首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
We examined how fire hazard was affected by prescribed burning and fuel recovery over the first six years following treatment. Eight common Mediterranean fuel complexes managed by means of prescribed burning in limestone Provence (South-Eastern France) were studied, illustrating forest and woodland, garrigue and grassland situations. The coupled atmosphere-wildfire behaviour model FIRETEC was used to simulate fire behaviour (ROS, intensity) in these complex vegetations. The temporal threshold related to the effectiveness of prescribed burning in reducing the fire hazard was assessed from derivated fuel dynamics after treatment. The study showed that prescribed burning treatment was effective for the first two years in most of the Mediterranean plant communities analysed. Thereafter, all forests and shrublands were highly combustible with a fire line intensity of more than 5000 kW/m except for pine stands with or without oak (medium intensity of 2000 kW m−1 3 years after treatment). Low fire line intensity (900 kW m−1) was obtained for grassland which was entirely treatment-independent since the resprouter hemicryptophyte, Brachypodium retusum, is highly resilient to fire. Fire behaviour was greatly affected by fuel load accumulation of Quercus ilex in woodland, and by standing necromass of Rosmarinus officinalis in treated garrigue. Pure pine stands with shrub strata similar to garrigue showed a lower fire intensity due to wind speed decrease at ground level under tree canopy, underlining the advantage of maintaining a proportion of canopy cover in strategic fuel-break zones.  相似文献   

2.
Prescribed burning is increasingly being used in the deciduous forests of eastern North America. Recent work suggests that historical fire frequency has been overestimated east of the prairie–woodland transition zone, and its introduction could potentially reduce forest herb and shrub diversity. Fire‐history recreations derived from sedimentary charcoal, tree fire scars, and estimates of Native American burning suggest point‐return times ranging from 5–10 years to centuries and millennia. Actual return times were probably longer because such records suffer from selective sampling, small sample sizes, and a probable publication bias toward frequent fire. Archeological evidence shows the environmental effect of fire could be severe in the immediate neighborhood of a Native American village. Population density appears to have been low through most of the Holocene, however, and villages were strongly clustered at a regional scale. Thus, it appears that the majority of forests of the eastern United States were little affected by burning before European settlement. Use of prescribed burning assumes that most forest species are tolerant of fire and that burning will have only a minimal effect on diversity. However, common adaptations such as serotiny, epicormic sprouting, resprouting from rhizomes, and smoke‐cued germination are unknown across most of the deciduous region. Experimental studies of burning show vegetation responses similar to other forms of disturbance that remove stems and litter and do not necessarily imply adaptation to fire. The general lack of adaptation could potentially cause a reduction in diversity if burning were introduced. These observations suggest a need for a fine‐grained examination of fire history with systematic sampling in which all subregions, landscape positions, and community types are represented. Responses to burning need to be examined in noncommercial and nonwoody species in rigorous manipulative experiments. Until such information is available, it seems prudent to limit the use of prescribed burning east of the prairie–woodland transition zone. Reevaluación del Uso de Fuego como Herramienta de Manejo en Bosques Deciduos de América del Norte  相似文献   

