首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
微絮凝连续砂滤装置深度处理矿区污水的研究   总被引:2,自引:1,他引:1  
采用微絮凝连续过滤技术深度处理矿区生活污水,探讨了滤料粒径、厚度、滤速、砂循环速率及药剂投加量等因素对SS去除效果的影响.结果表明:粒径0.8~1.0 mm,滤床厚度1.0~1.2 m,滤速6~8 m/h,砂循环速率在2~4 mm/min,PAC投加量20~25 mg/L时,出水SS小于5 mg/L,去除率达到94.5%以上.  相似文献   

2.
磁絮凝分离法处理含油废水的试验   总被引:2,自引:0,他引:2  
通过磁絮凝分离法处理含油废水,确定适宜的磁粉和絮凝剂、助凝剂的加入量,以及加料顺序和搅拌条件对反应的影响,并进行了普通絮凝和磁絮凝的对比试验。结果表明,当废水含油量为100~200mg/L时,反应最佳工艺参数:磁粉加入量为280mg/L,PFC和PAM加入量分别为25、0.5mg/L,磁粉和PFC同时先于PAM投加,且投加时搅拌速度以250r/min为宜。  相似文献   

3.
为使酸性矿井水总铁浓度达到《地表水环境质量标准》(GB3838-2002)Ⅲ类要求,将中和沉淀与絮凝工艺相结合,分析了CaO、NaOH、PAC等药剂投加量对处理效果的影响。结果表明:在原水总铁浓度为466 mg/L、Fe~(2+)浓度为15.6 mg/L、pH=3.04的条件下达到同等除铁效果,采用CaO作为中和剂的投加量少于NaOH;在单独投加1 200 mg/L CaO的情况下,pH达到7.43,总铁及Fe~(2+)浓度分别降至5.7 mg/L和0.06 mg/L,总铁去除率达到98.8%;选用CaO投加量为1 000mg/L情况下的中和沉淀上清液(pH=6.26)进行絮凝强化处理,当PAC和PAM投加量分别为30mg/L和0.2 mg/L时,总铁浓度由11.8 mg/L降至0.28 mg/L。  相似文献   

4.
针对暴雨时市政污水的特点,通过混凝试验考察了混凝剂投加量、重辅介质投加量、投加顺序、搅拌条件和静沉时间等因素对重辅强化混凝效果的影响。试验结果表明:重辅强化混凝后污染物去除效果优于常规混凝工艺;在最优条件下,即PAC35mg/L,重辅介质300mg/L,PAM0.8mg/L,混合快搅强度300r/min(55s),絮凝慢搅强度70r/min(7min)时,SS、COD和TP的去除率分别达到73.3、34.7和67.9%。该法可强化混凝效果,减少混凝剂投加量,缩短水力停留时间,为拓宽暴雨时市政污水的应急处理技术领域提供了参考。  相似文献   

5.
首先对污染河水通过搅拌烧杯试验比较了聚合硫酸铁(PFS)和自制的磁性絮凝剂(MF)加载磁粉混凝沉淀去除浊度和总磷的效果,结果表明,当PFS或MF投加量均为30 mg/L、PAM投加量为0.5 mg/L,磁粉投加量为0.5 g/L,加载混凝沉淀后浊度均1NTU,总磷0.2 mg/L。对河水加载磁粉混凝-高梯度磁过滤现场试验表明,MF混凝产生的絮体密实,加载混凝-磁过滤出水浊度、总磷和SS均比PFS和磁粉的复配投加要小,本工艺处理污染河水具有流程短、效率高和占地面积少的优势。  相似文献   

6.
为了有效去除ABS凝聚干燥工段(E区)废水中的悬浮颗粒物,解决传统装置SS去除率低、管道易堵塞和运行不稳定的问题,采用一种改进的混凝气浮装置进行处理,研究了药剂种类、药剂投加量、p H值、水力停留时间、溶气水回流比等工艺参数对ABS凝聚干燥废水中悬浮物去除效果的影响,得出新型混凝气浮装置的最佳工艺运行参数。试验结果表明:在PAC投加量为75 mg/L、阳离子絮凝剂(FO4440SSH)投加量为10 mg/L、水力停留时间12.5 min、回流比为60%的最佳工艺条件下,SS去除率可达96.6%,出水ρ(SS)为29 mg/L。该装置对SS去除效果好,运行稳定,具有广阔的应用前景。  相似文献   

