic compounds,挥发性有机物)是形成O3和二次有机气溶胶的重要前体物.通过对2017年10月1-31日邯郸市秋季环境空气中56种VOCs污染物进行在线监测,结合PM2.5、O3、NOx等污染物质量浓度和气象数据,分析了邯郸市VOCs质量浓度水平、时间变化特征、化学反应活性和主要来源.结果表明:邯郸市ρ(VOCs)变化范围较大,为49.1~358.4 μg/m3,平均值为(102.2±45.8)μg/m3,VOCs的主要组分为烷烃和芳烃.ρ(VOCs)与ρ(PM2.5)、ρ(NOx)均有很强的相关性,相关系数分别为0.8和0.7;而ρ(NOx)与ρ(O3)呈明显的负相关性,相关系数为-0.7.邯郸市VOCs中各类组分化学反应活性大小依次为烯烃>芳烃>烷烃>炔烃,并且国庆期间(10月1-7日)VOCs化学反应活性小于非国庆期间(10月8-31日),烯烃和芳烃对O3的产生占主导地位.应用主因子分析法对邯郸市VOCs来源进行解析发现,溶剂使用和燃料挥发源、汽油车排放源、工业源、柴油车排放源和燃烧源是VOCs的主要来源,其方差贡献率分别为36.7%、15.5%、8.0%、6.6%、5.1%.研究显示,减少邯郸市大气中ρ(VOCs)应以控制溶剂使用和燃料挥发源、交通排放源(汽油车排放源和柴油车排放源)为主.   相似文献   

5.
臭氧污染在全国呈加剧态势,在非重点区域和非重点城市其相关研究薄弱.在湛江市选取3个采样点,使用苏玛罐和2,4-二硝基苯肼(DNPH)吸附管采样,并利用气相色谱-质谱/氢离子火焰检测器(GC-MS/FID)和高效液相色谱(HPLC)分析了101种挥发性有机物(VOCs),分析其主要组分和变化特点,计算VOCs的臭氧生成潜势(OFP),并利用正定矩阵因子分解模型(PMF)进行源解析.结果表明,采样期间湛江市φ(TVOCs)平均值为1.28×10-7,其中OVOCs占比最高,为52%,其次为烷烃(36%)、烯烃(7%)、卤代烃(2.42%)、芳香烃(1.61%)和炔烃(0.78%).VOCs组分日变化特征表明,芳香烃和烷烃早晚体积分数高而中午低,受光化学反应影响大;而OVOCs在光化学反应强烈的中午体积分数低而傍晚高,表明傍晚采样点附近OVOCs直接排放增多或受到上风向污染源输送的影响.湛江市TVOCs的OFP为3.28×10-7,优势物种为甲醛、1-丁烯、正丁烷、2-丁酮和乙醛.表征气团老化程度的X/E值和气团后向轨迹分析表明,采样期间,当受来自...  相似文献   

6.
使用ZF-PKU-1007大气挥发性有机物(VOCs)在线连续监测系统,于2018年09月25日~10月18日在廊坊市经济技术开发区对99种VOCs进行了在线连续观测.结果显示,观测期间VOCs浓度为69.56×10-9,烷烃、烯烃、芳香烃、醛酮类及卤代烃体积分数占VOCs比例分别为53.2%、5.9%、7.6%、10.5%和19.3%;使用OH消耗速率LOH和臭氧生成潜势(OFP)估算了观测期间VOCs大气化学反应活性,结果表明醛酮类、芳香烃和烯烃是主要的活性物质;使用气溶胶生成系数法(FAC)估算了VOCs对二次有机气溶胶(SOA)的贡献,得出VOCs对SOA浓度的贡献值为1.13μg/m3,其中芳香烃对SOA生成贡献占比为94.3%,间/对-二甲苯、甲苯为优势物种;使用PMF模型对VOCs进行了来源解析,识别了5个主要来源,分别为溶剂使用及挥发源(39.6%)、机动车源(22.5%)、固定燃烧源(17.6%)、石化工业源(11.1%)及植物排放源(9.4%),因此,溶剂使用及挥发源、机动车源及燃烧源应为廊坊开发区秋季大气VOCs控制的重点.  相似文献   

