首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Compared with natural ecosystems and managed agricultural systems, engineered landfills represent a highly managed soil system for which there has been no systematic quantification of emissions from coexisting daily, intermediate, and final cover materials. We quantified the seasonal variability of CH, CO, and NO emissions from fresh refuse (no cover) and daily, intermediate, and final cover materials at northern and southern California landfill sites with engineered gas extraction systems. Fresh refuse fluxes (g m d [± SD]) averaged CH 0.053 (± 0.03), CO 135 (± 117), and NO 0.063 (± 0.059). Average CH emissions across all cover types and wet/dry seasons ranged over more than four orders of magnitude (<0.01-100 g m d) with most cover types, including both final covers, averaging <0.1 g m d with 10 to 40% of surface areas characterized by negative fluxes (uptake of atmospheric CH). The northern California intermediate cover (50 cm) had the highest CH fluxes. For both the intermediate (50-100 cm) and final (>200 cm) cover materials, below which methanogenesis was well established, the variability in gaseous fluxes was attributable to cover thickness, texture, density, and seasonally variable soil moisture and temperature at suboptimal conditions for CH oxidation. Thin daily covers (30 cm local soil) and fresh refuse generally had the highest CO and NO fluxes, indicating rapid onset of aerobic and semi-aerobic processes in recently buried refuse, with rates similar to soil ecosystems and windrow composting of organic waste. This study has emphasized the need for more systematic field quantification of seasonal emissions from multiple types of engineered covers.  相似文献   

2.
The release of methane (CH4) from landfills to the atmosphere and the oxidation of CH4 in the cover soils were quantified with static chambers and a 13C-isotope technique on two landfills in Sweden. One of the landfills had been closed and covered 17 years before this investigation while the other was recently covered. On both landfills, the tops of the landfills were compared with the sloping parts in the summer and winter. Emitted CH4, captured in chambers, was significantly enriched in 13C during summer compared with winter (P < 0.0001), and was enriched relative to anaerobic-zone methane. The difference between emitted and anaerobic zone delta 13C-CH4 was used to estimate soil methane oxidation. In summer, these differences ranged from 9 to 26@1000, and CH4 oxidation was estimated to be between 41 and 50% of the produced CH4 in the new landfill, and between 60 and 94% in the old landfill. In winter, when soil temperature was below 0 degree C, no difference in delta 13C was observed between emitted and anaerobic-zone CH4, suggesting that there was no soil oxidation. The temperature effect shown in this experiment suggests that there may be both seasonal and latitudinal differences in the importance of landfill CH4 oxidation. Finally the isotopic fractionation factor (alpha) varied from 1.023 to 1.038 and was temperature dependent, increasing at colder temperatures. Methanotrophic bacteria appeared to have high growth efficiencies and the majority of the methane consumed in incubations did not result in immediate CO2 production.  相似文献   

3.
Laboratory and greenhouse studies compared the ability of water treatment residuals (WTRs) to alter P solubility and leaching in Immokalee sandy soil (sandy, siliceous, hyperthermic Arenic Alaquod) amended with biosolids and triple superphosphate (TSP). Aluminum sulfate (Al-WTR) and ferric sulfate (Fe-WTR) coagulation residuals, a lime softening residual (Ca-WTR) produced during hardness removal, and pure hematite were examined. In equilibration studies, the ability to reduce soluble P followed the order Al-WTR > Ca-WTR = Fe-WTR > hematite. Differences in the P-fixing capacity of the sesquioxide-dominated materials (Al-WTR, Fe-WTR, hematite) were attributed to their varying reactive Fe- and Al-hydrous oxide contents as measured by oxalate extraction. Leachate P was monitored from greenhouse columns where bahiagrass (Paspalum notatum Flugge) was grown on Immokalee soil amended with biosolids or TSP at an equivalent rate of 224 kg P ha(-1) and WTRs at 2.5% (56 Mg ha(-1)). In the absence of WTRs, 21% of TSP and 11% of Largo cake biosolids total phosphorus (PT) leached over 4 mo. With co-applied WTRs, losses from TSP columns were reduced to 3.5% (Fe-WTR), 2.5% (Ca-WTR), and <1% (Al-WTR) of applied P. For the Largo biosolids treatments all WTRs retarded downward P flux such that leachate P was not statistically different than for control (soil only) columns. The phosphorus saturation index (PSI = [Pox]/ [Al(ox) + Fe(ox)], where Pox, Al, and Fe(ox) are oxalate-extractable P, Al, and Fe, respectively) based on a simple oxalate extraction of the WTR and biosolids is potentially useful for determining WTR application rates for controlled reduction of P in drainage when biosolids are applied to low P-sorbing soils.  相似文献   