7.
用聚丙烯酰胺作絮凝剂,研究了所含黏土类型、絮凝剂投加量等因素对煤泥水絮凝效果和絮凝体分形维数的影响. 结果表明,含高岭石的煤泥水絮凝剂最佳投加量为10.0 mg/L,所对应絮凝体的分形维数最大,为2.70. 投加量不足时分形维数降至1.55,投加量过量时分形维数降至1.95;含蒙脱石的煤泥水絮凝剂最佳投加量为15.0 mg/L,所对应絮凝体分形维数最大,为1.68. 投加量不足时分形维数降至1.01,投加量过量时分形维数降至1.51.   相似文献   

8.
通过絮凝-沉淀法对采油废水进行深度处理,类比聚合氯化铝(PAC)、聚合氯化铝铁(PAFC)、聚合硫酸铝(PAS)、聚合硫酸铝铁(PAFS)、复合高分子絮凝剂(KD-11C)和生物絮凝剂6种絮凝剂对采油废水中含油量和悬浮固体(SS)含量的去除效果,通过单因素试验探究絮凝剂投加量、助凝剂投加量、温度、pH值和沉淀时间对絮凝效果的影响,并通过正交试验确定各因素影响程度的次序及最佳絮凝处理条件。结果表明:复合高分子絮凝剂絮凝效果最好;影响絮凝效果各因素的次序为温度pH值絮凝剂投加量助凝剂投加量沉淀时间;最佳絮凝处理条件是絮凝剂KD-11C投加量为50mg/L、助凝剂PAM投加量为3mg/L、温度为60℃、pH值为7.5、沉淀时间为30min。  相似文献   

9.
严子春  陶仁乾 《中国环境科学》2018,38(11):4114-4119
通过单因素及正交试验,以聚二甲基二烯丙基氯化铵(HCA)为混凝剂对模拟农村生活污水进行强化混凝预处理,考察了影响HCA混凝去除SS、TP及有机物的主要因素及其主次顺序,并以Zeta电位及分形维数对HCA的混凝机理进行了分析.结果表明,影响HCA处理效果的因素顺序为初始pH值值 > HCA投加量 > 絮凝搅拌时间 > 混合搅拌速度梯度 > 混合搅拌时间 > 絮凝搅拌速度梯度,在优化条件下HCA混凝对SS、TP及COD去除率最高分别达94.1%、74.9%及61.1%;当HCA投加量为15mg/L时,Zeta电位与絮体分形维数分别为-2.03mv及1.0149.试验表明HCA对生活污水具有较好的处理效果,强化混凝去除污染物的机理主要是电性中和作用.  相似文献   

10.
为增强饮用原水中藻类的混凝去除效果,以铜绿微囊藻和水华鱼腥藻为对象,在单因素实验的基础上,采用响应曲面法考察了壳聚糖(CTS)投加量、聚合氯化铝(PAC)投加量、pH值及CTS和PAC的投加顺序对CTS联合PAC混凝除藻的影响.结果表明,混凝去除铜绿微囊藻(叶绿素a含量为45~55μg/L)的最佳条件为:CTS 0.40mg/L、PAC 1.19mg/L、原水pH值7.5、CTS和PAC混合均匀后投加,该条件下模型预测叶绿素a去除率为96.1%(实测值为95.7%);混凝去除水华鱼腥藻(叶绿素a含量为80~90μg/L)的最佳条件为:CTS 0.25mg/L、PAC 2.00mg/L、原水pH值7.9、先投加CTS后投加PAC,该条件下模型预测叶绿素a去除率为97.9%(实测值为97.0%).当原水pH值9.0时(模拟高藻原水的碱性环境),混凝去除铜绿微囊藻和水华鱼腥藻的最佳投药顺序均为CTS和PAC混合均匀后投加,实测叶绿素a去除率分别为94.9%和95.3%;混凝铜绿微囊藻的药剂方案为CTS 0.40mg/L、PAC 2.00mg/L,药剂成本为0.0215元/m3,混凝水华鱼腥藻的药剂方案为CTS 0.24mg/L、PAC 2.00mg/L,药剂成本为0.0149元/m3.  相似文献   