7.
上海北郊大气挥发性有机物(VOCs)变化特征及来源解析   总被引:1,自引:0,他引:1  
叶露 《装备环境工程》2020,17(6):107-116
2019年1月1日到10月31日期间在上海北部郊区,采用在线气相色谱仪对58种VOCs定量检测,分析了大气VOCs组成、季节变化特征和日变化规律,并利用最大增量反应活性(MIR)估算了VOCs的臭氧生成潜势(OFP),应用因子分析法对VOCs来源进行了解析。结果表明,上海大气总VOCs体积浓度为25.79×10-9,其中烷烃占比63.2%,烯烃占比11.6%,芳香烃占比19.8%,炔烃占比5.4%。总VOCs体积浓度呈现夏季高,秋季低的季节变化特征。大气臭氧生成潜势为76.99×10-9,烷烃贡献率为22.1%,烯烃为37.5%,芳香烃为38.7%,炔烃为1.7%。VOCs特征物比值(V(TVOC)/V(NO_x)和T/B比值)法表明观测点为VOCs控制区,受周边工业区源和交通源影响。大气VOCs主要来源为机动车排放、工厂生产、燃料燃烧、工业溶剂挥发及天然源。  相似文献   

8.
在2018年9月14~23日选取了典型光化学污染期间,在长三角重点城市杭州市城区开展大气中挥发性有机物(VOCs)的加密观测.对80个有效样品分析结果表明,观测期间大气VOCs的122种化合物平均体积分数为(59.5±19.8)×10~(-9),含氧化合物(OVOC)是其中最主要的组分.用臭氧生成潜势(OFP)评估大气反应活性结果表明,观测期间OFP平均值为145×10~(-9),其中贡献最大的是芳烃和醛酮化合物.其大气VOCs整体活性水平与丙烯腈相当.运用正交矩阵因子(PMF)模型对VOCs进行源解析后,识别出杭州市大气VOCs的5个主要污染源,分别为二次生成(25.2%)、燃烧及工艺过程(27.2%)、溶剂使用(17.3%)、天然源(9.2%)和机动车排放(21.2%).本研究结果可为深入掌握杭州市VOCs污染特征以及科学制定防控措施提供技术支撑.  相似文献   

9.
曹梦瑶  林煜棋  章炎麟 《环境科学》2020,41(6):2565-2576
2018年秋季在南京利用大气挥发性有机物(volatile organic compounds, VOCs)吸附浓缩在线监测系统(AC-GCMS 1000)对大气VOCs进行连续观测,以了解其化学特征、臭氧生成潜势和污染来源.结果表明,南京秋季大气VOCs体积分数为(64.3±45.6)×10-9,以烷烃(33.1%)、含氧挥发性有机物(OVOCs)(22.3%)及卤代烃(21.8%)为主.VOCs的昼夜变化呈"双峰型"变化特征,高值主要出现在清晨的06:00~07:00及夜间的18:00~20:00,主要受机动车排放及气象要素的共同影响.秋季南京VOCs的臭氧生成潜势(ozone formation potential, OFP)为267.1μg·m-3,主要贡献物种是芳香烃类化合物(55.2%)和烯烃类化合物(20.8%).PMF受体模型源解析确定5个VOCs来源,分别是交通排放(34%)、工业排放(19%)、LPG排放(17%)、涂料及有机溶剂挥发(16%)以及生物质燃烧和燃煤排放(14%),因此控制南京工业区秋季大气污染应主要着力于交...  相似文献   

10.
该文分析了长寿区环境空气中臭氧污染的特征,探讨了气温、湿度、风速等气象条件对环境空气中臭氧浓度的影响,通过绘制EKMA曲线指出臭氧生成的主导因素。文章设置4个挥发性有机物(VOCs)监测点分析了长寿区环境空气中的VOCs含量,结果表明:含氧挥发性有机物以及芳香烃类是长寿区挥发性有机物中的主要成分,分别占总和的32.28%和25.52%,其中芳香烃对臭氧生成的贡献最大。结合PMF模型对VOCs以及臭氧进行了源解析研究,结果表明:工业排放和交通排放是长寿区环境空气中VOCs的主要来源,分别占据VOCs排放总量的56%和18%,对臭氧生成的贡献率分别为46%和25%,在此基础上提出了臭氧污染防治措施。  相似文献   

11.
挥发性有机化合物(VOCs)是臭氧和颗粒物等的重要前体物,对空气质量的影响尤为显著.为研究连云港市VOCs的组分特征和来源,选择4个国控点开展春、夏和秋季典型日的VOCs采样和分析,计算VOCs不同组分对臭氧生成的影响,利用正交矩阵因子分解法(PMF)解析VOCs的来源.结果表明,春季VOCs浓度为27.46×10-9~40.52×10-9,夏季为45.79×10-9~53.45×10-9,秋季为38.84×10-9~46.66×10-9;含氧化合物的浓度占比为41%~48%,在各个季节均为最高,浓度水平较高的VOCs物种是丙酮、丙烯醛和丙醛等,异戊二烯的浓度在夏季较高;一般而言VOCs浓度09:00高于13:00,其中丙烯醛、乙烯和二氯甲烷的变化较大;含氧化合物的臭氧生成潜势(OFP)最高,其次是芳香烃和烯烃类,烷烃的OFP最小,OFP较高的VOCs物种是丙烯醛、丙烯和乙烯等;影响连云港市VOCs的来源主要有工业源(49%)、溶剂使用源(23%)、交通源...  相似文献   

