首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Objective: This article aims to evaluate the safety performance of cable median barriers on freeways in Florida.

Method: The safety performance evaluation was based on the percentages of barrier and median crossovers by vehicle type, crash severity, and cable median barrier type (Trinity Cable Safety System [CASS] and Gibraltar system). Twenty-three locations with cable median barriers totaling about 101 miles were identified. Police reports of 6,524 crashes from years 2005–2010 at these locations were reviewed to verify and obtain detailed crash information. A total of 549 crashes were determined to be barrier related (i.e., crashes involving vehicles hitting the cable median barrier) and were reviewed in further detail to identify crossover crashes and the manner in which the vehicles crossed the barriers; that is, by either overriding, underriding, or penetrating the barriers.

Results: Overall, 2.6% of vehicles that hit the cable median barrier crossed the median and traversed into the opposite travel lane. Overall, 98.1% of cars and 95.5% of light trucks that hit the barrier were prevented from crossing the median. In other words, 1.9% of cars and 4.5% of light trucks that hit the barrier had crossed the median and encroached on the opposite travel lanes. There is no significant difference in the performance of cable median barrier for cars versus light trucks in terms of crossover crashes. In terms of severity, overrides were more severe compared to underrides and penetrations. The statistics showed that the CASS and Gibraltar systems performed similarly in terms of crossover crashes. However, the Gibraltar system experienced a higher proportion of penetrations compared to the CASS system. The CASS system resulted in a slightly higher percentage of moderate and minor injury crashes compared to the Gibraltar system.

Conclusions: Cable median barriers are successful in preventing median crossover crashes; 97.4% of the cable median barrier crashes were prevented from crossing over the median. Of all of the vehicles that hit the barrier, 83.6% were either redirected or contained by the cable barrier system. Barrier crossover crashes were found to be more severe compared to barrier noncrossover crashes. In addition, overrides were found to be more severe compared to underrides and penetrations.  相似文献   


2.
Objective: The objective of this study was to adapt a previously validated Canadian Culpability Scoring Tool (CCST) to Alberta police report data.

Methods: Police traffic collision reports from motor vehicle (MV) collisions in Calgary and Edmonton (Alberta, Canada) from 2010 to 2014 were used. Adaptation of the CCST was completed with input from personnel within Alberta Transportation, contributing to face and content validity. Two research assistants, given only the information necessary for scoring, evaluated 175 randomly selected MV–MV collisions. Interrater agreement was estimated using kappa (k) and reported with 95% confidence intervals (CIs). Discussion of disagreements between the research assistants and consultation from Alberta Transportation informed the algorithm used in the Alberta Motor Vehicle Collision Culpability Tool (AMVCCT). The AMVCCT was automated and applied to all motorists involved in collisions. Binary logistic regression was used to examine characteristics of the culpable and nonculpable drivers and their effects were reported using odds ratios (ORs) with 95% CIs.

Results: Interrater agreement for the random sample was excellent (k = 0.95; 95% CI, 0.92–0.99). Of those drivers hospitalized, 1,130 (37.54%) were rated not culpable and 1,880 (62.46%) were rated culpable. The odds of being culpable were higher for males than for females (OR = 1.43; 95% CI, 1.23–1.66). The odds of being culpable were higher in those impaired by alcohol than those considered “apparently normal” (OR = 61.10; 95% CI, 22.66–164.75). The odds of being deemed culpable, when compared with drivers >54 years old, were higher for those <25 years old (OR = 1.72; 95% CI, 1.35–2.20) and lower for those in the 40- to 54-year-old age group (OR = 0.78; 95% CI, 0.63–0.96). Driving between 12 a.m. and 6 a.m. resulted in higher odds of being culpable compare with all other 6-h time blocks. Direction and statistical significance remained consistent when applying the tool to all MV collisions. Sensitivity analysis including the removal of single vehicle collisions did not affect the direction or statistical significance of the main results.