11.
王郑  仲米贵  黄雷  薛侨  林子增  陈蕾 《环境工程》2017,35(10):61-65
研究了聚合氯化铝-壳聚糖(PAC-CTS)絮凝剂的絮凝特性,进行了聚合氯化铝-壳聚糖复合絮凝剂和单独聚合氯化铝对水中溶解态腐殖酸的去除实验。结果表明:复合絮凝剂在投加量为80 mg/L时即可达到与单独聚合氯化铝投加量为150 mg/L时的去除效果,同时前者适应的pH值范围更宽;与投加量和pH值相比,水样浊度和絮凝搅拌速度是影响絮凝效果的次要因素;另外红外光谱分析发现复合絮凝剂中壳聚糖与聚合氯化铝之间存在相互作用。  相似文献   

12.
根据昆明市第三污水处理厂深度处理Actiflo-D型滤池工艺的运行数据,评价了工艺出水水质及总磷(TP)去除效果,同时分析了混凝剂投加量及药剂费用。结果表明:该Actiflo-D型滤池工艺出水ρ(TP)平均为0.26 mg/L,最优水平值为0.09 mg/L,95%保证值为0.53 mg/L,TP平均去除率为49.3%;出水悬浮固体(SS)浓度95%保证值为9 mg/L。混凝剂聚合氯化铝(PAC)的投加量为2~9 mg/L,去除单位TP的PAC投加量平均值为55.8 mg/mg,投加比β为1~10 mol/mol;投加比β>4时,出水ρ(TP)≤0.5 mg/L。吨水PAC成本平均值为0.049元/t。  相似文献   

13.
采用天然无毒的壳聚糖改性海泡石作为絮凝剂去除微囊藻,考察不同投加量的壳聚糖改性海泡石的絮凝除藻效果,并通过低强度超声波(功率为40W、作用时间为10s)强化絮凝除藻试验,研究低强度超声波对微囊藻沉降性能以及微囊藻生长和藻细胞形态结构的影响。结果表明:采用壳聚糖改性海泡石去除微囊藻的最佳投加量为20mg/L;低强度超声波处理10s时对改性海泡石去除微囊藻的强化效果最佳,微囊藻液浊度和藻细胞的去除率分别提高了34.95%和32.58%;低强度超声波对微囊藻的生长和细胞形态结构无显著影响,但可显著提高微囊藻细胞的沉降性能,从而有利于藻细胞进行絮凝沉淀去除。本研究可降低除藻药剂投加量,有助于开发一套更环保、经济和高效的除藻方法。  相似文献   

14.
以高浓度铜镍废水为研究对象,分别采用传统絮凝和加载絮凝工艺,探究了聚合氯化铝(PAC)投加量、阴离子聚丙烯酰胺(APAM)投加量、回流污泥量对出水效果、污泥的脱水性能和沉降性能的影响。结果表明:加载工艺比传统工艺处理效果更好,更节省药剂投加量,对药剂投加量的波动变化适应性更强;PAC的投加量对同种工艺下污泥CST值的影响明显,传统和加载絮凝两种工艺中,不同PAC投加量对应的CST差值最大分别达到9.4 s和8.6 s;不同APAM投加量下,加载工艺产生的污泥CST值总体比传统工艺的小8~9 s,表明加载工艺的污泥脱水性能普遍优于传统工艺;药剂投加量相同时,加载絮凝工艺得到污泥的沉降性能比传统工艺更好;结合出水效果、污泥脱水性能、污泥沉降性能和处理成本,确定采用加载工艺处理铜镍废水,其最佳工艺条件为:PAC=20 mg/L,APAM=4 mg/L,污泥回流量=100 mL。  相似文献   