12.
VOCs作为臭氧与二次有机气溶胶的关键前体物,其来源解析对臭氧和颗粒物的协同控制至关重要.但多数VOCs具有反应性,不能完全满足受体模式对污染源排放化学物质组成稳定的假设要求,导致受体模式解析结果不能精准反映实际源贡献.为解决因不同VOCs反应活性不同而导致的组分相对变化与模型假设不符的问题,引入VOCs老化程度来表征...  相似文献   

13.
采用GC5000在线气相色谱仪,于2019年和2020年夏季6~8月分别对郑州市城区中大气环境挥发性有机化合物(VOCs)进行监测,探究了VOCs的污染特征,并重点利用比值分析,PMF受体模型和条件概率函数(CPF)模型对比研究了其来源贡献.结果表明,2019年和2020年夏季ρ(VOCs)平均值分别为65.7 μg·m-3和71.0μg·m-3.2019年烷烃占比逐月变化幅度不大,占比在55%左右,芳香烃整体呈上升趋势,烯烃呈下降趋势;前10物种占总VOCs的65.5%,主要物种依次为异戊烷、乙烷、丙烷、甲苯、正丁烷和间/对-二甲苯等.2020年烷烃和烯烃占比呈逐月升高趋势,芳香烃呈逐月降低趋势;前10物种占总VOCs的71.1%,主要物种依次为乙烷、乙烯、丙烷、异戊烷、正丁烷、甲苯和间/对-二甲苯等.2019年夏季OFP平均值为224.9 μg·m-3,其中芳香烃对OFP贡献率逐月升高,烯烃逐月降低;对OFP贡献的物种主要为间/对-二甲苯、异戊二烯、反式-2-丁烯、甲苯和乙烯等.2020年夏季OFP平均值为243.6 μg·m-3,其中芳香烃对OFP贡献逐月降低,烯烃逐月升高;对OFP贡献的物种主要为乙烯、间/对-二甲苯、异戊二烯、甲苯和间-乙基甲苯等.PMF和CPF模型解析表明,2019年对VOCs贡献较大的是溶剂使用源和油气挥发源,贡献率分别为36.7%和25.1%,其对OFP贡献也较大,分别为39.9%和23.3%,需重点关注西南部区域.2020年对VOCs贡献较大的仍为溶剂使用源和油气挥发源,贡献率分别为24.9%和22.5%;对OFP贡献较大的为溶剂使用源和机动车尾气排放源,贡献率分别为33.6%和22.9%,需重点关注北部和南部区域.因此,今后应重点关注溶剂使用、机动车尾气排放和油气挥发源的排放,尤其监测点位的西南部、北部和东南部区域污染源.  相似文献   

14.
为探究开封市冬季大气挥发性有机物(VOCs)的污染特征及来源,基于2021年12月至2022年1月开封市生态环境局(城区)在线监测站获取的大气VOCs组分数据,阐述其VOCs污染特征和二次有机气溶胶生成潜势(SOAP),利用PMF模型解析出VOCs的来源.结果表明,冬季开封市ρ(VOCs)平均值为(104.71±48.56)μg·m-3,其质量分数最高为烷烃(37.7%),其次为卤代烃(23.5%)、芳香烃(16.8%)、 OVOCs(12.6%)、烯烃(6.9%)和炔烃(2.6%).VOCs对SOA的贡献平均值为3.18μg·m-3,其中芳香烃贡献率高达83.8%,其次为烷烃(11.5%);开封市冬季VOCs的最大人为排放来源为溶剂使用(17.9%),其次为燃料燃烧(15.9%)、工业卤代烃排放(15.8%)、机动车排放(14.7%)、有机化学工业(14.5%)和LPG排放(13.3%);溶剂使用源对SOAP的贡献率达到32.2%,其次是机动车排放(22.8%)和工业卤代烃排放(18.9%).可见,降低溶剂使用、机动车排放和工业卤代烃排放的...  相似文献   