Conclusions: The AMVCCT identified a culpable group that exhibited characteristics expected in drivers who are at fault in collisions. The age groups 25–39 and 40–54 demonstrated different results than the CCST. However, this is the only difference that exists in the findings of the AMVCCT compared to the CCST and could exist due to differences between the driving populations in Alberta and British Columbia. It is possible to adapt the CCST to provinces outside British Columbia and, in doing so, we can identify risk factors for collision contribution and not-at-fault drivers who represent the driving population.  相似文献   


3.
Abstract

Objective: The objective of this study was to examine the medical conditions of 2 commercial drivers and the effects of physical barriers to occupant egress in a crash involving a tractor trailer and a motorcoach in order to assess and identify the factors that caused the crash and had a significant effect on occupant extrication.

Methods: Physical evidence from the scene, video evidence, commercial driver information, phone records, toxicology findings, autopsy results, and personal medical information were reviewed.

Results: On October 23, 2016, at 5:16 a.m., a motorcoach carrying a driver and 42 passengers struck the rear of a stopped semitrailer occupied by its driver in the center-right lane of Interstate 10 at highway speed outside Palm Springs, California. The motorcoach driver and 12 passengers died; 11 passengers were seriously injured.

All traffic had been stopped on I-10 early that morning to allow electrical lines to be strung over the highway. Security camera footage showed that the truck arrived at the end of a traffic queue 2?min before traffic flow resumed. Physical evidence indicated that the truck’s parking brake was still engaged at the time of the collision about 2?min later. The truck driver had a body mass index (BMI) between 45.6 and 50?kg/m2, which placed him at very high risk of moderate to severe obstructive sleep apnea; he also inaccurately recalled that he had been stopped for 20–25?min and had placed the vehicle in gear just before the collision.

The motorcoach driver was on the return leg of an overnight trip to a casino. Based on his phone records, known driving time, and security camera footage, at the time of the collision he had had 4?h of sleep opportunity in the preceding 35?h. There was no evidence that the motorcoach driver attempted any evasive action before the collision. In addition, postmortem testing revealed a hemoglobin A1C of 11.4%, indicating poorly controlled diabetes; this was apparently undiagnosed prior to the crash.

The motorcoach was equipped with a single loading door at the front of the vehicle; it was rendered inoperable by the collision. Emergency egress was initially carried out through the emergency exit windows, but they repeatedly swung shut, impeding passengers’ efforts to exit. Emergency responders eventually cut open the bus wall to create a larger means of egress. Overall, it took almost 3?h to extricate the occupants from the vehicle.

Conclusions: The National Transportation Safety Board (NTSB) determined that the probable cause of the accident was the truck driver’s falling asleep, most likely due to undiagnosed moderate-to-severe obstructive sleep apnea, and the motorcoach driver’s failure to identify the stopped truck as a hazard requiring evasive action, most likely as the result of fatigue. Additional easy-to-use emergency exits would have decreased the time to extricate the occupants.  相似文献   

4.
Objective: Guaranteeing a safe and comfortable driving workload can contribute to reducing traffic injuries. In order to provide safe and comfortable threshold values, this study attempted to classify driving workload from the aspects of human factors mainly affected by highway geometric conditions and to determine the thresholds of different workload classifications. This article stated a hypothesis that the values of driver workload change within a certain range.

Methods: Driving workload scales were stated based on a comprehensive literature review. Through comparative analysis of different psychophysiological measures, heart rate variability (HRV) was chosen as the representative measure for quantifying driving workload by field experiments. Seventy-two participants (36 car drivers and 36 large truck drivers) and 6 highways with different geometric designs were selected to conduct field experiments. A wearable wireless dynamic multiparameter physiological detector (KF-2) was employed to detect physiological data that were simultaneously correlated to the speed changes recorded by a Global Positioning System (GPS) (testing time, driving speeds, running track, and distance). Through performing statistical analyses, including the distribution of HRV during the flat, straight segments and P-P plots of modified HRV, a driving workload calculation model was proposed. Integrating driving workload scales with values, the threshold of each scale of driving workload was determined by classification and regression tree (CART) algorithms.

