首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
以华南稻田土壤为研究对象,通过室内模拟控制实验,研究了Fe (Ⅱ)对厌氧稻田土壤中反硝化过程及其功能微生物群落结构组成与相对丰度的影响.结果表明,加入Fe (Ⅱ)减缓了土壤中NO3-的还原,但促进了NO2-的还原和N2O的生成;同时Fe (Ⅱ)只在Soil+Fe (Ⅱ)+NO3-处理中发生氧化.通过定量PCR结果发现,Fe (Ⅱ)的加入提高了亚硝酸盐还原基因nirS和N2O还原基因nosZ的拷贝数;但降低了细胞膜硝酸盐还原基因narG的拷贝数.通过高通量和克隆文库分析发现,Fe (Ⅱ)的加入主要对napA-周质硝酸盐还原微生物群落结构有明显影响,Soil+NO3-处理中优势菌是Dechloromonas,而Soil+Fe (Ⅱ)+NO3-处理中为AzonexusDechloromonasAzospira.Fe (Ⅱ)对厌氧稻田中的反硝化过程及其功能微生物群落具有显著影响,这对了解华南红壤地区稻田体系中的氮元素循环与铁元素转化的关系具有重要意义.  相似文献   

2.
陈诗  彭来  徐一峰  梁川州  倪丙杰 《环境工程》2022,40(6):97-106+122
氧化亚氮(N2O)的温室效应比CO2强265倍,可从废水生物脱氮过程中产生并直接排放,如果不对其加以控制,会显著增加污水处理厂的碳足迹。N2O排放的数学建模对于深入解析N2O产生机制、量化N2O排放、优化生物脱氮工艺和制定N2O减排策略具有重要意义。结合当前国内外研究现状,阐述了废水生物脱氮过程中N2O产生机制;归纳了基于不同机制建立的N2O数学模型,包括氨氧化细菌(ammonia-oxidizing bacteria,AOB)经过羟胺氧化途径和AOB反硝化途径产生N2O模型、异养反硝化途径产生N2O模型以及耦合AOB和异养反硝化细菌产生N2O模型;总结了新型生物脱氮系统N2O模型,实际工程应用情况及校准N2O数学模型中存在的问题;并对今后N2O数学模型的研究方向进行了展望。  相似文献   

3.
温室气体氧化亚氮(N2O)已成为全球关注的焦点,全球约60%的人为N2O排放来自农业土壤.虽然已知微生物硝化和反硝化是土壤N2O产生的主要过程,但N2O产生的关键生物学机制以及其调控环境变量之间的相互作用仍然难以预测.本研究选取安徽省亳州市冬、夏两季农田垂向土壤(0~200 cm)为研究对象,通过乙炔抑制法、15N-18O同位素示踪技术分别测定了N2O产生潜势及产生途径,并利用宏基因组测序技术分析不同N2O产生途径中功能基因的丰度变化以解析农田土壤N2O产生的微生物机理.结果显示,在空间尺度上,表层土壤(0~20 cm)是N2O产生热区,其N2O产生潜势最高,为(0.364±0.048)ng·g-1·h-1.硝化和反硝化潜势均在表层土壤达到最高.在时间尺度上,冬季(15℃)是N2O产...  相似文献   

4.
鞠洪海 《环境工程》2020,38(9):113-118
利用序批式(sequencing batch reactor,SBR)生物反应器,采用厌氧-好氧运行方式,以乙酸钠为碳源,在控制进水P/COD<2/100条件下,成功实现了聚糖菌(glycogen accumulating organisms,GAOs)富集。缺氧初始阶段ρ(NOx--N)为30.0 mg/L,经厌氧-缺氧驯化后,反硝化聚糖菌(denitrifuing GAOs,DGAOs)可利用聚-β-羟基脂肪酸酯(poly-β-hydroxyalkanoate,PHA)为内碳源进行反硝化,且分解利用的PHA中80%以上为聚-β-羟基丁酸酯(poly-β-hydroxybutyrate,PHB)。高浓度NO2-抑制DGAOs活性,厌氧PHA合成降低,且缺氧段PHA分解产生的能量较多地用于储存糖原(glycogen,Gly)。NO3-和NO2-还原过程中,PHA降解速率分别为19.28,10.02 mg/(g·h),内源反硝化速率分别为3.32,2.29 mg/(g·h),TN去除率达95%以上。随NO2-/NOx-增加,N2O平均产率由29.1%增至59.0%。高浓度NO2-对氧化亚氮还原酶(Nos)活性抑制作用以及Nos和亚硝态氮还原酶(Nir)之间的电子竞争过程,是导致NO2-内源反硝化过程中N2O大量释放的主要原因。  相似文献   

