首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective: This study aimed at investigating the effects of vehicle impact velocity, vehicle front-end shape, and pedestrian size on injury risk to pedestrians in collisions with passenger vehicles with various frontal shapes. Method: A series of parametric studies was carried out using 2 total human model for safety (THUMS) pedestrian models (177 and 165?cm) and 4 vehicle finite element (FE) models with different front-end shapes (medium-size sedan, minicar, one-box vehicle, and sport utility vehicle [SUV]). The effects of the impact velocity on pedestrian injury risk were analyzed at velocities of 20, 30, 40, and 50?km/h. The dynamic response of the pedestrian was investigated, and the injury risk to the head, chest, pelvis, and lower extremities was compared in terms of the injury parameters head injury criteria (HIC), chest deflection, and von Mises stress distribution of the rib cage, pelvis force, and bending moment diagram of the lower extremities. Result: Vehicle impact velocity has the most significant influence on injury severity for adult pedestrians. All injury parameters can be reduced in severity by decreasing vehicle impact velocities. The head and lower extremities are at greater risk of injury in medium-size sedan and SUV collisions. The chest injury risk was particularly high in one-box vehicle impacts. The fracture risk of the pelvis was also high in one-box vehicle and SUV collisions. In minicar collisions, the injury risk was the smallest if the head did not make contact with the A-pillar. Conclusion: The vehicle impact velocity and vehicle front-end shape are 2 dominant factors that influence the pedestrian kinematics and injury severity. A significant reduction of all injuries can be achieved for all vehicle types when the vehicle impact velocity is less than 30?km/h. Vehicle designs consisting of a short front-end and a wide windshield area can protect pedestrians from fatalities. The results also could be valuable in the design of a pedestrian-friendly vehicle front-end shape. [Supplementary materials are available for this article. Go to the publisher's online edition of Traffic Injury Prevention for the following free supplemental resource: Head impact conditions and injury parameters in four-type vehicle collisions and validation result of the finite element model of one-box vehicle and minicar. ].  相似文献   

2.
Objectives: The purpose of this study is to define a computationally efficient virtual test system (VTS) to assess the aggressivity of vehicle front-end designs to pedestrians considering the distribution of pedestrian impact configurations for future vehicle front-end optimization. The VTS should represent real-world impact configurations in terms of the distribution of vehicle impact speeds, pedestrian walking speeds, pedestrian gait, and pedestrian height. The distribution of injuries as a function of body region, vehicle impact speed, and pedestrian size produced using this VTS should match the distribution of injuries observed in the accident data. The VTS should have the predictive ability to distinguish the aggressivity of different vehicle front-end designs to pedestrians.

Methods: The proposed VTS includes 2 parts: a simulation test sample (STS) and an injury weighting system (IWS). The STS was defined based on MADYMO multibody vehicle to pedestrian impact simulations accounting for the range of vehicle impact speeds, pedestrian heights, pedestrian gait, and walking speed to represent real world impact configurations using the Pedestrian Crash Data Study (PCDS) and anthropometric data. In total 1,300 impact configurations were accounted for in the STS. Three vehicle shapes were then tested using the STS. The IWS was developed to weight the predicted injuries in the STS using the estimated proportion of each impact configuration in the PCDS accident data. A weighted injury number (WIN) was defined as the resulting output of the VTS. The WIN is the weighted number of average Abbreviated Injury Scale (AIS) 2+ injuries recorded per impact simulation in the STS. Then the predictive capability of the VTS was evaluated by comparing the distributions of AIS 2+ injuries to different pedestrian body regions and heights, as well as vehicle types and impact speeds, with that from the PCDS database. Further, a parametric analysis was performed with the VTS to assess the sensitivity of the injury predictions to changes in vehicle shape (type) and stiffness to establish the potential for using the VTS for future vehicle front-end optimization.

Results: An STS of 1,300 multibody simulations and an IWS based on the distribution of impact speed, pedestrian height, gait stance, and walking speed is broadly capable of predicting the distribution of pedestrian injuries observed in the PCDS database when the same vehicle type distribution as the accident data is employed. The sensitivity study shows significant variations in the WIN when either vehicle type or stiffness is altered.