3.
Longleaf pine (Pinus palustris) savannas of the southeastern U.S. represent an archetype of a fire dependent ecosystem. They are known to have very short fire return intervals (∼1-3 years) that perpetuate understory plant diversity (up to 50 species m−2), support pine recruitment, and suppress fire sensitive hardwoods. Understanding the relationships that regulate longleaf and southern hardwoods is especially critical. With decreased fire frequency, insufficient intensity, or lack of underground competition, a woody mid-story rapidly develops, dominated by fire sensitive trees and shrubs that in-turn suppress more fire dependent species (including pine seedlings). This may occur in forest gaps, where pine-needle abundance is diminished, reducing fire spread potential. The interactions between longleaf pine, hardwoods, forest fuels, and fire frequency are complex and difficult to understand spatially. The objective of this study was to develop a spatially explicit longleaf pine-hardwood stochastic simulation model (LLM), incorporating tree demography, plant competition, and fuel and fire characteristics. Data from two longleaf pine study sites were used to develop and evaluate the model with the goal to incorporate simple site-specific calibration parameters for model versatility. Specific model components included pine seed masting, hardwood clonal sprouting, response to fire (re-sprouting, mortality), and tree density driven competition effects. LLM spatial outputs were consistent with observed forest gap dynamics associated with pine seedling establishment and hardwood encroachment. Changes in fire frequency (i.e., fire probability = 0.35-0.05) illustrated a shift in community structure from longleaf pine dominated to a hardwood dominated community. This approach to assessing model response may be useful in characterizing longleaf ecosystem resilience, especially at intermediate fire frequencies (e.g., 0.15) where the community may be sensitive to small changes in the fire regime. Height distributions and population densities were similar to in situ findings (field and LIDAR data) for both study sites. Height distributions output by the LLM illustrated fluctuations in population structure. The LLM was especially useful in determining knowledge gaps associated with fuel and fire heterogeneity, plant-plant interactions, population structure and its temporal fluctuations, and hardwood demography. This is the first known modeling work to simulate interactions between longleaf pine and hardwoods and provides a foundation for further studies on fire and forest management, especially in relation to ecological forestry practices, restoration, and site-specific applications.  相似文献   

4.
A non-linear, deterministic model of biomass accumulation and nitrogen cycling in an even-aged, pure jack pine (Pinus banksiana Lamb.) stand was developed and used to explore effects of fire intensity and frequency of burning on the long-term nitrogen cycle. Given the model structure and assumptions, simulated results showed that successive fires at both light and severe fire intensities caused gradual depletion of the amount of N accumulated in the vegetation layers. Fires also reduced the amount of N in the litter and soil pools, with the initially large soil organically-bound N pool showing a particularly sharp decline, and decreased the productivity of the simulated stand. A frequency of one fire per 20 years for five successive burns produced declines of N accumulated in the tree stratum of 50–75% (depending upon fire intensity) in comparison with the undisturbed system at a corresponding age, whereas a 100-year frequency produced decreases of 10–22%. Similarly, declines in litter layer N were 54–72% at a 40-year frequency, compared with 30–55% at a 100-year frequency. The simulated results also suggested that both the stand age when burning occurred and the fire frequency were important, because distinctive patterns of accumulation and decline of N in ecosystem pools existed with increasing stand age. A serious lack of information regarding processes inherent in the model was found to exist in certain cases. Important processes which are currently poorly quantified include: (1) the factors controlling rates of tree growth; (2) the relation of foliar and other tissue N to soil N concentrations and foliar translocation; (3) the relation of forest floor conditions to decomposition and stand structural characteristics; and (4) the controls of a variety of soil N transformations, transfers, leaching and decomposition rates. Because of this basic lack of information and the great dependence of the model's behavior on these processes, the present version of the model is not suitable for real-world prediction. The model does have use as a means of combining hypotheses about a system into an explicit structure and examining the collective consequences of this, as well as pointing out future research needs for the system.  相似文献   

5.
Prescribed fire is a management tool used by wildland resource management organizations in many ecosystems to reduce hazardous fuels and to achieve a host of other objectives. To study the effects of fire in naturally accumulating fuel conditions, the ambient soil temperature is monitored beneath prescribed burns. In this study we developed a stochastic model for temperature profiles (values at 15 minute intervals) recorded at four depths beneath the soil during a large prescribed burn study. The model was used to assess the temporal fit of the data to particular solutions of the heat equation. We used a random effects model to assess the effects of observed site characteristics on maximum temperatures and to estimate risks of temperatures exceeding critical levels in future similar prescribed fires. Contour plots of estimated risks of temperatures exceeding 60°C for a range of fuel levels and soil depths indicated high risks of occurrence, especially when the moisture levels are low. However, the natural variability among sites seems to be large, even after controlling fuel and moisture levels, resulting in large standard errors of predicted risks.  相似文献   