4.
We conducted a 3-year study designed to examine the relationship between disturbance from military land use and stream physical and organic matter variables within 12 small (<5.5 km2) Southeastern Plains catchments at the Fort Benning Military Installation, Georgia, USA. Primary land-use categories were based on percentages of bare ground and road cover and nonforested land (grasslands, sparse vegetation, shrublands, fields) in catchments and natural catchments features, including soils (% sandy soils) and catchment size (area). We quantified stream flashiness (determined by slope of recession limbs of storm hydrographs), streambed instability (measured by relative changes in bed height over time), organic matter storage [coarse wood debris (CWD) relative abundance, benthic particulate organic matter (BPOM)] and stream-water dissolved organic carbon concentration (DOC). Stream flashiness was positively correlated with average storm magnitude and percent of the catchment with sandy soil, whereas streambed instability was related to percent of the catchment containing nonforested (disturbed) land. The proportions of in-stream CWD and sediment BPOM, and stream-water DOC were negatively related to the percent of bare ground and road cover in catchments. Collectively, our results suggest that the amount of catchment disturbance causing denuded vegetation and exposed, mobile soil is (1) a key terrestrial influence on stream geomorphology and hydrology and (2) a greater determinant of in-stream organic matter conditions than is natural geomorphic or topographic variation (catchment size, soil type) in these systems.  相似文献   

5.
Despite the use of recyclable materials increasing worldwide, waste disposal to landfill remains the most common method of waste management because it is simple and relatively inexpensive. Although landfill disposal is an effective waste management system, if not managed correctly, a number of potential detrimental environmental impacts have been identified including soil and ground water contamination, leachate generation, and gas emissions. In particular, improper post-closure treatment of landfills or deterioration of the conventional clay landfill capping were shown to result in land degradation which required remediation to secure contaminants within the landfill site.Phytoremediation is an attractive technology for landfill remediation, as it can stabilize soil and simultaneously remediate landfill leachate. In addition, landfill phytoremediation systems can potentially be combined with landfill covers (Phytocapping) for hydrological control of infiltrated rainfall. However, for the successful application of any phytoremediation system, the effective establishment of appropriate, desired vegetation is critical. This is because the typically harsh and sterile nature of landfill capping soil limits the sustainable establishment of vegetation. Therefore, the physicochemical properties of landfill capping soils often need to be improved by incorporating soil amendments. Biosolids are a common soil amendment and will often meet these demanding conditions because they contain a variety of plant nutrients such as nitrogen, phosphate, potassium, as well as a large proportion of organic matter. Such amendment will also ameliorate the physical properties of the capping soils by increasing porosity, moisture content, and soil aggregation. Contaminants which potentially originate from biosolids will also be remediated by activities congruent with the establishment of plants and bacteria.  相似文献   

6.
In a sanitary landfill, the final cover plays an important role in reducing the landfill gas emission to the atmosphere and in preventing the ingress of rainwater into the dumped waste. The present study investigated the suitability of sugarcane bagasse biochar as an amendment to the cover soil to improve the required landfill liner properties. The amended cover soil sugarcane bagasse (SSB) was tested for its stability and effectiveness, in terms of both geotechnical properties and methane mitigation efficiency. The effects of amending 15%, 20%, and 25% of sugarcane bagasse biochar (passing through 300 micron Indian Standard sieve) on the geotechnical properties of the SSB indicated that the SSB with 25% biochar showed the required values as per the standard with maximum dry density of 1.57 grams per cubic centimeter (g/cm3), liquid limit, plasticity index, and percentage of fines 48.5%, 16.3%, and 74.7%, respectively, and permeability of 0.9 × 10?7. A column study that was conducted to determine the methane emission from the cover soil showed a 65.8% reduction in the methane emission compared to that of a column without SSB cover, with a cumulative methane emission of 410 milliliters (mL) at the end of 200 hours (h). On the other hand, the volume of methane emitted after 310 h from the column without cover and with the SSB cover was 1850 mL and 692 mL, respectively. The difference between these two values is found to be 22% of the total methane that the cover would have handled in its lifetime (5267 mL). Thus, there is an increase in the percentage of methane adsorption by soil cover from 15% to 22% when the soil was amended with 25% sugarcane bagasse biochar.  相似文献   