Results: The driving workload calculation model was suitable for driving speeds in the range of 40 to 120 km/h. The experimental data of 72 participants revealed that driving workload had a significant effect on modified HRV, revealing a change in driving speed. When the driving speed was between 100 and 120 km/h, drivers showed an apparent increase in the corresponding modified HRV. The threshold value of the normal driving workload K was between ?0.0011 and 0.056 for a car driver and between ?0.00086 and 0.067 for a truck driver.

Conclusion: Heart rate variability was a direct and effective index for measuring driving workload despite being affected by multiple highway alignment elements. The driving workload model and the thresholds of driving workload classifications can be used to evaluate the quality of highway geometric design. A higher quality of highway geometric design could keep driving workload within a safer and more comfortable range. This study provided insight into reducing traffic injuries from the perspective of disciplinary integration of highway engineering and human factor engineering.  相似文献   

5.
Objective: To better capture the relationships between lane-changing collisions and explanatory variables, a microscopic model is developed for freeway lane-changing collisions based on the interactions between lane-changing vehicles.

Methods: The model applies an intervehicle interaction structure to account for the occurrence mechanism of lane-changing collisions. The occurrence mechanism can be described as the failure of a vehicle driver of an adjacent lane in avoiding the lane-changing vehicle, which disturbs the smooth movement of the adjacent lane vehicle and requires the driver's brake action to avoid an angle collision. This model is examined using data collected from freeways in Washington State during 2010 to 2011 and validated using lane-changing collision data for the SR 520 freeway.

Results: The findings of this study show that generalized truck percentage has a significant decreasing effect on lane-changing collision risk, whereas average spacing and several roadway characteristics have significant increasing effects. The frequency of slight collisions during peak hours is higher than that during off-peak hours. Young female drivers are more likely to be involved in collisions during lane-changing than young male drivers, but the result for senior drivers is opposite, with older male drivers having a higher probability of lane-changing collisions than female drivers in the same age group.

Conclusion: The process of lane-changing collisions is a complicated maneuver. Truck percentage, average spacing, and good roadway characteristics, such as straight and level segment, in the target lane have a significant effect on the occurrence of lane-changing collisions. Age and gender are also 2 important factors contributing to the relationship between lane-changing collisions and explanatory variables.  相似文献   


6.
Objective: Truck drivers represent a group at a particularly higher risk of motor vehicle accidents (MVAs). Sleepy driving and obstructive sleep apnea (OSA) among truck drivers are major risk factors for MVAs. No study has assessed the prevalence of sleepy driving and risk of OSA among truck drivers in Saudi Arabia. Therefore, this study aimed to assess sleepy driving and risk of OSA among these truck drivers.

Methods: This study included 338 male truck drivers working in Saudi Arabia. A validated questionnaire regarding sleepy driving and OSA was used. The questionnaire included sociodemographic assessment, the Epworth Sleepiness Scale (ESS), the Berlin Questionnaire (BQ), and driving-related items.

Results: The drivers had a mean age of 42.9?±?9.7 years. The majority (94.7%) drove more than 5?h a day. A history of MVAs during the last 6 months was reported by 6.5%. Approximately 95% of the participants reported that they had accidentally fallen asleep at least once while driving over the past 6 months, and 49.7% stated that this had happened more than 5 times during the last 6 months. Based on the BQ score, a high risk of OSA was detected in 29% of the drivers. “Not getting good-quality sleep” (odds ratio [OR]?=?2.89; 95% confidence interval [CI], 1.08–7.75; P = .014) and driving experience from 6 to 10 years (OR = 3.37; 95% CI, 1.28–8.91; P = .034) were the only independent predictors of MVAs in the past 6 months.