5.
氧化亚氮(N2O)是主要的温室气体之一,其在大气中的浓度不断增加,其中,河流是大气N2O的重要排放源.N2O的排放是其产生和消耗过程综合作用的结果,其产生过程受到多种自然和人为因素的调控,深入了解河流N2O产生和消耗途径及其影响因素是制定有效减缓河流N2O排放措施的基础.本文概述了河流N2O产生和消耗的硝化、反硝化、硝化细菌反硝化、硝酸盐异化还原成铵等微生物过程和化学反硝化过程,梳理了抑制法、同位素标记法、同位素自然丰度法等在N2O产生途径识别及其来源贡献分析中的应用,着重阐述了N2O同位素异位体法(N2O分子内15N的位点特异性同位素值)在N2O产生途径解析中的应用以及影响其解析结果准确性的因素,最后分析了主要水环境因子及流域特征对河流N2O产生和排放的影响,并对未来研究进行了展望.  相似文献   

6.
为探明在土壤环境有利于氨氧化作用发生的条件下,稻壳生物炭对酸性农田土壤N2O排放的影响,将生物炭分别按质量比0%(对照)、2%、5%和10%与土壤充分混匀,开展为期17d的室内静态土壤培养实验,研究土壤N2O排放速率的日变化以及整个培养期间的N2O累积排放量.同时,测定了培养终态土壤样品的pH值、NH4+-N、NO3--N、NO2--N和溶解性有机碳(DOC)含量,分析稻壳生物炭对土壤N2O排放影响的机理.结果表明,不同稻壳生物炭添加量均显著抑制了酸性农田土壤的N2O排放(P<0.001),且以5%和10%处理的抑制作用最明显;与对照处理相比,2%、5%和10%处理的N2O累积排放量分别减少了87.68%、94.59%和96.90%.培养前后土壤pH值、NH4+-N和NO3--N含量的变化表明,稻壳生物炭显著促进了土壤的硝化作用,尤其是5%和10%处理.线性回归分析表明,土壤N2O排放速率与NO2--N含量显著正相关(P<0.01),且NO2--N含量对N2O排放速率的解释程度为45%.由于稻壳生物炭促进了土壤的硝化作用,使NO2-更易转化为NO3-,减少了NO2-积累,进而减少了通过硝化菌反硝化作用途径产生的N2O.培养结束时,5%和10%处理的DOC含量显著高于对照处理,但培养过程中,稻壳生物炭并未显著促进土壤有机碳矿化.  相似文献   

7.
污水处理生物脱氮过程中氧化亚氮(N2O)作为直接碳排放源,其大气升温效应较CO2高出265倍.因此,国际上对N2O排放机制与控制策略的研究层出不穷.N2O产生源于硝化与反硝化过程,主要涉及亚硝化(AOB)及其同步反硝化、常规异养反硝化(HDN)、同步异养硝化-好氧反硝化(HN-AD)和全程氨氧化(COMAMMOX)等生物途径,以及硝化过程中间产物NH2OH与NOH之非生物化学途径.常规硝化与反硝化(AOB+HDN)途径在正常运行工况下N2O排放量并不是很大,约只占进水TN负荷的1.3%;即使是HN-AD与COMAMMOX代谢过程,两者N2O产生量也不足TN负荷的0.5%.不可忽视的是AOB亚硝化及其同步反硝化,它们已被确认为是污水处理生物脱氮过程中N2O排放的首要途径;AOB过程中间产物(NH2OH与NOH)非生物化学过程以及AOB反硝化生物过程(主途径)共同导致的N2...  相似文献   

