首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A 100 W proton exchange membrane fuel cell (PEMFC) system with a sodium borohydride (NaBH4) hydrogen generator was investigated for small unmanned aerial vehicles (UAVs). The performance of a cobalt–phosphorous/nickel foam catalyst was evaluated to determine the change in catalytic activity under real operating conditions. The response time increased owing to oxidation of the metals and accumulation of sodium; however, the catalyst remained active at high reaction temperatures. A NaBH4 hydrogen generator with the catalyst was developed for a 100 W PEMFC system. The hydrogen generation rate was stable for 3 h, and the conversion efficiency was 97.8%. Finally, a 100 W PEMFC system with the NaBH4 hydrogen generator was investigated for small UAVs. The maximum power and energy density of the PEMFC system were 95.96 W and 185.2 Wh/kg, respectively.  相似文献   

2.
This research article demonstrates biodiesel synthesis through the methanolysis of the oily contents (4.02 ± 0.27% w/w on dried basis) of Dictyota dichotoma collected from the coast of Hawksbay, Pakistan. The metal oxides (CaO, MgO, ZnO, and TiO2) used as nanocatalysts were refluxed (5% K2SO4), calcinated (850 °C) and characterized by Atomic Force Microscopy (AFM) which produced 93.2% w/w FAME (biodiesel) at relatively mild condition (5% catalyst, 65 °C, 3 h, 18:1 molar ratio) using CaO. Whereas, MgO, ZnO, and TiO2 produced 92.4%, 72.5%, and 31.8% w/w FAME, respectively at elevated condition (225 °C). Thus, CaO was considered to be the best catalyst among the others. This tri-phase reaction require continuous fast mixing and the yield depends on the reaction parameters like catalyst amount, temperature, reaction time and molar ratio (methanol: oil). The reusability of these heterogeneous catalysts simplified the purification step, reduced the waste generation and make the final product technically and economically viable.  相似文献   

3.
Mesoporous Fe2O3–Al2O3–CuO catalysts promoted with alkali oxides were synthesized and used in water gas shift reaction (WGSR) at high temperatures for hydrogen purification. These chromium-free catalysts were characterized using nitrogen adsorption/desorption, hydrogen temperature programmed reduction, X-ray diffraction (XRD), and transmission electron microscopy techniques. The synthesized catalysts with narrow single-modal pore size distribution in mesopore region possessed high specific surface area. The catalytic results revealed that except Cs, the addition of other alkali promoters declined the catalytic activity. However, all catalysts showed higher catalytic performance than the conventional commercial catalyst. The results showed an optimum content of Cs promoter (3 wt.%) for the promoted Fe–Al–Cu catalyst (3 wt.% Cs-FAC), which exhibited the highest activity in WGSR at high temperature.  相似文献   

4.
The paper reports the production of syngas from dry reforming of methane (DRM) over La1?xCexNi1?yFeyO3 (x, y = 0–0.4) perovskites. A series of La1?xCexNi1?yFeyO3 were designed by central composite design (CCD) and synthesized by a sol–gel auto combustion method. Artificial neural network (ANN) approach was used to determine the relationship between preparation and operational parameters on the performance of the catalysts in the DRM process. Nickel mole fraction, lanthanum mole fraction, calcination temperature, and reaction temperature were considered as input variables, and conversion of methane was considered as the output variable. An ANN model with nine neurons in the hidden layer was the suitable in predicting conversion of methane. The genetic algorithm (GA) was subsequently used to determine the optimal preparation condition for enhancing the conversion of methane. La0.6Ce0.4Ni0.99Fe0.01O3 catalyst, calcined at 756°C was obtained to be the most active catalyst owing to the optimal composition of nickel and lanthanum in the catalyst formulation.  相似文献   

5.
This study investigated the use of Cu/Al2O3, Co/Al2O3, Fe/Al2O3, and Ni/Al2O3 catalysts for the growth of carbon nanotubes (CNTs). These CNTs were used as support for Co catalyst preparation and Co/CNT catalysts were applied to a catalytic reaction to remove BTEX, PAHs, SO2, NO, and CO simultaneously in a pilot-scale incineration system. The analyzed results of EDS and XRD showed low metal content and good dispersion characteristics of the Al2O3-supported catalysts by excess-solution impregnation. FESEM analyzed results showed that the CNTs that were synthesized from Co, Fe, and Ni catalysts had a diameter of 20 nm, whereas those synthesized from Cu/Al2O3 had a diameter of 50 nm. Pilot-scale test results demonstrated that the Co/CNT catalyst effectively removed air pollutants in the catalytic reaction and that there was no obvious deactivation by Pb, water vapor, and coke deposited in the process. The thermal stabilization at 250 °C and hydrophobicity properties of CNTs enhanced the application of CNT catalysts in flue gas.  相似文献   