Conclusions: Sleepy driving and a high risk of OSA was prevalent among the study population of male truck drivers in Saudi Arabia. Not getting good-quality sleep and driving experience from 6 to 10 years contributes to the accident risk among these truck drivers.  相似文献   

7.
Objectives: Truck vehicles (TVs) have a different structure and stiffness than non-TVs and are used commercially for transporting goods. This study aimed to analyze whether truck occupants have a greater risk of serious injury than those of other types of vehicles.

Methods: Crash data were obtained from the Korean In-Depth Data Analysis Study (KIDAS) for calendar years 2011–2016. Vehicles involved in frontal crash were included and classified into TVs and non-TVs (passenger cars and sports utility vehicles). We compared the demographic characteristics and serious injuries by body region between the 2 groups and analyzed factors that contributed to the serious injury severity from frontal crashes.

Results: The analysis was based on 884 occupants; 177 (20.0%) were in TVs and 707 (80.0%) were in non-TVs. Non-TVs had more frontal airbags deployments than TVs (50.9% vs. 3.4%, P <.01). TV occupants were 4.8 times more likely to have a serious lower extremity (LE) injury (adjusted odds ratio [AOR] = 4.820; 95% confidence interval [CI], 2.407–9.653) and 2.5 times to have a serious abdominal injury (AOR = 2.465; 95% CI, 1.108–5.487) compared to non-TV occupants.

Conclusions: Truck occupants had more serious LE and abdominal injuries than those of other types of vehicles in frontal crashes. Structural improvement and legislative efforts to develop safety systems are necessary to improve the safety of truck occupants.  相似文献   


8.
Objective: Though autonomous emergency braking (AEB) systems for car-to-cyclist collisions have been under development, an estimate of the benefit of AEB systems based on an analysis of accident data is needed for further enhancing their development. Compared to the data available from in-depth accident data files, data provided by drive recorders can be used to reconstruct car-to-cyclist collisions with greater accuracy because the position of cyclists can be observed from the videos. In this study, using data from drive recorders, the performance and limitations of AEB systems were investigated.

Method: Data of drive recorders involving taxi-to-cyclist collisions were collected. Using the images collected from the drive recorders of those taxis, 40 cases of 90° car-to-cyclist intersection collisions were reconstructed using PC-Crash. Then, the collisions were reconstructed again utilizing car models with AEB systems installed while changing the sensor’s field of view (FOV) and the delay time of initiating vehicle deceleration.

Results: The angle of FOV has a significant influence on avoiding car-to-cyclist collisions. Using a 50° FOV with a braking delay time of 0.5?s resulted in avoiding 6 collisions, and using a 90° FOV resulted in avoiding an additional 14 collisions. Even when installing an ideal AEB system providing 360° FOV and no delay time for braking, 8 collisions were not avoided, though the impact velocities were reduced for all of these remaining collisions. These collisions were caused by the cyclists’ sudden appearance in front of cars, and the time-to-collision (TTC) when the cyclists appeared was less than 0.9?s.

Conclusion: The AEB systems were effective for mitigating collisions that occurred due to driver perception delay. Because cyclists have a traveling velocity, a wide-angle FOV is effective for reduction of car-to-cyclist intersection collisions. The reduction of delay time in braking can reduce the number of collisions that are close to the braking performance limit. The collisions that remained even with an ideal AEB system in the PC-Crash simulation indicate that such collisions could still occur for autonomous cars if the traffic environment does not change.  相似文献   

9.
Abstract

Objective: In 2020, the world’s first crash compatibility rating test will be introduced in the European mobile progressive deformable barrier (MPDB) test. In this research, the quantitative change in partner protection performance of large vehicles in car-to-car (C2C) impacts was studied if these large vehicles were designed in future based on MPDB tests addressing crash compatibility ratings.