8.
为探明地下滴灌对番茄根际微区氮循环微生物及土壤N2O排放的影响,采用静态暗箱原位采集法,研究了不同滴灌管埋深(0、10、20、30 cm,依次记为CK、S10、S20、S30处理)对番茄根区土壤水分、养分、根系形态、微生物及N2O排放的影响.结果表明:S10处理可提高10~20 cm土壤含水率,其土壤NO3--N含量、DOC(溶解性有机碳)含量、根系分叉数、开花坐果期反硝化菌数量、果实成熟期亚硝化菌和反硝化菌数量分别为CK处理的2.02、1.49、1.85、3.81、2.11和3.75倍(P < 0.05),且0~20 cm土壤孔隙度较CK处理增加了10.72%(P < 0.05),N2O排放量为CK处理的1.99倍(P < 0.05).S20处理显著提高了20~30 cm土壤含水率,其土壤NO3--N含量、DOC含量、根系分叉数、开花坐果期反硝化菌数量、果实成熟期亚硝化菌和反硝化菌数量分别为CK处理的2.66、1.38、2.77、6.0、5.56和12.50倍(P < 0.05),且0~20 cm土壤孔隙度较CK处理增加了22.32%(P < 0.05),N2O排放量为CK处理的2.24倍.S30处理形成0~20 cm土壤“干层”和20~40 cm土壤“湿层”,土壤NO3--N含量、根系分叉数、开花坐果期亚硝化细菌和反硝化细菌数量分别为CK处理的1.66、2.22、2.00和1.80倍(P < 0.05),但DOC含量、0~20 cm土壤孔隙度、反硝化细菌数量等显著低于S20处理(P < 0.05),N2O排放量与CK处理无显著差异(P < 0.05).地下滴灌方式下土壤N2O排放主要为反硝化作用,不同滴灌管埋深形成的土壤水分分布会影响根系分叉数和0~20 cm土壤孔隙度,调节NO3--N和DOC含量、亚硝化细菌和反硝化细菌生物量,影响“根系-土壤-微生物”的交互作用和N2O排放量.S10、S20处理下根区环境利于增强“根系-土壤-微生物”的交互作用、促进反硝化作用和N2O排放,S30处理相对会减弱“根系-土壤-微生物”的交互作用、抑制N2O排放.研究显示,地下滴灌管埋深(土壤供水位置)通过调节根际微区土壤环境,改变氮循环微生物组成,进而影响“根系-土壤-微生物”的交互作用效应和土壤N2O排放量.   相似文献   

9.
SBR工艺污水生物脱氮过程中N2O的释放特征   总被引:2,自引:2,他引:0       下载免费PDF全文
N2O是一种可以导致严重全球变暖的主要温室气体,污水的生物除氮处理过程被认为是N2O释放的重要来源。探究了缺氧-好氧(A/O)模式下SBR系统中N2O的释放特征和主要来源。结果表明:N2O的释放主要发生在SBR系统的好氧阶段,其最大释放速率达到2.02 μg/(min·g),累积释放量为8.2 mg,好氧运行120 min时,测得NO2--N的累积浓度达到了最高值7.5 mg/L,NO2--N的积累和N2O的释放呈正相关性。细菌群落分析发现,A/O-SBR系统好氧阶段的一些优势菌被鉴定为黄杆菌(Flavobacteria),它们中的部分种群具有好氧反硝化的作用,然而NO2--N累积会抑制该类细菌的亚硝酸还原酶(Nos)活性,进而使N2O进一步还原为N2的途径受阻而释放N2O。因此,在污水生物处理过程中,应减少或避免NO2--N的积累。  相似文献   