7.
The lack of landfill capacity, forthcoming EU waste disposal and landfill management legislation and the use of non-renewable and energy intensive natural resources for the end-treatment of old landfills increase pressures to develop new landfill management methods. This paper considers a method for the end-management of old landfills in Finland, which is based on the utilization of forest and paper industry waste flows, wastes from paper recycling (de-inking) and wastes from forest industry energy production. Fibre clay wastes from paper mills, de-inking sludges from de-inking of recovered waste paper and incineration ash from forest industry power plants serve to substitute the use of natural clay for the building of landfill structures for closed landfills. Arguably, this method is preferable to existing practices of natural clay use for landfill building, because it (1) substitutes non-renewable natural clay, (2) consumes less energy and generates less CO2 emissions than the use of natural clay, and (3) eliminates considerable amounts of wastes from paper production, paper consumption and from forest industry energy production. Some difficulties in the application of the method are considered and the waste flow utilization is incorporated into a local forest industry recycling network.  相似文献   

8.
The use of various animal manures for nitrogen (N) fertilization is often viewed as a viable replacement for mineral N fertilizers. However, the impacts of amendment type on NO production may vary. In this study, NO emissions were measured for 2 yr on two soil types with contrasting texture and carbon (C) content under a cool, humid climate. Treatments consisted of a no-N control, calcium ammonium nitrate, poultry manure, liquid cattle manure, or liquid swine manure. The N sources were surface applied and immediately incorporated at 90 kg N ha before seeding of spring wheat ( L.). Cumulative NO-N emissions from the silty clay ranged from 2.2 to 8.3 kg ha yr and were slightly lower in the control than in the fertilized plots ( = 0.067). The 2-yr mean NO emission factors ranged from 2.0 to 4.4% of added N, with no difference among N sources. Emissions of NO from the sandy loam soil ranged from 0.3 to 2.2 kg NO-N ha yr, with higher emissions with organic than mineral N sources ( = 0.015) and the greatest emissions with poultry manure ( < 0.001). The NO emission factor from plots amended with poultry manure was 1.8%, more than double that of the other treatments (0.3-0.9%), likely because of its high C content. On the silty clay, the yield-based NO emissions (g NO-N kg grain yield N) were similar between treatments, whereas on the sandy loam, they were greatest when amended with poultry manure. Our findings suggest that, compared with mineral N sources, manure application only increases soil NO flux in soils with low C content.  相似文献   

9.
Extent of pyrolysis impacts on fast pyrolysis biochar properties   总被引:2,自引:0,他引:2  
A potential concern about the use of fast pyrolysis rather than slow pyrolysis biochars as soil amendments is that they may contain high levels of bioavailable C due to short particle residence times in the reactors, which could reduce the stability of biochar C and cause nutrient immobilization in soils. To investigate this concern, three corn ( L.) stover fast pyrolysis biochars prepared using different reactor conditions were chemically and physically characterized to determine their extent of pyrolysis. These biochars were also incubated in soil to assess their impact on soil CO emissions, nutrient availability, microorganism population growth, and water retention capacity. Elemental analysis and quantitative solid-state C nuclear magnetic resonance spectroscopy showed variation in O functional groups (associated primarily with carbohydrates) and aromatic C, which could be used to define extent of pyrolysis. A 24-wk incubation performed using a sandy soil amended with 0.5 wt% of corn stover biochar showed a small but significant decrease in soil CO emissions and a decrease in the bacteria:fungi ratios with extent of pyrolysis. Relative to the control soil, biochar-amended soils had small increases in CO emissions and extractable nutrients, but similar microorganism populations, extractable NO levels, and water retention capacities. Corn stover amendments, by contrast, significantly increased soil CO emissions and microbial populations, and reduced extractable NO. These results indicate that C in fast pyrolysis biochar is stable in soil environments and will not appreciably contribute to nutrient immobilization.  相似文献   