Methods: Representative vehicles of the European fleet were selected and a Computer Aided Engineering (CAE) parameter study was conducted. In particular, by changing an indicator of structural interaction performance (SD; i.e., the degree of uniformity of barrier deformation)/mass/stiffness of large vehicles systematically in a step-by-step approach, the compatibility evaluation results of large vehicles in MPDB and the occupant injury score of small vehicles in C2C impacts were compared. The CAE result was evaluated compared to that of C2C physical impact tests.

Results: The CAE parameter study showed that in the C2C impact condition, the effects on occupant injury in a small vehicle due to changes in the large vehicle were as follows: (1) SD change: The effect was minor except for small overlap condition. (2) Mass and stiffness change: The effect was relatively major.

On the other hand, compatibility evaluation in the MPDB showed a tendency to overestimate the effect of SD change in comparison with the above-mentioned C2C impact condition.

In addition, physical impact tests showed that, based on SD evaluation, the large vehicle with a relatively inferior compatibility rating compared to those with superior compatibility ratings showed a contradicting trend of better compatibility performance in the C2C test.

Conclusions: The currently proposed compatibility evaluation method of the MPDB test showed some tendency to overestimate the effect of SD change and resulted in quantitatively inconsistent outcomes regarding occupant injury in the partner car in C2C impact conditions.  相似文献   

10.
Objective: Up to 50% of individuals involved in low-velocity motor vehicle collisions report low back pain (LBP). A major limitation in such cases is the lack of knowledge of injury mechanisms linking the collision characteristics to the pain and pathology associated with LBP reporting. Thus, the objective of this investigation was to characterize the physical circumstances of low-velocity motor vehicle collisions that resulted in claims of LBP.

Methods: Eighty-three forensically assessed cases were analyzed to identify specific collision and claimant characteristics.

Results: Seventy-seven percent of reviewed cases involved a claim of LBP. Of these LBP claim cases, 70% of cases involved a rear-end collision configuration, and 40% of all cases were low-velocity collisions, with severities ranging between 10 and 12?km/h. The most common pre-existing medical condition was prior LBP or evidence of disc degeneration.

Conclusions: The results of this investigation provide knowledge of collision characteristics that can be employed in future studies on the mechanisms of low back injury in low-speed motor vehicle collisions.  相似文献   

11.
IntroductionThe influence of amendments to Federal Motor Vehicle Safety Standard (FMVSS) 108, requiring conspicuity treatments on heavy tractors and trailers, was determined in analyses of the odds of fatal collisions in darkness.MethodComparisons were made between crashes in which conspicuity treatment was likely relevant, and those in which it was likely irrelevant.ResultsOver 23 years, the odds that a fatal collision involving a heavy truck occurred in darkness declined by 58% among relevant crashes, while little decline was observed for irrelevant crashes. Disaggregation into crash types revealed the largest declines occurred in fatal rear-end and angle collisions. A parallel analysis of light vehicles also found declines but no differences among crash type. Similar trends were also observed for nonfatal rear end collisions.ConclusionThe results suggest that detection failure may have contributed to the risk of striking a tractor-semitrailer in darkness, and that conspicuity treatments have reduced this risk.Impact on IndustryConspicuity treatments appear to reduce risk of collision into heavy trucks in darkness. It is likely that this benefit would also extend to other vehicles that are not included in the FMVSS 108 regulation (e.g., buses, single unit trucks, recreational vehicles), although many are so equipped, regardless of the regulation.  相似文献   

12.
Objective: The aim of this study is to develop an on-scene injury severity prediction (OSISP) algorithm for truck occupants using only accident characteristics that are feasible to assess at the scene of the accident. The purpose of developing this algorithm is to use it as a basis for a field triage tool used in traffic accidents involving trucks. In addition, the model can be valuable for recognizing important factors for improving triage protocols used in Sweden and possibly in other countries with similar traffic environments and prehospital procedures.