10.
为了探究在再生水回补城市河流的条件下河流N2O的微生物产生过程及其空间变化特征,以深圳市西乡河为研究对象,分析了河水中c(溶解性N2O)、c(NH4+-N)、c(NO3--N)、δ15Nbulk-N2O、δ18O-N2O、同位素异位体位嗜值(site preference,SP)及其他环境因子,并基于端元混合模型和同位素分馏模型定量计算硝化和反硝化作用对河水中N2O贡献百分比.结果表明:①随着流速降低,西乡河河水从上游的好氧环境逐渐发育成中下游的厌氧环境.②再生水进入西乡河后河水c(溶解性N2O)从1.36 μmol/L沿程降至0.19 μmol/L;相关性分析表明,影响c(溶解性N2O)的主要因素为ρ(DO)(R2=0.800,P < 0.01)和c(CH4)(R2=-0.736,P < 0.01).③硝化和反硝化作用对河水中N2O贡献率分别为14.36%~80.53%和19.47%~85.64%;N2O的来源在好氧河段中以硝化作用为主,在厌氧河段则以反硝化作用为主;N2O还原成N2的比例与ρ(DO)具有显著负相关关系(R2=-0.782,P < 0.01).研究显示,再生水回补城市河流引入了较高质量浓度的N2O和NO3--N,而河道的厌氧环境促进河水中N2O还原成N2,下游河流成为N2O的汇.   相似文献   

11.
杨玉兵  杨庆  李洋  周薛扬  李健敏  刘秀红 《环境科学》2018,39(11):5051-5057
在常温条件下,采用批次试验结合同位素分析技术,研究不同溶解氧(DO)浓度下短程硝化过程N_2O的释放量及产生途径.结果表明,不同溶解氧条件下,N_2O的释放量与NO_2~--N浓度显著相关,当NO_2~--N浓度大于3 mg·L~(-1),短程硝化过程开始出现N_2O的释放,且随着NO_2~--N浓度的增加而增加.当溶解氧浓度分别为0. 5、1. 5和2. 5 mg·L~(-1)时,N_2O的释放量占进水总氮的比例分别为4. 35%、3. 27%和2. 63%,随着溶解氧的升高,N_2O的释放量占进水总氮的比例降低.短程硝化过程控制溶解氧在2. 5 mg·L~(-1),既可以提高比氨氧化速率,又可以减少N_2O的产生.同位素测定结果表明,当溶解氧为0. 5 mg·L~(-1)时,只有AOB反硝化过程生成N_2O.但当溶解氧升至1. 5 mg·L~(-1)时,有4. 52%的N_2O通过NH_2OH氧化过程生成,AOB反硝化过程生成的N_2O占95. 48%.继续升高溶解氧到2. 5 mg·L~(-1)时,NH_2OH氧化过程生成的N_2O比例增加至9. 11%,AOB反硝化过程生成的N_2O占90. 89%,溶解氧浓度的改变会影响短程硝化过程N_2O的产生途径,避免过高的NO_2~--N积累,可以减少N_2O的产生.  相似文献   

12.
农田排水沟通过底泥硝化-反硝过程可消纳部分农业面源氮.水稻、蔬菜和水果是太湖地区种植业的主要土地利用类型,各种植区排水河沟密布,且不同种植区沟道接受外源氮差异明显,直接影响沟道消纳氮能力.分别采集太湖地区果园、稻田和菜地种植区排水沟道沉积物,设计上覆水N0、N1、N2、N3和N4这5个外源NO-3-N输入梯度,净氮输入量分别为0、0.5、1.0、5.0和10 mg·L~(-1),开展室内培养试验,研究外源氮输入对不同土地利用区排水沟道底泥反硝化和N2O排放的影响.结果表明,外源氮输入激发了排水沟底泥反硝化作用,3条沟道底泥反硝化速率均随上覆水NO-3-N输入浓度增大显著增大(P0.05),底泥累积反硝化量与输入NO-3-N浓度呈显著线性正相关关系(R20.75);除菜地外,沟道底泥N2O排放速率和累积排放量随外源NO-3-N输入浓度增大均无显著增大趋势(P0.05).在无外源氮或低外源氮输入时(N0和N1),果园、菜地和稻田种植区3种沟道之间底泥反硝化和N2O排放累积损失氮量的差异不显著(P0.05).随NO-3-N输入浓度增大,特别是高外源氮输入(N3和N4)条件下,果园和稻田排水沟道底泥反硝化消纳氮量显著高于菜地沟道底泥反硝化损失氮量(P0.05),而菜地排水沟底泥N2O排放损失氮量显著高于其它2条沟道底泥的N2O排放损失氮量(P0.05).排水沟底泥有机碳矿化速率与反硝化损失速率成正相关关系(n=15),微生物矿化(CO2-C)作用促进了沟道底泥硝化反硝过程.  相似文献   