10.
Managing fertilizer applications to maintain soil P below environmentally unacceptable levels should consider the contribution of manure and synthetic fertilizer sources to soluble and extractable forms of P. Our objective was to evaluate soil and manure characteristics and application rates on P extractability in recently amended soils. Five soils of the U.S. southern High Plains were amended with beef cattle manures, composted beef manure, and inorganic fertilizers [Ca(H(2)PO(4))(2) or KH(2)PO(4)] at five rates and incubated under controlled conditions. Mehlich 3-, Olsen (NaHCO(3))-, Texas A&M extractant (TAM)-, and water-extractable P were determined for the soils after selected incubation periods. Except for TAM and some water extractions, P extractability as a function of total P applied was linear (P < 0.001) for a wide range of application rates. Mehlich-3, NaHCO(3), and water P extraction efficiencies of KH(2)PO(4)-amended soils averaged 22, 34, and 115% greater (P < or = 0.036), respectively, than efficiencies of soils amended with manures except for the Texline (calcareous) loam and Pullman clay loam soils. Phosphorus extraction efficiencies decreased with time for KH(2)PO(4)-amended soils (P < 0.05) but remained stable or increased for manure-amended soils during the 8-wk incubation period. Across all soils and manure sources, changes in water-extractable P per unit increase in Mehlich 3-, NaHCO(3)-, and TAM-extractable P averaged 100, 85, and 125% greater, respectively, for inorganic as compared with manure-amended soils. These source-dependent relationships limit the use of agronomic soil extractants to make correct inferences about water-extractable P and dissolved P in runoff.  相似文献   

11.
Methane and trace organic gases produced in landfill waste are partly oxidized in the top 40 cm of landfill cover soils under aerobic conditions. The balance between the oxidation of landfill gases and the ingress of atmospheric oxygen into the soil cover determines the attenuation of emissions of methane, chlorofluorocarbons, and hydrochlorofluorocarbons to the atmosphere. This study was conducted to investigate the effect of oxidation reactions on the overall gas transport regime and to evaluate the contributions of various gas transport processes on methane attenuation in landfill cover soils. For this purpose, a reactive transport model that includes advection and the Dusty Gas Model for simulation of multicomponent gas diffusion was used. The simulations are constrained by data from a series of counter-gradient laboratory experiments. Diffusion typically accounts for over 99% of methane emission to the atmosphere. Oxygen supply into the soil column is driven exclusively by diffusion, whereas advection outward offsets part of the diffusive contribution. In the reaction zone, methane consumption reduces the pressure gradient, further decreasing the significance of advection near the top of the column. Simulations suggest that production of water or accumulation of exopolymeric substances due to microbially mediated methane oxidation can significantly reduce diffusive fluxes. Assuming a constant rate of methane production within a landfill, reduction of the diffusive transport properties, primarily due to exopolymeric substance production, may result in reduced methane attenuation due to limited O(2) -ingress.  相似文献   

12.
The ability to reuse carbonatic lake-dredged materials (CLDM) for agricultural purposes is important because it reduces offshore disposal and provides an alternative to disposal of the materials in landfills that are already overtaxed. A four-year (2001 to 2005) study on land application of CLDM as an option for disposal was conducted on a beef cattle pasture in south central Florida. The objectives of this study were (i) to assess CLDM as a soil amendment to improve quality of sandy soils in most subtropical beef cattle pastures and (ii) to determine the effect of CLDM on productivity and nutritive values of bahiagrass (BG, Paspalum notatum Flügge) in subtropical beef cattle pasture. The five treatment combinations arranged in randomized complete block design were represented by plots with different ratios (R) of natural soil (NS) to CLDM: R1 (1000 g kg(-1):0 g kg(-1)); R2 (750 g kg(-1):250 g kg(-1)); R3 (500 g kg(-1):500 g kg(-1)); R4 (250 g kg(-1):750 g kg(-1)); and R5 (0 g kg(-1):1000 g kg(-1)). Addition of CLDM had significant (p < or = 0.001) effects on soil quality and favorable influence on forage establishment and nutritive values. Compared with the control plots (0 g kg(-1)), the soils in plots amended with CLDM exhibited (i) lower penetration resistance, (ii) an increase in soil pH and exchangeable cations (Ca and Mg), and (iii) decrease in the levels of soil trace metals (Mn, Cu, Fe, Zn, and Si). Results disclosed consistently and significantly (p < or = 0.001) higher BG biomass production (forage yield = -106.3x(2) + 1015.8x - 39.2; R(2) = 0.99**) and crude protein content (CP = 1.24x + 6.48; R(2) = 0.94**) from plots amended with CLDM than those of BG planted on plots with no CLDM treatment.  相似文献   