Conclusions: Injury predictions derived from the VTS give a good representation of the distribution of injuries observed in the PCDS and distinguishing ability on the aggressivity of vehicle front-end designs to pedestrians. The VTS can be considered as an effective approach for assessing pedestrian safety performance of vehicle front-end designs at the generalized level. However, the absolute injury number is substantially underpredicted by the VTS, and this needs further development.  相似文献   


3.
Objective: Autonomous emergency braking (AEB) systems fitted to cars for pedestrians have been predicted to offer substantial benefit. On this basis, consumer rating programs—for example, the European New Car Assessment Programme (Euro NCAP)—are developing rating schemes to encourage fitment of these systems. One of the questions that needs to be answered to do this fully is how the assessment of the speed reduction offered by the AEB is integrated with the current assessment of the passive safety for mitigation of pedestrian injury. Ideally, this should be done on a benefit-related basis.

The objective of this research was to develop a benefit-based methodology for assessment of integrated pedestrian protection systems with AEB and passive safety components. The method should include weighting procedures to ensure that it represents injury patterns from accident data and replicates an independently estimated benefit of AEB.

Methods: A methodology has been developed to calculate the expected societal cost of pedestrian injuries, assuming that all pedestrians in the target population (i.e., pedestrians impacted by the front of a passenger car) are impacted by the car being assessed, taking into account the impact speed reduction offered by the car's AEB (if fitted) and the passive safety protection offered by the car's frontal structure. For rating purposes, the cost for the assessed car is normalized by comparing it to the cost calculated for a reference car.

The speed reductions measured in AEB tests are used to determine the speed at which each pedestrian in the target population will be impacted. Injury probabilities for each impact are then calculated using the results from Euro NCAP pedestrian impactor tests and injury risk curves. These injury probabilities are converted into cost using “harm”-type costs for the body regions tested. These costs are weighted and summed. Weighting factors were determined using accident data from Germany and Great Britain and an independently estimated AEB benefit. German and Great Britain versions of the methodology are available. The methodology was used to assess cars with good, average, and poor Euro NCAP pedestrian ratings, in combination with a current AEB system. The fitment of a hypothetical A-pillar airbag was also investigated.

Results: It was found that the decrease in casualty injury cost achieved by fitting an AEB system was approximately equivalent to that achieved by increasing the passive safety rating from poor to average. Because the assessment was influenced strongly by the level of head protection offered in the scuttle and windscreen area, a hypothetical A-pillar airbag showed high potential to reduce overall casualty cost.

Conclusions: A benefit-based methodology for assessment of integrated pedestrian protection systems with AEB has been developed and tested. It uses input from AEB tests and Euro NCAP passive safety tests to give an integrated assessment of the system performance, which includes consideration of effects such as the change in head impact location caused by the impact speed reduction given by the AEB.  相似文献   

4.
Objective: Pedestrian lower extremity represents the most frequently injured body region in car-to-pedestrian accidents. The European Directive concerning pedestrian safety was established in 2003 for evaluating pedestrian protection performance of car models. However, design changes have not been quantified since then. The goal of this study was to investigate front-end profiles of representative passenger car models and the potential influence on pedestrian lower extremity injury risk.

Methods: The front-end styling of sedans and sport utility vehicles (SUV) released from 2008 to 2011 was characterized by the geometrical parameters related to pedestrian safety and compared to representative car models before 2003. The influence of geometrical design change on the resultant risk of injury to pedestrian lower extremity—that is, knee ligament rupture and long bone fracture—was estimated by a previously developed assessment tool assuming identical structural stiffness. Based on response surface generated from simulation results of a human body model (HBM), the tool provided kinematic and kinetic responses of pedestrian lower extremity resulted from a given car's front-end design.

Results: Newer passenger cars exhibited a “flatter” front-end design. The median value of the sedan models provided 87.5 mm less bottom depth, and the SUV models exhibited 94.7 mm less bottom depth. In the lateral impact configuration similar to that in the regulatory test methods, these geometrical changes tend to reduce the injury risk of human knee ligament rupture by 36.6 and 39.6% based on computational approximation. The geometrical changes did not significantly influence the long bone fracture risk.