13.
漂浮水生维管束植物具有发达的通气组织,然而关于其传输水体中产生温室气体N_2O方面的研究还很匮乏.本研究以漂浮水生植物凤眼莲为代表,利用稳定氮同位素示踪技术,设计能够分隔根室和叶室的水生植物生长系统,通过微宇宙实验定量追踪N-15标记的氮素在凤眼莲根系介导下的转化途径、N_2O产生规律及N_2O通过通气组织向空气的传输过程.研究结果表明,加入水体的~(15)NO_3~-有少部分通过异化还原成为铵(DNRA)过程转化为NH_4~+-~(15)N,主要通过反硝化反应生成N_2O;加入的~(15)NH_4~+主要发生了耦合硝化-反硝化反应.种植凤眼莲均使叶室中N_2O-~(15)N原子百分超和~(15)N_2O浓度明显高于无植物的对照,一方面说明凤眼莲根系能够促进反硝化、硝化-反硝化反应过程,同时也说明水体中的~(15)N_2O有相当一部分通过植株体传输到空气中.凤眼莲通气组织主要通过分子扩散从高浓度空间向低浓度空间输送~(15)N_2O.在标记NO_3~--~(15)N的水体中,凤眼莲在前期促进了~(15)N_2O向顶空排放,但并未在整个生长期持续促进N_2O释放.在标记NH_4~+-~(15)N的水体中,植株体富集是NH_4~+-~(15)N的一个主要归趋途径,但同时也有部分NH_4~+-~(15)N转化为N_2O通过植株通气组织持续、缓慢地释放到顶空当中.研究结果阐明了漂浮植物对水体氮转化过程及N_2O输移途径的调节作用,可为全面理解水体生态系统氮循环过程提供理论基础.  相似文献   

14.
生物炭添加和灌溉对温室番茄地土壤反硝化损失的影响   总被引:1,自引:4,他引:1  
生物炭添加和灌溉是番茄地常用的田间管理措施,然而其对反硝化的影响还不清楚.本研究种植试验设置3个灌溉量水平分别为估算作物生育期需水量ET0的50%(W50%)、75%(W75%)、100%(W100%)和3个生物炭添加水平分别为B0(折合纯碳,0)、B25(折合纯碳,25 t·hm-2)、B50(折合纯碳,50 t·hm-2),在2014年和2015年番茄收获后,每个试验小区采集具有代表性的土样进行室内培养试验,采用乙炔抑制法来研究土壤的反硝化损失和不加乙炔研究N_2O的排放量.结果表明生物炭和灌溉量显著改变了土壤的理化性质.与B0相比,添加生物炭能够提高土壤全碳、全氮含量和pH值,降低铵态氮、硝态氮含量,而灌水量降低了土壤中全氮和全碳的含量.因此,与B0/W50%相比,B25/W75%和B50/W100%处理显著减少了反硝化损失量(P0.05).生物炭和灌溉量的交互作用对土壤无机氮含量和反硝化损失的影响均达到显著水平(P0.05),且对硝态氮的影响表现为灌溉量生物炭添加量两者交互作用,对铵态氮的影响表现为生物炭添加量灌溉量两者交互作用,对反硝化损失的影响表现为灌溉量生物炭添加量两者交互作用.反硝化损失量与土壤中无机氮含量、(CO_2-C)矿化量与N_2O排放量均呈正相关关系.不同生物炭添加量和灌溉量处理后明显影响了N_2O/DN(P0.05),培养结束时,各处理下的N_2O累积排放量/DN累积排放量差异较大,介于0.31%~1.88%.  相似文献   