13.
Platinum is increasingly used intentionally and non-intentionally in several applications. This has raised the concern about its future resources, emissions and losses during its life cycle. On the one hand, increasing platinum emissions might affect human health. On the other hand, the accumulated platinum in mineral waste, soil, landfill sites and construction materials as a result of the emissions, losses and the utilization of secondary materials can be seen as potential resources for platinum. This paper is aimed at (1) analyzing the long term impacts of the use of platinum intentionally and non-intentionally on its future demand and supply, release to the environment and accumulation in mineral waste, soil, landfill sites and construction materials and (2) quantifying the amount of platinum in secondary materials that would be available for platinum future supply. The analysis is carried out on a global level using a system dynamic model of platinum intentional and non-intentional flows and stocks. The analysis is based on four scenarios for the introduction of fuel cell vehicles (FCVs). The results show that platinum demand is increasing overtime in all scenarios at different rates and its identified resources are expected to deplete before the end of the century with or without the introduction of FCVs. The release of platinum to the environment and the accumulation in soil are expected to decrease when conventional ICE vehicles is replaced by FCVs. The amount of platinum accumulated in mineral waste, soil, landfill sites and construction materials by the time platinum is depleted are more than double its identified resources and would be potential resources for platinum that are available in different parts of the world. The methodology presented in this paper can be used in the assessment of other technologies and other metals.  相似文献   

14.
Substantially different biogeochemical processes affecting nitrogen fate and transport were observed beneath two stormwater infiltration basins in north-central Florida. Differences are related to soil textural properties that deeply link hydroclimatic conditions with soil moisture variations in a humid, subtropical climate. During 2008, shallow groundwater beneath the basin with predominantly clayey soils (median, 41% silt+clay) exhibited decreases in dissolved oxygen from 3.8 to 0.1 mg L and decreases in nitrate nitrogen (NO-N) from 2.7 mg L to <0.016 mg L, followed by manganese and iron reduction, sulfate reduction, and methanogenesis. In contrast, beneath the basin with predominantly sandy soils (median, 2% silt+clay), aerobic conditions persisted from 2007 through 2009 (dissolved oxygen, 5.0-7.8 mg L), resulting in NO-N of 1.3 to 3.3 mg L in shallow groundwater. Enrichment of δN and δO of NO combined with water chemistry data indicates denitrification beneath the clayey basin and relatively conservative NO transport beneath the sandy basin. Soil-extractable NO-N was significantly lower and the copper-containing nitrite reductase gene density was significantly higher beneath the clayey basin. Differences in moisture retention capacity between fine- and coarse-textured soils resulted in median volumetric gas-phase contents of 0.04 beneath the clayey basin and 0.19 beneath the sandy basin, inhibiting surface/subsurface oxygen exchange beneath the clayey basin. Results can inform development of soil amendments to maintain elevated moisture content in shallow soils of stormwater infiltration basins, which can be incorporated in improved best management practices to mitigate NO impacts.  相似文献   

15.
Many revegetated landfills have poor cover including bare areas where plants do not grow. This study, on the Bisasar Road Landfill site in South Africa, assessed grass species preferences to microhabitat conditions in a mosaic of patches of well-established grassed areas and bare, nonvegetated areas. Factors, including soil CO2, CH4, O2, nutrients, and other general soil conditions, were measured in relation to species distribution and grass biomass in the field. Cynodon dactylon was the dominant grass in the established grass areas but was less abundant in the areas bordering the bare areas where Paspalum paspalodes and Sporobolus africanus were common. A number of soil factors measured were significantly correlated with grass biomass and these included Mg, Ca, Zn, Mn, K, temperature, moisture, and CO2. However, a laboratory bioassay using the growth of C. dactylon with soils removed from the landfill indicated that there were no differences in the soils from the bare areas and those that supported high plant biomass. Thus, no nutrient deficiency or chemical toxicity was inherent in the soil in the laboratory. The results of the field investigation and bioassay indicated that soil CO2 as a result of landfill gas infiltration into the root zone was probably the main factor causing bare areas on the landfill where no grass species could colonize and grow and that C. dactylon was more sensitive to elevated soil CO2 than other grass species such as P. paspalodes and S. africanus.  相似文献   