Methods: The scope is adult truck occupants involved in traffic accidents on Swedish public roads registered in the Swedish Traffic Accident Data Acquisition (STRADA) database for calendar years 2003 to 2013. STRADA contains information reported by the police and medical data on injured road users treated at emergency hospitals. Using data from STRADA, 2 OSISP multivariate logistic regression models for deriving the probability of severe injury (defined here as having an Injury Severity Score [ISS] > 15) were implemented for light and heavy trucks; that is, trucks with weight up to 3,500 kg and ??16,500 kg, respectively. A 10-fold cross-validation procedure was used to estimate the performance of the OSISP algorithm in terms of the area under the receiver operating characteristic curve (AUC).

Results: The rate of belt use was low, especially for heavy truck occupants. The OSISP models developed for light and heavy trucks achieved cross-validation AUC of 0.81 and 0.74, respectively. The AUC values obtained when the models were evaluated on all data without cross-validation were 0.87 for both light and heavy trucks. The difference in the AUC values with and without use of cross-validation indicates overfitting of the model, which may be a consequence of relatively small data sets. Belt use stands out as the most valuable predictor in both types of trucks; accident type and age are important predictors for light trucks.

Conclusions: The OSISP models achieve good discriminating capability for light truck occupants and a reasonable performance for heavy truck occupants. The prediction accuracy may be increased by acquiring more data. Belt use was the strongest predictor of severe injury for both light and heavy truck occupants. There is a need for behavior-based safety programs and/or other means to encourage truck occupants to always wear a seat belt.  相似文献   

13.
Objective: Road traffic suicides typically involve a passenger car driver crashing his or her vehicle into a heavy vehicle, because death is almost certain due to the large mass difference between these vehicles. For the same reason, heavy-vehicle drivers typically suffer minor injuries, if any, and have thus received little attention in the research literature. In this study, we focused on heavy-vehicle drivers who were involved as the second party in road suicides in Finland.

Methods: We analyzed 138 road suicides (2011–2016) involving a passenger car crashing into a heavy vehicle. We used in-depth road crash investigation data from the Finnish Crash Data Institute.

Results: The results showed that all but 2 crashes were head-on collisions. Almost 30% of truck drivers were injured, but only a few suffered serious injuries. More than a quarter reported sick leave following their crash. Injury insurance compensation to heavy-vehicle drivers was just above €9,000 on average. Material damage to heavy vehicles was significant, with average insurance compensation paid being €70,500. Three out of 4 truck drivers reported that drivers committing suicide acted abruptly and left them little opportunity for preventive action.

Conclusions: Suicides by crashing into heavy vehicles can have an impact on drivers’ well-being; however, it is difficult to see how heavy-vehicle drivers could avoid a suicide attempt involving their vehicle.  相似文献   


14.
15.
Abstract

Objective: The objective of this research is to use historical crash data to evaluate the potential benefits of both high- and low-speed automatic emergency braking (AEB) with forward collision warning (FCW) systems.

Methods: Crash data from the NHTSA’s NASS–General Estimates System (GES) and Fatality Analysis Reporting System (FARS) databases were categorized to classify crashes by the speed environment, as well as to identify cases where FCW systems would be applicable.

Results: Though only about 19% of reported crashes occur in environments with speeds greater than 45?mph, approximately 32% of all serious or fatal crashes occur in environments with speeds greater than 45?mph. The percentage of crashes where FCW systems would be relevant has remained remarkably constant, varying between about 21 and 26% from 2002 to 2015. In 2-vehicle fatal crashes where one rear-ends the other, the fatality rates are actually higher in the struck vehicle (33%) than the striking vehicle (26%). The disparity is even greater when considering size–class differences, such as when a light truck rear-ends a passenger car (15 vs. 42% fatality rates, respectively).