Conclusions: The present study reviewed the geometrical changes in car front-ends along with regulatory concerns regarding pedestrian safety. A preliminary quantitative benefit of the lower extremity injury reduction was estimated based on these geometrical features. Further investigation is recommended on the structural changes and inclusion of more accident scenarios.  相似文献   


5.
A sizeable proportion of adult pedestrians involved in vehicle-versus-pedestrian accidents suffer head injuries, some of which can lead to lifelong disability or even death. To understand head injury mechanisms, in-depth accident analyses and accident reconstructions were conducted. A total of 120 adult pedestrian accident cases from the GIDAS (German in-depth accident study) database were analyzed, from which 10 were selected for reconstruction. Accident reconstructions initially were performed using multi-body system (MBS) pedestrian and car models, so as to calculate head impact conditions, like head impact velocity, head position and head orientation. These impact conditions then were used to set the initial conditions in a simulation of a head striking a windshield, using finite element (FE) head and windshield models. The intracranial pressure and stress distributions of the FE head model were calculated and correlated with injury outcomes. Accident analysis revealed that the windshield and its surrounding frames were the main sources of head injury for adult pedestrians. Reconstruction results indicated that coup/contrecoup pressure, Von Mises and shear stress were important physical parameters to estimate brain injury risks.  相似文献   

6.
Objective: The objective of this study was to compare and evaluate the difference in head kinematics between the TNO and THUMS models in pedestrian accident situations.

Methods: The TNO pedestrian model (version 7.4.2) and the THUMS pedestrian model (version 1.4) were compared in one experiment setup and 14 different accident scenarios where the vehicle velocity, leg posture, pedestrian velocity, and pedestrian's initial orientation were altered. In all simulations, the pedestrian model was impacted by a sedan. The head trajectory, head rotation, and head impact velocity were compared, as was the trend when various different parameters were altered.

Results: The multibody model had a larger head wrap-around distance for all accident scenarios. The maximum differences of the head's center of gravity between the models in the global x-, y-, and z-directions at impact were 13.9, 5.8, and 5.6 cm, respectively. The maximum difference between the models in head rotation around the head's inferior–superior axis at head impact was 36°. The head impact velocity differed up to 2.4 m/s between the models. The 2 models showed similar trends for the head trajectory when the various parameters were altered.

Conclusions: There are differences in kinematics between the THUMS and TNO pedestrian models. However, these model differences are of the same magnitude as those induced by other uncertainties in the accident reconstructions, such as initial leg posture and pedestrian velocity.  相似文献   


7.
IntroductionDue to the diversity of pedestrian-to-ground impact (secondary impact) mechanisms, secondary impacts always result in more unpredictable injuries as compared to the vehicle-to-pedestrian collisions (primary impact). The purpose of this study is to investigate the effects of vehicle frontal structure, vehicle impact velocity, and pedestrian size and gait on pedestrian-to-ground impact injury risk.MethodA total of 600 simulations were performed using the MADYMO multi-body system and four different sizes of pedestrians and six types initial gait were considered and impacted by five vehicle types at five impact velocities, respectively. The pedestrian rotation angle ranges (PRARs) (a, b, c, d) were defined to identify and classify the pedestrian rotation angles during the ground impact.ResultsThe PRARs a, b, and c were the ranges primarily observed during the pedestrian landing. The PRAR has a significant influence on pedestrian-to-ground impact injuries. However, there was no correlation between the vehicle velocity and head injury criterion (HIC) caused by the secondary impact. In low velocity collisions (20, 30 km/h), the severity of pedestrian head injury risk caused by the secondary impact was higher than that resulting from the primary impact.ConclusionsThe PRARs defined in this study are highly correlated with the pedestrian-to-ground impact mechanism, and can be used to further analyze the pedestrian secondary impact and to predict the head injury risk.Practical applicationsTo reduce the pedestrian secondary impact injury risk, passive and active safety countermeasures should be considered together to prevent the pedestrian's head-to-ground impacts, particularly in the low-velocity collisions.  相似文献   

8.
Abstract

Objective: Traffic fatalities among motorcycle users are intolerably high in Thailand. They account for 73% of the total number of road fatalities. Children are also among these victims. To improve countermeasures and design of protection equipment, understanding the biomechanics of motorcycle users under impact conditions is necessary. The objective of this work is to analyze the overall kinematics and injuries sustained by riders and child pillion passengers in various accident configurations.