15.
阮兆元  燕鸥  王体健  王勤耕  罗干  文金科 《环境科学》2023,44(11):5933-5945
为了解南京市溧水区大气挥发性有机物(VOCs)的组分、来源及其对臭氧的贡献,2021年对区域内VOCs开展了为期1 a的走航监测,进行数据分析.结果表明,溧水区ρ(TVOC)年均值为223.45μg·m-3,其中ρ(烷烃)为49.45μg·m-3(占比22.13%),ρ[含氧(氮)VOCs]为50.63μg·m-3(占比22.66%),ρ(卤代烃)为64.73μg·m-3(占比28.95%),ρ(芳香烃)为35.46μg·m-3(占比15.87%),ρ(烯烃)为18.26μg·m-3(占比8.19%),其他为4.9μg·m-3(占比2.2%).夏季的ρ(TVOC)平均值较高,为263.75μg·m-3,冬季较低,为187.2μg·m-3,春季为246.11μg·m-3,秋季为204.77μg·m-3.日均TVOC浓度,在09:00~10:00和14...  相似文献   

16.
郑州市某城区冬季不同污染水平大气VOCs特征及源解析   总被引:6,自引:6,他引:0  
于2019年1月3~23日,在郑州市某城市站点对挥发性有机物(VOCs)进行观测,研究不同污染水平下VOCs组成、变化特征、来源及其对二次有机气溶胶(SOA)生成的影响.结果表明,观测期间含氧VOCs和烷烃为VOCs的主要组分,乙酸乙酯和丙酮为最丰富的物种.清洁天演变至重度污染过程中,VOCs体积分数增高约1倍,大部分物种体积分数随污染程度加重而增高.基于正交矩阵因子模型(PMF),观测期间VOCs主要来源于机动车排放、工业排放、燃烧源、溶剂使用和液化石油气(LPG)使用,且不同污染水平下来源贡献差异明显,重污染期间工业排放和溶剂使用的源贡献分别增高至约清洁天的9倍和3倍.芳香烃为SOA生成潜势(SOAp)贡献最大的组分,甲苯和间/对-二甲苯为贡献最大的物种,溶剂使用源为贡献最大的来源,重度污染期间总SOAp增大至约清洁天的2.6倍.加强管控芳香烃类化合物及溶剂使用等相关源的排放对改善郑州市冬季霾污染具有重要意义.  相似文献   

17.
于2020年8月18~27日在长沙、株洲和湘潭这3市,使用罐采样方法开展了大气挥发性有机物(VOCs)连续采集,并使用GC/FID/MSD分析了106种VOCs物种浓度,开展区域VOCs污染特征、生成潜势和来源解析研究.结果表明,长株潭区域φ(VOCs)平均值为(20.5±10.5)×10-9,其中OVOCs(33.5%)和烷烃(28.2%)所占质量分数较高;VOCs的臭氧生成潜势(OFP)平均值为118.5μg·m-3,芳香烃、烯烃和OVOCs对OFP的贡献率分别为37.4%、 24.2%和23.6%; VOCs的二次有机气溶胶生成潜势(SOAp)平均值为0.5μg·m-3,芳香烃对SOAp的贡献率达97.0%,其中C8类芳香烃贡献率为41.7%,甲苯、间/对-二甲苯和邻-二甲苯是对OFP和SOAp有显著贡献的共同优势物种.特征比值结果表明长沙VOCs受工业过程和溶剂使用影响相对较大,而株洲和湘潭受煤和生物质燃烧影响相对较多;PMF解析结果显示,VOCs...  相似文献   

18.
南京工业区挥发性有机物来源解析及其对臭氧贡献评估   总被引:1,自引:0,他引:1  
在南京工业区连续测量了2014年5月1日~7月31日和2015年6月1日~7月16日夏季两个高臭氧期的大气中的挥发性有机化合物(VOCs).结合正交矩阵分解(PMF)模型和箱模式(OBM)分析VOCs来源对局部O3生成的贡献.2014年和2015年夏季VOCs浓度平均分别为(36.47±33.44)×10-9和(34.69±34.08)×10-9.PMF模型确定了7种源类别,其中包括汽车尾气、液化石油气(LPG)排放、生物源排放、家具制造业、化工业、化学涂料行业、化学材料工业排放源.在OBM模拟中评估O3与前体物的关系.南京工业区是VOCs控制区,VOCs具有正RIR值,NO的RIR值为负值.烯烃(1.20~1.79)和芳香烃(1.42~1.48)呈现较高的RIR值,控制这两类物种是控制O3浓度最有效的途径.烯烃排放量减少80%时烯烃RIR值达到最高.汽车尾气(1.01~1.11)、液化石油气(0.74~0.82)、生物源排放量(0.34~0.42)和家具制造业(0.32~0.49)是O3形成贡献最大的四大类VOCs来源;减少汽车尾气,生物排放,LPG和家具制造业排放应成为减少局地O3生成最有效策略.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号