6.
Quaking aspen (Populus tremuloides) is declining across the western United States. Aspen habitats are among the most diverse plant communities in this region and loss of these habitats can result in shifts in biodiversity, productivity, and hydrology across a range of spatial scales. Western aspen occurs on the majority of sites seral to conifer species, and long-term maintenance of these aspen woodlands requires periodic fire. Over the past century, fire intervals, extents, and intensities have been insufficient to regenerate aspen stands at historic rates; however the effects of various fire regimes and management scenarios on aspen vegetation dynamics at broad spatial and temporal scales are unexplored. Here we use field data, remotely sensed data, and fire atlas information to develop a spatially explicit landscape simulation model to assess the effects of current and historic wildfire regimes and prescribed burning programs on landscape vegetation composition across two mountain ranges in the Owyhee Plateau, Idaho. Model outputs depict the future structural makeup and species composition of the landscape at selected time steps under simulated management scenarios. We found that under current fire regimes and in the absence of management activities, loss of seral aspen stands will continue to occur over the next two centuries. However, a return to historic fire regimes (burning 12–14% of the modeled landscape per decade) would maintain the majority of aspen stands in early and mid seral woodland stages and minimizes the loss of aspen. A fire rotation of 70–80 years was estimated for the historic fire regime while the current fire regime resulted in a fire rotation of 340–450 years, underscoring the fact that fire is currently lacking in the system. Implementation of prescribed burning programs, treating aspen and young conifer woodlands according to historic fire occurrence probabilities, are predicted to prevent conifer dominance and loss of aspen stands.  相似文献   

7.
Abstract: Loss of native grassland habitat in New England has reached>90%. Consequently, remaining grasslands persist as small, geographically isolated fragments, and populations of many plants and animals have declined or disappeared. Given the rarity of the fauna and flora of these habitats, ecological management of many of the remaining native grassland fragments in a manner that attempts to mimic natural processes has been intensive, and the effects of this management on some taxa, such as grassland birds, are now well understood. But the effects of management, especially prescribed fire, on native plants and invertebrates are less well known. I studied the effects of prescribed fire on northern blazing star ( Liatris scariosa var. novae-angliae), a rare grassland perennial endemic to the northeastern United States. Once distributed from southern Maine to northern New Jersey, northern blazing star has disappeared from 69% of the sites where it formerly occurred. Seed predation appears to be a critical proximate factor limiting recruitment of juveniles into local populations. Seven of 8 study sites in Maine and Massachusetts had a 65% average rate of seed predation, and there was no evidence of juvenile recruitment at these sites. None of these sites had been burned in the past 5 years. Experimental research at Kennebunk, Maine, demonstrated that, in the absence of fire, seed viability of northern blazing star was low, the result of larval microlepidopteran ( moth) predators in the flower heads. Prescribed fire temporarily reduced seed predation from approximately 90% to approximately 16% for 1 year following fire, but seed-predation levels once again approached 90% within 2 years. Prescribed fires larger than 13 ha helped reduce predation rates, but fires smaller than 6 ha did not, suggesting that dispersal of adult moths from unburned source areas was spatially limited. Preferably, prescribed burns should be larger than 10 ha, large enough to have core areas larger than 100 m from adjoining unburned units. My results suggest that prescribed fire should be an important component of habitat management for northern blazing star, and they emphasize the need to carefully study the effects of the spatial scale of prescribed fires in other geographic regions and for a broad range of taxa.  相似文献   