6.
The olive mill waste (OMW) generated from olive oil extraction process constitutes a major environmental concern owing to its high organic and mineral matters and acidic pH. Anaerobic digestion (AD) is a main treatment for reducing the organic matter and toxic substances contained in OMW and generating at the same time, energy in the form of biogas. AD of OMW that contains lignocellulose is limited by the rate of hydrolysis due to their recalcitrant structure. This study is devoted to the effect of Fenton process (FP) pretreatment on olive mill wastewater (OMSW) /olive mill solid waste (OMWW) co-digestion to improve their digestibility and in this way the biogas production. The FP pretreatment was performed in batch mode at 25°C, various H2O2/[Fe2+] ratios (100–1200), catalyst concentration ([Fe2+]) ranging from 0.25 to 2 mM, reaction time varying from 30 to150 min, and different pH (3–11). The best performance was obtained with H2O2/[Fe2+] = 1000, [Fe2+] = 1.5 mM, 120 min, and pH 3. Biochemical methane potential (BMP) tests conducted in batch wise digester and at mesophilic conditions (37 °C) showed that cumulative biogas and methane production were higher without FP treatment, and correspond to 699 and 416 mL/g VS, respectively. However, pre-treated OMSW results into an increase of 24% of methane yield. After 30 days of AD, the methane yield was 63%, 54%, and 48%, respectively, for OMSW treated without iron precipitation, with iron precipitation and untreated OMSW sample.  相似文献   

7.
In this study, cobalt supported oil palm shell activated carbon (Co/OPS-AC) and ZSM-5 zeolite (Co/ZSM-5) catalysts have been prepared for dry reforming of methane. Cobalt ratios of 6.0 and 14.0 wt% were deposited via wet impregnation method to the OPS-AC and ZSM-5 catalysts. The catalysts were characterized by XRD, N2 adsorption--desorption isotherms, BET surface area, SEM, FESEM-EDX, TPR-H2, and TPD-NH3. The dry reforming of methane was performed using a micro reactor system under the condition of 10,000 ml/h.g-cat, 3 atm, CH4/CO2 ratio of 1.2:1.0 and temperature range from 923 K to 1023 K. The gaseous products were analyzed by gas chromatography (GC) with thermal conductivity detector (TCD) and further quantified to determine the conversions of CH4 and CO2, and the yields of CO and H2. Experimental results revealed both catalysts exhibited lower conversions of CO2 and CH4 with the increase in temperature from 923 K to 1023 K. The reduced conversions may be due to the formation of carboneous substance on the catalyst known as coking. Comparatively, Co/OPS-AC gave higher conversions of CO2 and CH4 as well as higher yields of H2 and CO as it has a higher surface area than Co/ZSM-5 which subsequently rendered higher activity for the reforming of methane. With the increasing cobalt loadings and reaction temperature, OPS-AC(14) catalyst exhibited improved activity and H2/CO ratio. Based on these results, cobalt supported OPS activated carbon catalyst was suggested to be more effective for CO2 and CH4 conversions.  相似文献   

8.
A facile, scalable, and solution-based technique is used to fabricate Al and Ni-doped (LiAl0.1Mn1.9O4 and LiAl0.1Ni0.1Mn1.8O4) microspheres of lithium manganese oxide (LMO) spinels for use as reversible cathode materials for lithium ion batteries (LIBs). The spheres of the two samples exhibit different porosities. Cells with these LMO-based cathodes are then cycled between 4.5 V and 2 V to study their stabilities while simultaneously being subjected to the undesirable Jahn-Teller distortion that occurs around the ~3 V regime. The LiAl0.1Mn1.9O4 (LAMO) and the LiAl0.1Ni0.1Mn1.8O4 (LANMO) cells exhibit comparable open circuit voltages (OCV) of 2.94 V and 2.97 V, respectively. During cell cycling, the LAMO cell exhibits a maximum specific capacity of 122.51 mAh g?1 with a capacity fade of 65.35% after 75 cycles. The LiAl0.1Ni0.1Mn1.8O4 (LAMO) sample fares better and exhibits a maximum of 140.49 mAh g?1 and a capacity drop of 52.59%. Detailed structural studies indicate that Ni doping and the greater degree of porosity of the LANMO sample to be a stabilizing factor. This is further confirmed by cyclic voltammetry (CV) and AC impedance spectra analysis.  相似文献   