16.
Effects of landfill gas on subtropical woody plants   总被引:2,自引:0,他引:2  
An account is given of the influence of landfill gas on tree growth in the field at Gin Drinkers' Bay (GDB) landfill, Hong Kong, and in the laboratory. Ten species (Acacia confusa, Albizzia lebbek, Aporusa chinensis, Bombax malabaricum, Castanopsis fissa, Liquidambar formosana, Litsea glutinosa, Machilus breviflora, Pinus elliottii, andTristania conferta), belonging to eight families, were transplanted to two sites, one with a high concentration of landfill gas in the cover soil (high-gas site, HGS) and the other with a relatively low concentration of gas (low-gas site, LGS). Apart from the gaseous composition, the general soil properties were similar. A strong negative correlation between tree growth and landfill gas concentration was observed. A laboratory study using the simulated landfill gas to fumigate seedlings of the above species showed that the adventitious root growth ofAporusa chinensis, Bombax malabaricum, Machilus breviflora, andTristania confera was stimulated by the gas, with shallow root systems being induced.Acacia confusa, Albizzia lebbek, andLitsea glutinosa were gas-tolerant, while root growth ofCastanopsis fissa, Liquidambar formosana, andPinus elliottii was inhibited. In most cases, shoot growth was not affected, exceptions beingBombax malabaricum, Liquidambar formosana, andTristania conferta, where stunted growth and/or reduced foliation was observed. A very high CO2 concentration in cover soil limits the depth of the root system. Trees with a shallow root system become very susceptible to water stress. The effects of low O2 concentration in soil are less important than the effects of high CO2 concentration.Acacia confusa, Albizzia lebbek, andTristania conferta are suited for growth on subtropical completed landfills mainly due to their gas tolerance and/or drought tolerance.  相似文献   

17.
Organic wastes are considered to be a source for the potentially pathogenic microorganisms found in surface and sub-surface water resources. Following their release from the organic waste matrix, bacteria often infiltrate into soil and may be transported to significant depths contaminating aquifers. We investigated the influence of soil texture and structure and most importantly the organic waste properties on the transport and filtration coefficients of Escherichia coli and total bacteria in undisturbed soil columns. Intact soil columns (diameter 16 cm and height 25 cm) were collected from two soils: sandy clay loam (SCL) and loamy sand (LS) in Hamadan, western Iran. The cores were amended with cow manure, poultry manure and sewage sludge at a rate of 10 Mg ha(-1) (dry basis). The amended soil cores were leached at a steady-state flux of 4.8 cm h(-1) (i.e. 0.12 of saturated hydraulic conductivity of the SCL) to a total volume of up to 4 times the pore volume of the columns. The influent (C(0)) and effluent (C) were sampled at similar time intervals during the experiments and bacterial concentrations were measured by the plate count method. Cumulative numbers of the leached bacteria, filtration coefficient (lambda(f)), and relative adsorption index (S(R)) were calculated. The preferential pathways and stable structure of the SCL facilitated the rapid transport and early appearance of the bacteria in the effluent. The LS filtered more bacteria when compared with the SCL. The effluent contamination of poultry manure-treated columns was greater than the cow manure- and sewage sludge-treated ones. The difference between cow manure and sewage sludge was negligible. The lambda(f) and S(R) values for E. coli and total bacteria were greater in the LS than in the SCL. This indicates a predominant role for the physical pore-obstruction filtration mechanisms as present in the poorly structured LS vs. the retention at adsorptive sites (chemical filtration) more likely in the better structured SCL. While the results confirmed the significant role of soil structure and preferential (macroporous) pathways, manure type was proven to have a major role in determining the maximum penetration risk of bacteria by governing filtration of bacteria. Thus while the numbers of bacteria in waste may be of significance for shallow aquifers, the type of waste may determine the risk for microbial contamination of deep aquifers.  相似文献   