Methods: Motorcycle accident data were analyzed. Common accident scenarios and impact parameters were identified. Two numerical approaches were employed. The multibody model was validated with a motorcycle crash test and used to generate possible accident cases for various impact conditions specified to cover all common accident scenarios. Specific impact conditions were selected for detailed finite element analysis. The finite element simulations of motorcycle-to-car collisions were conducted to provide insight into kinematics and injury mechanisms.

Results: Global kinematics found when the motorcycle’s front wheel impacts a car (config-MC) highlighted the translation motion of both the rider and passenger toward the impact position. The rider’s trunk impacted the handlebar and the head either impacted the car or missed. The hood constituted the highest head impact occurrence for this configuration. The child mostly impacted the rider’s back. Different kinematics were found when car impacted the lateral side of the motorcycle (config-CM). Upper bodies of both rider and child were laterally projected toward the car front. The windshield constituted the highest proportion of head impacts. The hood and A-pillar recorded a moderate proportion. The rider in finite element simulations with config-MC experienced high rib stress, lung strain, and pressure beyond the injury limit. A high head injury criterion was observed when the head hit the car. However, the simulation with config-CM exhibited high lower extremities stress and lung pressure in both occupants. Hyperextension of the rider’s neck was observed. The cumulative strain damage measure of the child’s brain was higher than the threshold for diffuse axonal injury (DAI).

Conclusions: This study revealed 2 kinematics patterns and injury mechanisms. Simulations with config-MC manifested a high risk of head and thorax injury to the rider but a low risk of severe injury to the child. Thorax injury to the rider due to handlebar impact was only found in simulations with config-MC. However, a high risk of skull, lower extremity, brain, and neck injuries were more pronounced for cases with config-CM. A high risk of DAI was also noticed for the child. In simulations with config-CM the child exhibited a higher risk of severe injury.  相似文献   

9.
Objective: In previous research, a tool chain to simulate vehicle–pedestrian accidents from ordinary driving state to in-crash has been developed. This tool chain allows for injury criteria-based, vehicle-specific (geometry, stiffness, active safety systems, etc.) assessments. Due to the complex nature of the included finite element analysis (FEA) models, calculation times are very high. This is a major drawback for using FEA models in large-scale effectiveness assessment studies. Therefore, fast calculating surrogate models to approximate the relevant injury criteria as a function of pedestrian vehicle collision constellations have to be developed.

Method: The development of surrogate models for head and leg injury criteria to overcome the problem of long calculation times while preserving high detail level of results for effectiveness analysis is shown in this article. These surrogate models are then used in the tool chain as time-efficient replacements for the FEA model to approximate the injury criteria values. The method consists of the following steps: Selection of suitable training data sets out of a large number of given collision constellations, detailed FEA calculations with the training data sets as input, and training of the surrogate models with the FEA model's input and output values.

Results: A separate surrogate model was created for each injury criterion, consisting of a response surface that maps the input parameters (i.e., leg impactor position and velocity) to the output value. In addition, a performance test comparing surrogate model predictions of additional collision constellations to the results of respective FEA calculations was carried out. The developed method allows for prediction of injury criteria based on impact constellation for a given vehicle. Because the surrogate models are specific to a certain vehicle, training has to be redone for a new vehicle. Still, there is a large benefit regarding calculation time when doing large-scale studies.

Conclusion: The method can be used in prospective effectiveness assessment studies of new vehicle safety features and takes into account specific local features of a vehicle (geometry, stiffness, etc.) as well as external parameters (location and velocity of pedestrian impact). Furthermore, it can be easily extended to other injury criteria or accident scenarios; for example, cyclist accidents.  相似文献   

10.
Objective: Whiplash-associated disorder (WAD), commonly denoted whiplash injury, is a worldwide problem. These injuries occur at relatively low changes of velocity (typically <25 km/h) in impacts from all directions. Rear impacts, however, are the most common in the injury statistics. Females have a 1.5–3 times higher risk of whiplash injury than males.