15.
化学生物絮凝工艺污染物去除试验研究   总被引:7,自引:2,他引:5  
化学生物絮凝污水处理工艺是一种新的一级强化处理工艺。该工艺在传统的化学混凝的基础上将沉淀池内的污泥回流至化学生物絮凝池,利用化学混凝和污泥吸附的协同作用去除污水中的污染物。中试试验结果表明,聚合硫酸铝铁絮凝剂投加量为70mg/L,PAM投加量为0.5m g/L时,COD、TP和SS去除率分别为61.8%、74.5%和74.6%。化学生物絮凝池内污泥富集了未反应的絮凝剂,这部分絮凝剂对污水中TP具有很好的去除作用。化学生物絮凝池内污染物的沿程分析显示,回流污泥与污水充分接触可促进TP的进一步去除。  相似文献   

16.
壳聚糖改性粘土对水华优势藻铜绿微囊藻的絮凝去除   总被引:36,自引:7,他引:29  
邹华  潘纲  陈灏 《环境科学》2004,25(6):40-43
研究了壳聚糖改性对粘土絮凝去除铜绿微囊藻的影响.经壳聚糖包覆改性后的海泡石在投加总量仅为11 mg/L时,0.5h即可去除80%的藻细胞,2h去除率达到90%.不同粘土改性后絮凝除藻能力均有大幅度提高,原来除藻能力相去甚远的不同粘土,包括一般的黄土,改性后除藻能力被提升到相近的水平,投加量11 mg/L,可去除铜绿微囊藻90%以上.改性粘土和一般絮凝剂一样有一最佳投加量(本研究为11 mg/L),低于或超过此最佳值,絮凝除藻效果均下降.  相似文献   

17.
为了探讨微砂在磁沉降快速除污工艺中的应用,设计了微砂和聚合氯化铝(PAC)的最佳组合试验,分析影响微砂在磁絮凝中絮凝效果的因素。结果表明:当微砂投加量为300 mg/L,PAC投加量为80 mg/L,磁场强度为300 mT,pH为6时,微砂在磁絮凝中具有最佳处理效果,对TSS、COD和TP去除率分别达到最大值93.66%、74.29%和89.10%。同时在投加微砂和磁沉降的共同作用下,水力停留时间仅为8 min。  相似文献   

18.
通过单因素试验考察了聚合氯化铝(PAC)、聚合硫酸铁(PFS)、聚合氯化铝铁(PAFC)对餐厨废水生化处理出水中COD、TP的去除效果,并确定了絮凝沉淀最佳工艺条件:最优絮凝剂为PFS,最佳投加量为450 mg/L,絮凝反应时间为30 min,PAM投加量为0.6 mg/L,PAM投加时间为距离PFS投加后至少l min.在最佳工艺条件下,COD、TP平均去除率可分别达36%、83%,此时絮体体积比为13%.  相似文献   

19.
为高效去除饮用水中腐殖酸,研究以腐殖酸配水为研究对象,聚合氯化铝(PAC)为絮凝剂,沸石粉为助凝剂,着重考察了PAC与沸石粉单独及两者联合使用时对腐殖酸溶液的去除效能,结果表明:PAC可有效降低腐殖酸的浓度,在1 L水样中,当PAC投量为110 mg/L时,腐殖酸去除率达到89.13%,出水浊度为0.176NTU;对于PAC混凝而言,沸石粉的投加起到吸附、助凝、助沉、除浊的混凝效果,当沸石粉投量为5 mg/L,PAC投量降至40 mg/L时,出水浊度由1.75 NTU降至0.333 NTU,腐殖酸去除率由26.16%提高至84.38%,沸石粉通过助凝作用,可以显著地改善PAC混凝对腐殖酸的去除效能,同时亦可有效减少PAC的投加量。  相似文献   

20.
隔油-共沉淀-Fenton预处理制药废水   总被引:1,自引:0,他引:1  
采用隔油-共沉淀-Fenton法对含有大量的苯、甲苯、铝及苯甲酮的制药废水进行处理。经隔油处理,COD由147 490.8 mg/L降至139 518.4 mg/L,后通过调节pH值来去除大部分的铝离子,pH=7时效果最佳,COD大约降至10 000 mg/L。Fenton最佳氧化条件为:pH为7,H2O2的投加量为1.6 g/L,H2O2和Fe2+的投加量比为14,反应去除时间为5 h,在此条件下COD降为840 mg/L,去除效率为91.6%;Fenton氧化预处理后废水的可生化性也得到较大提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号