9.
Biodiesel produced by transesterification of waste animal oil is a promising green fuel in the future. ZnO-Al2O3 and ZnO/Zn2Al composition oxides were prepared by co-precipitation method and impregnation method, respectively. The above catalysts were characterized by X-ray diffraction (XRD), Brunauer--Emmett--Teller (BET) and CO2 adsorption and temperature-programmed desorption (CO2-TPD) and show that the high activity for the catalyst is attributed to its high alkalinity. The reaction parameters were optimized and the results show that the transesterification ratio of waste animal oil can reach 98.7% with 10% ZnO/Zn2Al catalyst after 2 h. Moreover, 10%ZnO/Zn2Al compound oxides can be active for the successive cycles. The glycerol as a predominant by-product after transesterification is of high purity with high use value.  相似文献   

10.
A detailed sensitivity analysis was conducted to quantify the contributions of various emission sources to ozone (O3), fine particulate matter (PM2.5), and regional haze in the Southeastern United States. O3 and particulate matter (PM) levels were estimated using the Community Multiscale Air Quality (CMAQ) modeling system and light extinction values were calculated from modeled PM concentrations. First, the base case was established using the emission projections for the year 2009. Then, in each model run, SO2, primary carbon (PC), NH3, NOx or VOC emissions from a particular source category in a certain geographic area were reduced by 30% and the responses were determined by calculating the difference between the results of the reduced emission case and the base case.The sensitivity of summertime O3 to VOC emissions is small in the Southeast and ground-level NOx controls are generally more beneficial than elevated NOx controls (per unit mass of emissions reduced). SO2 emission reduction is the most beneficial control strategy in reducing summertime PM2.5 levels and improving visibility in the Southeast and electric generating utilities are the single largest source of SO2. Controlling PC emissions can be very effective locally, especially in winter. Reducing NH3 emissions is an effective strategy to reduce wintertime ammonium nitrate (NO3NH4) levels and improve visibility; NOx emissions reductions are not as effective. The results presented here will help the development of specific emission control strategies for future attainment of the National Ambient Air Quality Standards in the region.  相似文献   

11.
Present investigation was done to evaluate various algal genera found in water bodies of Varanasi city. The potential of any biomass for biofuels (bioalcohols, biohydrogen, etc.) production depends on the quantity of extractable sugar present in it. Acid (H2SO4) and alkali (NaOH) pretreatment were performed, and H2SO4 was chosen due to its nearly double yield as compared with alkaline pretreatment. Response surface methodology was utilized for the optimization of operating parameters such as treatment temperature, time, and acid concentration. Sugar yield up to 0.33 g/g of dry biomass was obtained using cyanobacterial biomass of Lyngbya limnetica, at 100°C, 59.19 min, and H2SO4 concentration of 1.63 M.  相似文献   

12.
ABSTRACT

Sodium hydroxide is ideal in removing lignin from lignocellulosic materials at an effective operational cost. Two-stage NaOH pretreatment was employed herein to investigate lignin and hemicellulose removal and understand the morphology of Napier grass (Pakchong 1) (Pennisetum purpureum), which is considered lignocellulosic due to its high carbohydrate content. NaOH was used at different concentrations (0, 1, 2, 3, and 4 wt.%) and presoak times (1, 2, 3, and 4 h). The results demonstrated that 3 wt.% NaOH at 121°C without presoak resulted in 83.5% lignin removal, with a cellulose to lignin ratio of 3.0. Moreover, the treated samples showed cracking and irregular patterns at optimal conditions.  相似文献   