?Improved seat design is the prevailing means of increasing the protection of whiplash injury for occupants in rear impacts. Since 1997, more advanced whiplash protection systems have been introduced on the market, the Saab Active Head Restraint (SAHR) being one of the most prominent. The SAHR—which is height adjustable—is mounted to a pressure plate in the seatback by means of a spring-resisted link mechanism.

?Nevertheless, studies have shown that seats equipped with reactive head restraints (such as the SAHR) have a very high injury-reducing effect for males (~60–70%) but very low or no reduction effect for females. One influencing factor could be the position of the head restraint relative to the head, because a number of studies have reported that adjustable head restraints often are incorrectly positioned by drivers.

?The aim was to investigate how female and male Saab drivers adjust the seat in the car they drive the most.

Methods: The seated positions of drivers in stationary conditions have been investigated in a total of 76 volunteers (34 females, 42 males) who participated in the study. Inclusion criteria incorporated driving a Saab 9–3 on a regularly basis.

Results: The majority of the volunteers (89%) adjusted the head restraint to any of the 3 uppermost positions and as many as 59% in the top position.

?The average vertical distance between the top of the head and the top of the head restraint (offset) increase linearly with increasing statures, from an average of ?26 mm (head below the head restraint) for small females to an average of 82 mm (head above the head restraint) for large males. On average, the offset was 23 mm for females, which is within a satisfactory range and in accordance with recommendations; the corresponding value for males was 72 mm.

?The backset tended to be shorter among female volunteers (on average 27 mm) compared to the male volunteers (on average 44 mm). Moreover, the backset tended to increase with increasing statures.

Conclusions: Incorrect adjustment of the head restraint cannot explain the large differences found between the sexes in the effectiveness of the SAHR system.  相似文献   

11.
Objective: Serious head and cervical spine injuries have been shown to occur mostly independent of one another in pure rollover crashes. In an attempt to define a dynamic rollover crash test protocol that can replicate serious injuries to the head and cervical spine, it is important to understand the conditions that are likely to produce serious injuries to these 2 body regions. The objective of this research is to analyze the effect that impact factors relevant to a rollover crash have on the injury metrics of the head and cervical spine, with a specific interest in the differentiation between independent injuries and those that are predicted to occur concomitantly.

Methods: A series of head impacts was simulated using a detailed finite element model of the human body, the Total HUman Model for Safety (THUMS), in which the impactor velocity, displacement, and direction were varied. The performance of the model was assessed against available experimental tests performed under comparable conditions. Indirect, kinematic-based, and direct, tissue-level, injury metrics were used to assess the likelihood of serious injuries to the head and cervical spine.

Results: The performance of the THUMS head and spine in reconstructed experimental impacts compared well to reported values. All impact factors were significantly associated with injury measures for both the head and cervical spine. Increases in impact velocity and displacement resulted in increases in nearly all injury measures, whereas impactor orientation had opposite effects on brain and cervical spine injury metrics. The greatest cervical spine injury measures were recorded in an impact with a 15° anterior orientation. The greatest brain injury measures occurred when the impactor was at its maximum (45°) angle.

Conclusions: The overall kinetic and kinematic response of the THUMS head and cervical spine in reconstructed experiment conditions compare well with reported values, although the occurrence of fractures was overpredicted. The trends in predicted head and cervical spine injury measures were analyzed for 90 simulated impact conditions. Impactor orientation was the only factor that could potentially explain the isolated nature of serious head and spine injuries under rollover crash conditions. The opposing trends of injury measures for the brain and cervical spine indicate that it is unlikely to reproduce the injuries simultaneously in a dynamic rollover test.  相似文献   

12.
Objective: Recent field data analyses have shown that the safety advantages of rear seats relative to the front seats have decreased in newer vehicles. Separately, the risks of certain injuries have been found to be higher for obese occupants. The objective of this study is to investigate the effects of advanced belt features on the protection of rear-seat occupants with a range of body mass index (BMI) in frontal crashes.