15.
污水生物反硝化脱氮过程是一氧化二氮(N2O)的重要释放源之一.试验采用序批式反应器以甲醇为碳源(电子供体),硝酸盐(NO3--N)为电子受体驯化反硝化菌,并采用批处理试验研究不同电子受体、不同碳氮(C/N)比和不同初始亚硝酸盐(NO2--N)质量浓度条件下N2O释放情况.在典型周期试验和批处理试验中均能检测到N2O的释放.以NO2--N为电子受体时会释放较多的N2O,而以NO3--N为电子受体时释放的N2O相对较少.不同C/N比通过影响反硝化菌的活性进而影响N2O的释放,反硝化菌的活性和N2O的释放量均随着C/N比的降低而降低.N2O的释放量随着初始NO2--N质量浓度的增加而增加,一定浓度范围内的NO2--N会增强反硝化菌的活性.初始NO2--N质量浓度与N2O的释放量具有较好的指数相关性.  相似文献   

16.
厌氧条件下砂壤水稻土N2、N2O、NO、CO2和CH4排放特征   总被引:1,自引:0,他引:1  
了解厌氧条件土壤反硝化气体(N2、N2O和NO)、CO2和CH4排放特征,是认识反硝化过程机制的基础,并有助于制定合理的温室气体减排措施.定量反硝化产物组成,可为氮转化过程模型研发制定正确的关键过程参数选取方法或参数化方案.本研究选取质地相同(砂壤土)的两个水稻土为研究对象,通过添加KNO3和葡萄糖的混合溶液,将培养土壤的初始NO-3和DOC含量分别调节到50 mg·kg-1和300 mg·kg-1,采用氦环境培养-气体及碳氮底物直接同步测定方法,研究完全厌氧条件下土壤N2、N2O、NO、CO2和CH4的排放特征,并获得反硝化气态产物中各组分的比率.结果表明,在整个培养过程中,两个供试土壤的N2、N2O和NO累积排放量分别为6~8、20和15~18 mg·kg-1,这些气体排放量测定结果可回收土壤NO-3变化量的95%~98%,反硝化气态产物以N2O和NO为主,其中3种组分的比率分别为15%~19%(N2)、47%~49%(N2O)和34%~36%(NO);但反硝化气体产物组成的逐日动态均显现为从以NO为主逐渐过渡到以N2O为主,最后才发展到以N2为主.以上结果说明,反硝化气体产物组成是随反硝化进程而变化的,在以气体产物组成比率作为关键参数计算各种反硝化气体产生率或排放率的模型中,很有必要重视这一点.  相似文献   

17.
昼夜增温对大豆田土壤N2O排放的影响   总被引:4,自引:1,他引:3  
通过田间试验,用静态箱-气相色谱法测定N2O排放通量,研究昼夜增温对大豆田土壤N2O排放的影响.结果表明,增温没有改变大豆田土壤N2O排放通量的季节性变化规律.整个生长季,与对照相比,增温土壤N2O平均排放通量增加了17.31%(P=0.019),累积排放量显著增加了20.27%(P=0.005).对照与增温处理土壤N2O排放通量与土壤温湿度均呈显著性相关关系,对照与增温土壤的N2O排放温度敏感系数分别为3.75和4.10.整个生育期,增温显著增加了植株地上和总生物量、叶片硝酸还原酶活性和全氮含量,显著降低了叶片NO3--N含量;显著增加了土壤NO3--N含量,但对土壤有机碳及全氮含量没有显著影响.本研究表明,昼夜增温显著增加了大豆田土壤N2O的排放.  相似文献   