13.
(CdS)x/(ZnS)1–x nanoparticles were synthesized as a visible light-driven photocatalyst using the stepped microemulsion technique with a series of the ratio factors (x). The photocatalytic test results showed that (CdS)x/(ZnS)1-x with x = 0.8 had the highest photo-reactivity for H2 production from water under visible light. The composite (CdS)0.8/(ZnS)0.2 catalyst had a heterogeneous structure that exhibited a much greater photocatalytic hydrogen production activity than either pure CdS or the homogeneous Cd0.8Zn0.2S solid solution. ZnS deposition also was shown to largely improve the stability of CdS in the heterostructured CdS/ZnS catalyst. Thermal treatment of the catalyst, i.e., annealing (CdS)0.8/(ZnS)0.2 at 723 K, improved the crystallinity of the catalyst and increased its photocatalytic H2 production rate by more than 36 times. Deposition of Ru on the surface of the catalyst particles by in situ photo-deposition further increased the photo-H2 generation rate by 3 times. The photocatalyst of 0.5%Ru/CdS/ZnS achieved the highest H2 production activity, at a rate of 12650 μmol/g-h and with a light to hydrogen energy conversion efficiency of 6.5%.  相似文献   

14.
Influence of catalyst calcination temperature on the catalyst characteristics and catalytic transesterification of Jatropha curcas oil for biodiesel production was studied by using sodium zirconate (Na2ZrO3) solid base catalyst. Na2ZrO3 catalysts were prepared by impregnation method followed by calcination at temperatures of 700, 800, and 900°C. The prepared catalysts were characterized by X-ray diffraction analysis, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. Important parameters influencing the catalytic activity and fatty acid methyl ester yield were investigated. It was found that the increase in calcination temperature showed marked increase in activity due to the increased porosity and presence of tetragonal zirconia. Investigation of the reusability of the catalysts showed that the catalytic activity was retained even after five cycles of reaction.  相似文献   

15.
The increasing consumption and excessive extraction of conventional fuels is the matter of serious concern. Nowadays, world is looking for alternative sources of fuel which can partially replace conventional fuel dependence. The current investigation intends to provide evaluation of bio-ethanol preparation from Water Hyacinth (WH) and its influence on diesel engine performance under various operating conditions. This study explores the extraction of glucose from WH (Eichhornia crassipes) pretreated with sulfuric acid (H2SO4) for production of bio-ethanol. For the production of bio-ethanol different concentrations of H2SO4 acid hydrolysate (1%, 2%, 4%, 6%, 8%, and 10%) were prepared which was then followed by fermentation with cellulose fermenting yeasts. From results, it was observed that 4% H2SO4 acid hydrolysis produces higher concentrations of ethanol than other concentrations. Bio-ethanol extracted from WH was blended with diesel in different proportions (5%, 10%, 15%, 20%, and 25%) v/v and performance and emissions were experimentally investigated on single cylinder diesel engine under various load conditions. Experimental results show that 5 BED [5% bio-ethanol (WH + 95%diesel v/v) and 10BED (10% bio-ethanol (WH + 90%diesel v/v)] produces higher brake power, brake thermal efficiency and brake mean effective pressure with improved exhaust emission profiles than any other blend.  相似文献   

16.
The selective catalytic reduction (SCR) rate of NO with N-containing reducing agents can be enhanced considerably by converting part of NO into NO2. The enhanced reaction rate is more pronounced even at lower temperatures by using an equimolar mixture of NO and NO2 (fast SCR reaction). The oxidation characteristics of NO over catalyst Pt/TiO2 have been determined in a fixed bed reactor (8 mm-ID) with different concentrations of oxygen, nitric oxide and nitrogen dioxide in the presence of 8% water. The conversion of NO to NO2 increases with increasing oxygen (O2) concentration from 3 to 12%, but it levels off at higher O2 concentrations. The NO conversion to NO2 decreases with increasing NO concentration and it also decreases by an addition of NO2 in the feed stream. Therefore, the oxidation of NO over Pt/TiO2 catalyst could be auto-inhibited by the reaction product of NO2. The effects of CO and SO2 on NO oxidation characteristics have also been determined. In fact, the presence of SO2 significantly suppresses oxidation of NO but due to the less stability of sulfate on anatase structure in TiO2, it becomes less significant. On the other hand, the presence of CO increases NO oxidation significantly due to the auto-inhibition effect by CO. Moreover, the effect of SO2/CO on NO oxidation has also been determined and it was observed that NO oxidation decreases with the increase in SO2/CO ratio.  相似文献   