Methods: Whole-body finite element human models with 4 BMI levels (25, 30, 35, and 40 kg/m2) developed previously were used in this study. A total of 52 frontal crash simulations were conducted, including 4 simulations with a standard rear-seat, 3-point belt and 48 simulations with advanced belt features. The parameters varied in the simulations included BMI, load limit, anchor pretensioner, and lap belt routing relative to the pelvis. The injury measurements analyzed in this study included head and hip excursions, normalized chest deflection, and torso angle (defined as the angle between the hip–shoulder line and the vertical direction). Analyses of covariance were used to test the significance (P <.05) of the results.

Results: Higher BMI was associated with greater head and hip excursions and larger normalized chest deflection. Higher belt routing increased the hip excursion and torso angle, which indicates a higher submarining risk, whereas the anchor pretensioner reduced hip excursion and torso angle. Lower load limits decreased the normalized chest deflection but increased the head excursion. Normalized chest deflection had a positive correlation with maximum torso angle. Occupants with higher BMI have to use higher load limits to reach head excursions similar to those in lower BMI occupants.

Discussion and Conclusion: The simulation results suggest that optimizing load limiter and adding pretensioner(s) can reduce injury risks associated with obesity, but conflicting effects on head and chest injuries were observed. This study demonstrated the feasibility and importance of using human models to investigate protection for occupants with various BMI levels. A seat belt system capable of adapting to occupant size and body shape will improve protection for obese occupants in rear seats.  相似文献   

13.
For the evaluation of pedestrian protection, the European Enhanced Vehicle-Safety Committee Working Group 17 report is now commonly used. In the evaluation of head injuries, the report takes into account only the hood area of the vehicle. But recent pedestrian accident data has shown the injury source for head injury changing to the windshield and A-pillar from the hood. The head contact points are considered to fall on a parallel to the front shape of the vehicle along the lateral direction, but the rigidity of the outer side construction is different from the center area. The purpose of this study is to consider the reason for the change in injury source for recent vehicle models. The head contact points and contact conditions, speed and angle, are thought to be influenced not only by the vehicle's geometry, but also its construction (rigidity). In this study, vehicle-pedestrian impact simulations were calculated with a finite element model for several hitting positions, including the outer side areas. Full dummy sled tests were conducted to confirm the simulation results. These results show that, for impacts at the outer sides of the vehicle, the head contact points are more rearward than at the vehicle center. In addition, the speed and angle of the head contact were found to be influenced by the pedestrian height.  相似文献   

14.
Objective: This work aims at investigating the influence of some front-end design parameters of a passenger vehicle on the behavior and damage occurring in the human lower limbs when impacted in an accident.

Methods: The analysis is carried out by means of finite element analysis using a generic car model for the vehicle and the lower limbs model for safety (LLMS) for the purpose of pedestrian safety. Considering the pedestrian standardized impact procedure (as in the 2003/12/EC Directive), a parametric analysis, through a design of experiments plan, was performed. Various material properties, bumper thickness, position of the higher and lower bumper beams, and position of pedestrian, were made variable in order to identify how they influence the injury occurrence. The injury prediction was evaluated from the knee lateral flexion, ligament elongation, and state of stress in the bone structure.

Results: The results highlighted that the offset between the higher and lower bumper beams is the most influential parameter affecting the knee ligament response. The influence is smaller or absent considering the other responses and the other considered parameters. The stiffness characteristics of the bumper are, instead, more notable on the tibia. Even if an optimal value of the variables could not be identified trends were detected, with the potential of indicating strategies for improvement.

Conclusions: The behavior of a vehicle front end in the impact against a pedestrian can be improved optimizing its design. The work indicates potential strategies for improvement. In this work, each parameter was changed independently one at a time; in future works, the interaction between the design parameters could be also investigated. Moreover, a similar parametric analysis can be carried out using a standard mechanical legform model in order to understand potential diversities or correlations between standard tools and human models.  相似文献   


15.
Abstract

Objective: The purpose of this study is to investigate the injury patterns of noncatastrophic accidents by individual age groups.

Methods: Data were collected from the Korean In-Depth Accident Study database based on actual accident investigation. The noncatastrophic criteria were classified according to U.S. experts from the Centers for Disease Control and Prevention’s recommendations for field triage guidelines of high-risk automobile crash criteria by vehicle intrusions more than 12 in. on occupant sites (including the roof) and more than 18 in. on any site. The Abbreviated Injury Scale (AIS) was used to determine injury patterns for each body region. Severely injured patients were classified as Maximum Abbreviated Injury Scale (MAIS) 3 or higher.