Conclusions: NHTSA and the Insurance Institute for Highway Safety (IIHS) proposed the Automatic Emergency Braking Initiative in 2015, which is intended to make AEB (also called crash-imminent braking) with FCW systems standard on nearly all new cars by September 2022. Twenty automakers representing 99% of the U.S. auto market voluntarily committed to the initiative. Though the commitment to safety is laudable, the AEB component of the agreement only covers low-speed AEB systems, with the test requirements set to 24?mph or optionally as low as 12?mph. The test requirements for the FCW component of the agreement include 2 tests that begin at 45?mph. Only 21% of relevant serious injury or fatal accidents occur in environments at speeds under 24?mph, whereas about 22% of serious or fatal crashes occur in environments with speeds greater than 45?mph. This means that the AEB with FCW systems as agreed upon will cover only 21% of serious or fatal crashes and will not cover 22% of serious or fatal crashes. Because these systems are protective not only for the occupants of the vehicle where they are installed but also other vehicles on the roads, the data indicate that these systems should be a standard feature on all cars for high-speed as well as low-speed environments for the greatest social benefit.  相似文献   

16.
Objectives: The U.S. New Car Assessment Program (NCAP) now tests for forward collision warning (FCW) and lane departure warning (LDW). The design of these warnings differs greatly between vehicles and can result in different real-world field performance in preventing or mitigating the effects of collisions. The objective of this study was to compare the expected number of crashes and injured drivers that could be prevented if all vehicles in the fleet were equipped with the FCW and LDW systems tested under the U.S. NCAP.

Methods: To predict the potential crashes and serious injury that could be prevented, our approach was to computationally model the U.S. crash population. The models simulated all rear-end and single-vehicle road departure collisions that occurred in a nationally representative crash database (NASS-CDS). A sample of 478 single-vehicle crashes from NASS-CDS 2012 was the basis for 24,822 simulations for LDW. A sample of 1,042 rear-end collisions from NASS-CDS years 1997–2013 was the basis for 7,616 simulations for FCW. For each crash, 2 simulations were performed: (1) without the system present and (2) with the system present. Models of each production safety system were based on 54 model year 2010–2014 vehicles that were evaluated under the NCAP confirmation procedure for LDW and/or FCW. NCAP performed 40 LDW and 45 FCW tests of these vehicles.

Results: The design of the FCW systems had a dramatic impact on their potential to prevent crashes and injuries. Between 0 and 67% of crashes and 2 and 69% of moderately to fatally injured drivers in rear-end impacts could have been prevented if all vehicles were equipped with the FCW systems. Earlier warning times resulted in increased benefits. The largest effect on benefits, however, was the lower operating speed threshold of the systems. Systems that only operated at speeds above 20 mph were less than half as effective as those that operated above 5 mph with similar warning times. The production LDW systems could have prevented between 11 and 23% of drift-out-of-lane crashes and 13 and 22% of seriously to fatally injured drivers. A majority of the tested LDW systems delivered warnings near the point when the vehicle first touched the lane line, leading to similar benefits. Minimum operating speed also greatly affected LDW effectiveness.

Conclusions: The results of this study show that the expected field performance of FCW and LDW systems are highly dependent on the design and system limitations. Systems that delivered warnings earlier and operated at lower speeds may prevent far more crashes and injuries than systems that warn late and operate only at high speeds. These results suggest that future FCW and LDW evaluation should prioritize early warnings and full-speed range operation. A limitation of this study is that additional crash avoidance features that may also mitigate collisions—for example, brake assist, automated braking, or lane-keeping assistance—were not evaluated during the NCAP tests or in our benefits models. The potential additional mitigating effects of these systems were not quantified in this study.  相似文献   

17.
Objective: The objective of this study is to identify the role of working conditions as predictors of sleepiness while driving among truck drivers.

Methods: This was a cross-sectional study carried out among truck drivers who transported grains to Paranaguá Port, Paraná, Brazil. The truck drivers were interviewed and completed a self-administered questionnaire to collect data on sociodemographic and behavioral variables, working conditions, consumption of illicit psychoactive substances, and sleep patterns. Drivers were considered to be sleepy while driving if they reported a medium or high probability of napping while driving at night, during the daytime, or while stopped in traffic. The statistical analysis used logistic regression models progressively adjusted for age, behavioral variables, sleep duration, and other working conditions.