18.
Rice-paddies are regarded as one of the main agricultural sources of N 2O and NO emissions. To date, however, specific N2O and NO production pathways are poorly understood in paddy soils. ^15N-tracing experiments were carded out to investigate the processes responsible for N2O and NO production in two paddy soils with substantially different soil properties. Laboratory incubation experiments were carried out under aerobic conditions at moisture contents corresponding to 60% of water holding capacity. The relative importance of nitrification and denitrification to the flux of NaO was quantified by periodically measuring and comparing the enrichments of the N2O, NH~-N and NO3-N pools. The results showed that both N2O and NO emission rates in an alkaline paddy soil with clayey texture were substantially higher than those in a neutral paddy soil with silty loamy texture. In accordance with most published results, the ammonium N pool was the main source of N2O emission across the soil profiles of the two paddy soils, being responsible for 59.7% to 97.7% of total N2O emissions. The NO3-N pool of N2O emission was relatively less important under the given aerobic conditions. The rates of N2O emission from nitrification (N2On) among different soil layers were significantly different, which could be attributed to both the differences in gross N nitrification rates and to the ratios of nitrified N emitted as NzO among soil layers. Furthermore, NO fluxes were positively correlated with the changes in gross nitrification rates and the ratios of NO/N2O in the two paddy soils were always greater than one (from 1.26 to 6.47). We therefore deduce that, similar to N2O, nitrification was also the dominant source of NO in the tested paddy soils at water contents below 60% water holding capacity.  相似文献   

19.
亚铁对水平潜流人工湿地反硝化作用的影响   总被引:6,自引:0,他引:6  
亚铁离子可以作为电子供体参与反硝化作用,某些微生物可以通过氧化亚铁离子还原硝酸盐,从而去除污水中的硝态氮.本研究通过在潜流人工湿地中添加Fe2+,分析不同初始Fe2+浓度对反硝化过程的强化效果及不同C/N对Fe2+参与反硝化作用的影响.结果表明,Fe2+的添加可以显著提高人工湿地反硝化能力,进水NO-3-N为30 mg·L-1、C/N为2、水力停留时间为1 d,添加45 mg·L-1Fe2+的人工湿地中硝氮去除率可以提高24%;硝氮去除率随初始Fe2+浓度的增加而增加.C/N与初始Fe2+浓度对反硝化作用都具有显著影响且两者具有交互作用,碳源的存在可以促进Fe2+参与的反硝化作用.  相似文献   

20.
买文可  彭永臻  吉建涛 《环境科学》2019,40(7):3162-3168
短程生物脱氮工艺在废水处理中已经得到较为广泛的应用,其反硝化过程是实现氮去除的关键步骤,而关于废水中常见重金属离子Cu~(2+)对以NO2-为电子受体反硝化过程的影响尚无系统研究.选取A/O反应器内具有良好短程生物脱氮特性的污泥,通过批次试验及SBR长期试验分别探究了Cu~(2+)对以NO2-为电子受体反硝化过程的短期及长期影响.短期试验结果表明,Cu~(2+)对以NO2-为电子受体反硝化过程具有明显抑制作用,对污泥反硝化活性的半抑制浓度EC50为4. 79 mg·L-1.在长期影响试验中逐渐提高污泥对Cu~(2+)的耐受浓度,当Cu~(2+)浓度为0. 5 mg·L-1和1 mg·L-1时,污泥反硝化活性降低后均能够通过驯化恢复至原有水平;而Cu~(2+)浓度升高至3 mg·L-1后污泥反硝化性能遭到破坏且难以恢复,NO_2~--N去除率降低至10%以下,反硝化系统遭到严重抑制.但是,停止投加Cu~(2+)后污泥反硝化活性在第14 d恢复至原有水平.同时,在Cu~(2+)的长期影响过程中,EPS含量增多,对微生物抵御Cu~(2+)的毒害起到重要保护作用,促使污泥粒径增大,污泥沉降性得到提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号