Results: In this study, the most significant injury regions were the head and neck, extremities, and thorax. In addition, the incidence of severe injury among elderly patients was nearly 1.6 times higher than that of non-elderly patients. According to age group, injured body regions among the elderly were the thorax, head and neck, and extremities, in that order. For the non-elderly groups, these were head and neck, extremities, and thorax. Severe injury rates were slightly different for the elderly group (head and neck, abdomen) and non-elderly group (thorax, head and neck).

Conclusions: In both age groups, the rate of severe injury is proportional to an increase in crush extent zone. Front airbag deployment may have a relatively significant relationship to severe injuries.  相似文献   

16.
Abstract

Objective: Analyses of crash data have shown that older, obese, and/or female occupants have a higher risk of injury in frontal crashes compared to the rest of the population. The objective of this study was to use parametric finite element (FE) human models to assess the increased injury risks and identify safety concerns for these vulnerable populations.

Methods: We sampled 100 occupants based on age, sex, stature, and body mass index (BMI) to span a wide range of the U.S. adult population. The target anatomical geometry for each of the 100 models was predicted by the statistical geometry models for the rib cage, pelvis, femur, tibia, and external body surface developed previously. A regional landmark-based mesh morphing method was used to morph the Global Human Body Models Consortium (GHBMC) M50-OS model into the target geometries. The morphed human models were then positioned in a validated generic vehicle driver compartment model using a statistical driving posture model. Frontal crash simulations based on U.S. New Car Assessment Program (U.S. NCAP) were conducted. Body region injury risks were calculated based on the risk curves used in the US NCAP, except that scaling was used for the neck, chest, and knee–thigh–hip injury risk curves based on the sizes of the bony structures in the corresponding body regions. Age effects were also considered for predicting chest injury risk.

Results: The simulations demonstrated that driver stature and body shape affect occupant interactions with the restraints and consequently affect occupant kinematics and injury risks in severe frontal crashes. U-shaped relations between occupant stature/weight and head injury risk were observed. Chest injury risk was strongly affected by age and sex, with older female occupants having the highest risk. A strong correlation was also observed between BMI and knee–thigh–hip injury risk, whereas none of the occupant parameters meaningfully affected neck injury risks.

Conclusions: This study is the first to use a large set of diverse FE human models to investigate the combined effects of age, sex, stature, and BMI on injury risks in frontal crashes. The study demonstrated that parametric human models can effectively predict the injury trends for the population and may now be used to optimize restraint systems for people who are not similar in size and shape to the available anthropomorphic test devices (ATDs). New restraints that adapt to occupant age, sex, stature, and body shape may improve crash safety for all occupants.  相似文献   

17.
Objectives: Engaging in active transport modes (especially walking) is a healthy and environmentally friendly alternative to driving and may be particularly beneficial for older adults. However, older adults are a vulnerable group: they are at higher risk of injury compared with younger adults, mainly due to frailty and may be at increased risk of collision due to the effects of age on sensory, cognitive, and motor abilities. Moreover, our population is aging, and there is a trend for the current cohort of older adults to maintain mobility later in life compared with previous cohorts. Though these trends have serious implications for transport policy and safety, little is known about the contributing factors and injury outcomes of pedestrian collision. Further, previous research generally considers the older population as a homogeneous group and rarely considers the increased risks associated with continued ageing.

Method: Collision characteristics and injury outcomes for 2 subgroups of older pedestrians (65–74 years and 75+ years) were examined by extracting data from the state police–reported crash dataset and hospital admission/emergency department presentation data over the 10-year period between 2003 and 2012. Variables identified for analysis included pedestrian characteristics (age, gender, activity, etc.), crash location and type, injury characteristics and severity, and duration of hospital stay. A spatial analysis of crash locations was also undertaken to identify collision clusters and the contribution of environmental features on collision and injury risk.