18.
The use of mining substrates for recultivation purposes is limited due to their low organic matter (OM) contents. In a 1-yr laboratory experiment we evaluated the stabilization of biowaste compost added to a humus-free sandy mining soil to examine the suitability of compost amendment for the formation of stable soil organic matter (SOM). The stabilization process was characterized by measuring enrichment of OM and nitrogen in particle size fractions obtained after dispersion with different amounts of energy (ultrasonication and shaking in water), carbon mineralization, and amount of dissolved organic carbon (DOC). During the experiment, 17.1% of the organic carbon (OC) was mineralized. Organic carbon enrichment in the < 20-micron particle size fraction at the beginning of the experiment was in the range of natural soils with similar texture. Within 12 mo, a distinct OC redistribution from coarse into fine fractions was found with both dispersion methods. The accumulation of OC was more pronounced for the size separates obtained by ultrasonication, where the carbon distribution between 0.45- to 20-micron particle size fractions increased from 30% at the beginning to 71% at the end of the experiment. Dissolved organic carbon contents ranged between 50 and 68 g kg-1 OC and decreased during the incubation. In conclusion, the exponential decrease of carbon mineralization and the OC enrichment in the fine particle size fractions both indicated a distinct OM stabilization in the mining soil.  相似文献   

19.
The interactive effects of soil texture and type of N fertility (i.e., manure vs. commercial N fertilizer) on N(2)O and CH(4) emissions have not been well established. This study was conducted to assess the impact of soil type and N fertility on greenhouse gas fluxes (N(2)O, CH(4), and CO(2)) from the soil surface. The soils used were a sandy loam (789 g kg(-1) sand and 138 g kg(-1) clay) and a clay soil (216 g kg(-1) sand, and 415 g kg(-1) clay). Chamber experiments were conducted using plastic buckets as the experimental units. The treatments applied to each soil type were: (i) control (no added N), (ii) urea-ammonium nitrate (UAN), and (iii) liquid swine manure slurry. Greenhouse gas fluxes were measured over 8 weeks. Within the UAN and swine manure treatments both N(2)O and CH(4) emissions were greater in the sandy loam than in the clay soil. In the sandy loam soil N(2)O emissions were significantly different among all N treatments, but in the clay soil only the manure treatment had significantly higher N(2)O emissions. It is thought that the major differences between the two soils controlling both N(2)O and CH(4) emissions were cation exchange capacity (CEC) and percent water-filled pore space (%WFPS). We speculate that the higher CEC in the clay soil reduced N availability through increased adsorption of NH(4)(+) compared to the sandy loam soil. In addition the higher average %WFPS in the sandy loam may have favored higher denitrification and CH(4) production than in the clay soil.  相似文献   

20.
In Tanzania, construction and demolition (C&D) waste is not recycled and knowledge on how it can be recycled especially into valuable products like building materials are still limited. This study aimed at investigating the possibility of recycling the C&D waste (mainly cementitious rubble) into building material in Tanzania. The building materials produced from C&D waste was concrete blocks. The concrete blocks were required to have a load bearing capacity that meets the building material standards and specifications. Eight C&D waste samples were collected from C&D building sites, transported to the recycling site, crushed, and screened (sieved) to get the required recycled aggregates. Natural aggregates were also used as control. The recycled aggregates were tested in the laboratory following the standard methods as specified in Tanzanian standards. The physical, mechanical and chemical characteristics were determined. The physical and mechanical results showed that recycled aggregates were weaker than natural aggregates. However, chemically they were close to natural aggregates and therefore suitable for use in new concrete block production. In the production process, each experiment utilized 100% recycled aggregates for both fine and coarse portions to replace natural aggregates. The Fuller's maximum density theory was used to determine the mix proportions of materials in which a method that specifies concrete mix by system of proportion or ratio was used. The concrete blocks production processes included batching, mixing (that was done manually to get homogeneous material), compacting and moulding by hand machine and curing in water. After 28 days of curing, the concrete blocks were tested in the laboratory on compressive strength, water absorption ratio and density. The results showed that the blocks produced with 100% recycled aggregates were weaker than those with natural aggregates. However, the results also showed that there is a possibility of recycling the C&D waste into building material because 85% of the tested concrete block specimens from recycled aggregates achieved a compressive strength of 7 N/mm2, which is defined as the minimum required load bearing capacity in Tanzania. Therefore, the C&D waste could be a potential resource for building material production for sustainable construction in Tanzania rather than discarding it. Further work should focus on the economic feasibility of production of concrete blocks with recycled aggregates in Tanzania.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号