Results: In total, 670 male drivers, with a mean age of 41.9 (±11.1) years, were enrolled. The prevalence of sleepiness while driving was 31.5%. After model adjustments, the following working conditions were associated with sleepiness while driving: Distance from the last shipment of more than 1,000?km (odds ratio [OR]?=?1.54; 95% confidence interval [CI], 1.07–2.23) and a formal labor contract with a productivity-based salary (OR = 2.65; 95% CI, 1.86–3.78). Consumption of illicit psychoactive substances (OR = 1.99; 95% CI, 1.14–3.47) was also associated with sleepiness while driving.

Conclusions: Distance traveled and a formal labor contract with productivity-based earnings were the working conditions associated with sleepiness while driving, regardless of other working or behavioral characteristics, age, consumption of illicit psychoactive substances, and sleep duration.  相似文献   

18.
Objective: In minicars, the survival space between the side structure and occupant is smaller than in conventional cars. This is an issue in side collisions. Therefore, in this article a solution is studied in which a lateral seat movement is imposed in the precrash phase. It generates a pre-acceleration and an initial velocity of the occupant, thus reducing the loads due to the side impact.

Methods: The assessment of the potential is done by numerical simulations and a full-vehicle crash test. The optimal parameters of the restraint system including the precrash movement, time-to-fire of head and side airbag, etc., are found using metamodel-based optimization methods by minimizing occupant loads according to European New Car Assessment Programme (Euro NCAP).

Results: The metamodel-based optimization approach is able to tune the restraint system parameters. The numerical simulations show a significant averaged reduction of 22.3% in occupant loads.

Conclusion: The results show that the lateral precrash occupant movement offers better occupant protection in side collisions.  相似文献   

19.
Objective: The present study investigated the relationships between safety climate and driving behavior and crash involvement.

Methods: A total of 339 company-employed truck drivers completed a questionnaire that measured their perceptions of safety climate, crash record, speed choice, and aberrant driving behaviors (errors, lapses, and violations).

Results: Although there was no direct relationship between the drivers' perceptions of safety climate and crash involvement, safety climate was a significant predictor of engagement in risky driving behaviors, which were in turn predictive of crash involvement.

Conclusions: This research shows that safety climate may offer an important starting point for interventions aimed at reducing risky driving behavior and thus fewer vehicle collisions.  相似文献   


20.
Objectives: A cross-sectional study was conducted at the Touro University California campus to compare differences in reaction times and driving performance of younger adult drivers (18–40 years) and older adult drivers (60 years and older). Each test group consisted of 38 participants.

Methods: A Simple Visual Reaction Test (SVRT) tool was used to measure reaction times. The STISIM Drive M100 driving simulator was used to assess driving parameters. Driving performance parameters included mean lane position, standard deviation of mean lane position measured, mean speed, standard deviation of mean speed, car-following delay, car-following modulus, car-following coherence, off-road accidents, collisions, pedestrians hit, and traffic light tickets.

Results: Compared to younger participants, older drivers experienced significantly slower reaction times (510.0 ± 208.8 vs. 372.4 ± 96.1 ms, P =.0004), had more collisions (0.18 ± 0.39 vs. none, P =.0044), drove slower (44.6 ± 6.6 vs. 54.9 ± 11.7 mph, P <.0001), deviated less in speed (12.6 ± 4.3 vs. 16.8 ± 6.3, P =.0011), and were less able to maintain a constant distance behind a pace car (0.42 ± 0.23 vs. 0.59 ± 0.24; P =.0025).

Conclusions: Differences exist in driving patterns of older and younger drivers as measured by reaction times and driving simulator outcomes. These results are the first to compare these 2 specific adult age groups' driving performance as measured by a standardized driving simulator scenario. Identifying these differences is essential in addressing them and preventing future traffic injuries.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号