Results: Adults over 65 years were involved in 21% of all pedestrian collisions. A high fatality rate was found among older adults, particularly for those aged 75 years and older: this group had 3.2 deaths per 100,000 population, compared to a rate of 1.3 for 65- to 74-year-olds and 0.7 for adults below 65 years of age. Older pedestrian injuries were most likely to occur while crossing the carriageway; they were also more likely to be injured in parking lots, at driveway intersections, and on sidewalks compared to younger cohorts. Spatial analyses revealed older pedestrian crash clusters on arterial roads in urban shopping precincts. Significantly higher rates of hospital admissions were found for pedestrians over the age of 75 years and for abdominal, head, and neck injuries; conversely, older adults were underrepresented in emergency department presentations (mainly lower and upper extremity injuries), suggesting an increased severity associated with older pedestrian injuries. Average length of hospital stay also increased with increasing age.

Conclusion: This analysis revealed age differences in collision risk and injury outcomes among older adults and that aggregate analysis of older pedestrians can distort the significance of risk factors associated with older pedestrian injuries. These findings have implications that extend to the development of engineering, behavioral, and enforcement countermeasures to address the problems faced by the oldest pedestrians and reduce collision risk and improve injury outcomes.  相似文献   

18.
19.
Background: There is a need for routine estimates of injury recovery costs from pedestrian collisions using hospital separation records for economic evaluations.

Objective: To estimate the cost of injury recovery following pedestrian–vehicle collisions using the personal injury recover cost (PIRC) equation using key demographic and injury characteristics.

Method: An estimation of the costs of on-road pedestrian–vehicle collisions involving individuals who were injured and hospitalized in New South Wales (NSW), Australia, from 2002 to 2011 using the PIRC equation. The PIRC estimates individual injury recovery costs and does not include costs associated with property damage, vehicle repair, or rescue services. Individual recovery costs associated with severe traumatic brain injury (TBI) were estimated. The injured individual's mean, median, and total injury recovery costs are described for key demographic, injury, and crash characteristics.

Results: There were 9,781 pedestrians who were injured, costing an estimated total of $2.4 billion in personal injury recovery costs, an annual cost of $243 million. Males had a total injury recovery cost 1.7 times higher than females. The median injury recovery cost decreased with increasing age. TBI ($248,491) and spinal cord and vertebral column injuries ($264,103) had the highest median injury recovery costs for the body region of the most severe injury. TBI accounted for 22.6% of the total injury recovery costs for the most severe injury sustained. Just over one third of pedestrians sustained 4 or more injuries, with a median cost of $243,992, which was 1.6 times higher than the cost for a pedestrian who sustained a single injury ($153,682).

Conclusions: Personal injury recovery costs following pedestrian–vehicle collisions where a pedestrian is injured are substantial in NSW. The PIRC equation enables the economic cost burden of road traffic injury to be calculated using hospital separation data. The PIRC enables comprehensive personal injury recovery costs to be estimated and would aid in economic evaluations of preventive strategies in road safety.  相似文献   


20.
Abstract

Objective: The objective of this research study is to estimate the benefit to pedestrians if all U.S. cars, light trucks, and vans were equipped with an automated braking system that had pedestrian detection capabilities.

Methods: A theoretical automatic emergency braking (AEB) model was applied to real-world vehicle–pedestrian collisions from the Pedestrian Crash Data Study (PCDS). A series of potential AEB systems were modeled across the spectrum of expected system designs. Both road surface conditions and pedestrian visibility were accounted for in the model. The impact speeds of a vehicle without AEB were compared to the estimated impact speeds of vehicles with a modeled pedestrian detecting AEB system. These impacts speeds were used in conjunction with an injury and fatality model to determine risk of Maximum Abbreviated Injury Scale of 3 or higher (MAIS 3+) injury and fatality.

Results: AEB systems with pedestrian detection capability, across the spectrum of expected design parameters, reduced fatality risk when compared to human drivers. The most beneficial system (time-to-collision [TTC]?=?1.5?s, latency = 0?s) decreased fatality risk in the target population between 84 and 87% and injury risk (MAIS score 3+) between 83 and 87%.

Conclusions: Though not all crashes could be avoided, AEB significantly mitigated risk to pedestrians. The longer the TTC of braking and the shorter the latency value, the higher benefits showed by the AEB system. All AEB models used in this study were estimated to reduce fatalities and injuries and were more effective when combined with driver braking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号