首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
In this paper, the viability of modeling the instantaneous thermal efficiency (ηith) of a solar still was determined using meteorological and operational data with an artificial neural network (ANN), multivariate regression (MVR), and stepwise regression (SWR). This study used meteorological and operational variables to hypothesize the effect of solar still performance. In the ANN model, nine variables were used as input parameters: Julian day, ambient temperature, relative humidity, wind speed, solar radiation, feed water temperature, brine water temperature, total dissolved solids of feed water, and total dissolved solids of brine water. The ηith was represented by one node in the output layer. The same parameters were used in the MVR and SWR models. The advantages and disadvantages were discussed to provide different points of view for the models. The performance evaluation criteria indicated that the ANN model was better than the MVR and SWR models. The mean coefficient of determination for the ANN model was about 13% and14% more accurate than those of the MVR and SWR models, respectively. In addition, the mean root mean square error values of 6.534% and 6.589% for the MVR and SWR models, respectively, were almost double that of the mean values for the ANN model. Although both MVR and SWR models provided similar results, those for the MVR were comparatively better. The relative errors of predicted ηith values for the ANN model were mostly in the vicinity of ±10%. Consequently, the use of the ANN model is preferred, due to its high precision in predicting ηith compared to the MVR and SWR models. This study should be extremely beneficial to those coping with the design of solar stills.  相似文献   

2.
Channel dimensions are important input variables for many hydrologic models. As measurements of channel geometry are not available in most watersheds, they are often predicted using bankfull hydraulic geometry relationships. This study aims at improving existing equations that relate bankfull width, depth, and cross‐sectional area to drainage area (DA) without limiting their use to well‐gauged watersheds. We included seven additional variables in the equations that can be derived from data that are generally required by hydrologic models anyway and conducted several multiple regression analyses to identify the ideal combination of additional variables for nationwide and regional models for each Physiographic Division of the United States (U.S.). Results indicate that including the additional variables in the regression equations generally improves predictions considerably. The selection of relevant variables varies by Physiographic Division, but average annual precipitation (PCP) and temperature (TMP) were generally found to improve the models the most. Therefore, we recommend using regression equations with three independent variables (DA, PCP, and TMP) to predict bankfull channel dimensions for hydrologic models. Furthermore, we recommend using the regional equations for watersheds within regions from which data were used for model development, whereas in all other parts of the U.S. and the rest of the world, the nationwide equations should be given preference.  相似文献   

3.
The module performance is an important consideration for selecting PV technologies for electricity production, as well as the economic aspect. Also, PV energy yield under varying environmental conditions is largely dependent on the type of technology used. Therefore, this article presents a comparative analysis of different PV modules, of the same power, namely, monocrystalline, polycrystalline, amorphous silicon and hybrid, based on performance, cost and space requirement. The performance is evaluated in terms of module power output, yield, capture losses, fill factor and efficiency, according to the IEC 61724 standards, using Gwako, Nigeria as a case study. A novel technique called Fundamental PV Module Performance Analysis is used to analyze and compare the performance of the PV modules. The performance of a single module is then employed to calculate the overall performance of a PV array designed for a small off-grid house, and a suitable module is determined amongst the modules under study. Results provide insights into the behaviors of the different technologies with the environmental factors of the location, which have an impact on their power and kWh/kW outputs and the efficiency. This knowledge, coupled with the understanding of the constraints of cost and the module space requirements would be useful to researchers, engineers, installers etc. in Nigeria, for planning and developing photovoltaic electric systems for off-grid applications.  相似文献   

4.
We evaluate and compare the performance of Bayesian Monte Carlo (BMC), Markov chain Monte Carlo (MCMC), and the Generalized Likelihood Uncertainty Estimation (GLUE) for uncertainty analysis in hydraulic and hydrodynamic modeling (HHM) studies. The methods are evaluated in a synthetic 1D wave routing exercise based on the diffusion wave model, and in a multidimensional hydrodynamic study based on the Environmental Fluid Dynamics Code to simulate estuarine circulation processes in Weeks Bay, Alabama. Results show that BMC and MCMC provide similar estimates of uncertainty. The posterior parameter densities computed by both methods are highly consistent, as well as the calibrated parameter estimates and uncertainty bounds. Although some studies suggest that MCMC is more efficient than BMC, our results did not show a clear difference between the performance of the two methods. This seems to be due to the low number of model parameters typically involved in HHM studies, and the use of the same likelihood function. In fact, for these studies, the implementation of BMC results simpler and provides similar results to MCMC. The results of GLUE are, on the other hand, less consistent to the results of BMC and MCMC in both applications. The posterior probability densities tend to be flat and similar to the uniform priors, which can result in calibrated parameter estimates centered in the parametric space.  相似文献   

5.
Herr, Joel W., Krish Vijayaraghavan, and Eladio Knipping, 2010. Comparison of Measured and MM5 Modeled Meteorology Data for Simulating Flow in a Mountain Watershed. Journal of the American Water Resources Association (JAWRA) 46(6):1255–1263. DOI: 10.1111/j.1752-1688.2010.00489.x Abstract: Accurate simulation of time-varying flow in a river system depends on the quality of meteorology inputs. The density of meteorology measurement stations can be insufficient to capture spatial heterogeneity of precipitation, especially in mountainous areas. The Watershed Analysis Risk Management Framework (WARMF) model was applied to the Catawba River watershed of North and South Carolina to simulate flow and water quality in rivers and a series of 11 reservoirs. WARMF was linked with the AMSTERDAM air model to analyze the water quality benefit from reduced atmospheric emissions. The linkage requires accurate simulation of meteorology for all seasons and for all types of precipitation events. WARMF was driven by the mesoscale meteorology model MM5 processed by the Meteorology Chemistry Interface Processor, which provides greater spatial density but less accuracy than meteorology stations. WARMF was also run with measured data from the National Climatic Data Center (NCDC) to compare the performance of the watershed model using measured data vs. modeled meteorology as input. A one year simulation using MM5 modeled meteorology performed better overall than the simulation using NCDC data for the volumetric water balance measure used for calibration, but MM5 represented precipitation from a dissipated hurricane poorly, which propagated into errors of simulated flow.  相似文献   

6.
This paper proposes a mixed performance measurement system using a combination of evolutionary game theory and the balanced scorecard (BSC) in environmental supply chain management (ESCM) that measures and evaluates business operations using the four different perspectives of finance, customer, internal business process, and learning and growth. ESCM plays an important role in the supply chain which leads to the reduction, reuse and recycling of resources involved in both upstream and downstream activities. This paper presents guidance for practical managers in evaluating and measuring ESCM by developing a knowledge-based BSC and evolutionary game theory. The primary purpose of this paper is to apply the proposed method in a case study to one of Iran's biggest auto industry supply chain SAIPA Company. The results of this study indicate that the adoption of ESCM, in the absence of regulatory pressures and cost-saving measures is triggered by public pressures and its implementation is limited by organizational factors and strategic myopia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号