17.
Electrospun cellulose acetate (CA) nanofibrous mats incorporated with capric acid was studied to fabricate form-stable phase change materials (PCMs) for storing/retrieving thermal energy. Electrospun CA nanofibrous mats with different porous structures and specific surface areas were firstly prepared through regulating the volume ratio of mixture solvent of acetone/dichloromethane (DCM). Effects of different volume ratio of mixture solvent and mat thickness on the morphological structure, specific surface area, and absorption capacity of CA nanofibrous mats were systematically investigated. The results indicated that CA nanofibrous mats were highly porous on the surface; hence, they were capable of absorbing a large amount of capric acid. The maximum absorption capacity of CA mats via electrospinning with volume ratio of acetone/DCM being 5/5 was ~95.8 wt%, due to its higher specific surface area of ~17.1 m2/g. The specific surface area and capric acid absorption capacity of CA nanofibrous mats increased with the increases of mat thickness. As the thickness of nanofibrous mats increased from 10 to 85 μm, the corresponding specific surface area and capric acid absorption capacity of mats increased respectively from 7.2 to 29.0 m2/g and 92.1 to 98.5%. Morphological structures, as well as the properties of thermal energy storage and thermal insulation of the fabricated form-stable PCMs, were studied by scanning electron microscopy, differential scanning calorimetry, and measurement of freezing times, respectively. The results indicated that the resulting form-stable PCMs could well maintain their phase transition characteristics and demonstrated great thermal energy storage capability and temperature regulation ability.  相似文献   

18.
Sawtooth Oak (Quercus acutissima) shells were used as a renewable and low-cost agricultural residue for bioethanol production for the first time. The efficiency of H2SO4, NaOH, steam explosion and the combination of these methods was compared in terms of delignification, saccharification efficiency and yield. The structural features of samples were characterized by SEM, XRD and FTIR. Results show H2SO4/steam explosion resulted in the highest hemicellulose reduction (98.5%) and cellulose recovery yield (99.9%). NaOH /steam explosion resulted in the highest delignification level (31.5%). Steam explosion exhibited the highest enzymatic digestibility of 98.8% and total product yield of glucose of 84.8%, an increase of 130.8% and 98.1% than that of untreated oak shell, respectively, which seemed to be the most effective for improving enzymatic saccharification. The results of structural features showed the structure and surface of shells were changed that is in favor of the following enzymatic hydrolysis.  相似文献   

19.
Constant hydrogen generation via a hydrogen generator is evaluated from the methanolysis of sodium borohydride (NaBH4) using Co/Al2O3 and MnOx/Al2O3 catalysts. Chemical borohydrides coupled with catalysts can be used for compact storage and to create efficient generation systems. Thus, we first report the catalytic activity of MnOx/Al2O3, which is synthesized using the simple wet-impregnation method, for the methanolysis reaction. The results indicate that both catalysts can effectively accelerate the methanolysis reaction and provide constant hydrogen generation rates. Thus, we integrate this hydrogen generation system into a proton exchange membrane fuel cell stack (PEMFC) to determine whether it can be used as a portable power supply. As a result, this fuel cell system operates at 40 W for 1 hr using the hydrogen source supplied from the catalytic methanolysis reaction.  相似文献   

20.
Fenton treatment (Fe2+/H2O2) and different ozone-based Advanced Oxidation Processes (AOPs) (O3, O3/OH and O3/H2O2) were evaluated as pre-treatment of a mature landfill leachate, in order to improve the biodegradability of its recalcitrant organic matter for subsequent biological treatment. With a two-fold diluted leachate, at optimised experimental conditions (initial pH 3, H2O2 to Fe2+ molar ratio of 3, Fe2+ dosage of 4 mmol L−1, and reaction time of 40 min) Fenton treatment removed about 46% of chemical oxygen demand (COD) and increased the five-day biochemical oxygen demand (BOD5) to COD ratio (BOD5/COD) from 0.01 to 0.15. The highest removal efficiency and biodegradability was achieved by ozone at higher pH values, solely or combined with H2O2. These results confirm the enhanced production of hydroxyl radical under such conditions. After the application for 60 min of ozone at 5.6 g O3 h−1, initial pH 7, and 400 mg L−1 of hydrogen peroxide, COD removal efficiency was 72% and BOD5/COD increased from 0.01 to 0.24. An estimation of the operating costs of the AOPs processes investigated revealed that Fe2+/H2O2 was the most economical system (8.2 € m−3 g−1 of COD removed) to treat the landfill leachate. This economic study, however, should be treated with caution since it does not consider the initial investment, prices at plant scale, maintenance and labour costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号