8.
Landscape corridors, strips of habitat that connect otherwise isolated habitat patches, are commonly employed during management of fragmented landscapes. To date, most reported effects of corridors have been positive; however, there are long-standing concerns that corridors may have unintended consequences. Here, we address concerns over whether corridors promote propagation of disturbances such as fire. We collected data during prescribed fires in the world's largest and best replicated corridor experiment (Savannah River Site, South Carolina, USA), six -50-ha landscapes of open (shrubby/herbaceous) habitat within a pine plantation matrix, to test several mechanisms for how corridors might influence fire. Corridors altered patterns of fire temperature through a direct connectivity effect and an indirect edge effect. The connectivity effect was independent of fuel levels and was consistent with a hypothesized wind-driven "bellows effect." Edges, a consequence of corridor implementation, elevated leaf litter (fuel) input from matrix pine trees, which in turn increased fire temperatures. We found no evidence for corridors or edges impacting patterns of fire spread: plots across all landscape positions burned with similar probability. Impacts of edges and connectivity on fire temperature led to changes in vegetation: hotter-burning plots supported higher bunch grass cover during the field season after burning, suggesting implications for woody/herbaceous species coexistence. To our knowledge, this represents the first experimental evidence that corridors can modify landscape-scale patterns of fire intensity. Corridor impacts on fire should be carefully considered during landscape management, both in the context of how corridors connect or break distributions of fuels and the desired role of fire as a disturbance, which may range from a management tool to an agent to be suppressed. In our focal ecosystem, longleaf pine woodland, corridors might provide a previously unrecognized benefit during prescribed burning activities, by promoting fire intensity, which may assist in promoting plant biodiversity.  相似文献   

9.
Abstract:  Approaches to fire management in the savanna ecosystems of the 2-million ha Kruger National Park, South Africa, have changed several times over the past six decades. These approaches have included regular and flexible prescribed burning on fixed areas and a policy that sought to establish a lightning-dominated fire regime. We sought to establish whether changes in management induced the desired variability in fire regimes over a large area. We used a spatial database of information on all fires in the park between 1957 and 2002 to determine elements of the fire regime associated with each management policy. The area that burned in any given year was independent of the management approach and was strongly related to rainfall (and therefore grass fuels) in the preceding 2 years. On the other hand, management did affect the spatial heterogeneity of fires and their seasonal distribution. Heterogeneity was higher at all scales during the era of prescribed burning, compared with the lightning-fire interval. The lightning-fire interval also resulted in a greater proportion (72% vs. 38%) of the area burning in the dry season. Mean fire-return intervals varied between 5.6 and 7.3 years, and variability in fire-return intervals was strongly influenced by the sequencing of annual rainfall rather than by management. The attempt at creating a lightning-dominated fire regime failed because most fires were ignited by humans, and the policy has been replaced by a more pragmatic approach that combines flexible prescribed burning with lightning-ignited fires.  相似文献   

10.
Recent ecosystem and fire management research aims to quantify, model and understand historical fire disturbances focusing on their frequency, size and distribution. Less attention, however, has been paid to fire boundaries and their location on the landscape. Our study presents a spatial method to quantify the location, pattern and persistence of historical fire boundaries using tree ring fire scar data in the lower Stein watershed (British Columbia). Data from Pinus ponderosa and Pseudotsuga menziesii collected in 35 one-hectare plots over a 412-hectare study area were analyzed for the period between 1879 and 1947 using local spatial statistics and boundary detection techniques. Results of the analysis using local spatial statistic Moran’s I showed significant clustering of boundaries near topographic breaks. To determine and test whether fire boundaries between plots were persistent, we used boundary detection methods and developed a spatially restricted randomization test. The results revealed that out of 86 possible boundary links, 8 were significantly persistent (P < 0.025) while another 8 were significantly rare (P < 0.025). These spatial methods can help determine the historical spatial configuration of persistent boundaries and can be used to maintain natural forest dynamics.
Geraldine J. JordanEmail:
  相似文献   

11.
We studied northern flying squirrel (Glaucomys sabrinus) demography in the eastern Washington Cascade Range to test hypotheses about regional and local abundance patterns and to inform managers of the possible effects of fire and fuels management on flying squirrels. We quantified habitat characteristics and squirrel density, population trends, and demography in three typical forest cover types over a four-year period. We had 2034 captures of flying squirrels over 41 000 trap nights from 1997 through 2000 and marked 879 squirrels for mark-recapture population analysis. Ponderosa pine (Pinus ponderosa) forest appeared to be poorer habitat for flying squirrels than young or mature mixed-conifer forest. About 35% fewer individuals were captured in open pine forest than in dry mixed-conifer Douglas-fir (Pseudotsuga menziesii) and grand fir (Abies grandis) forests. Home ranges were 85% larger in pine forest (4.6 ha) than in mixed-conifer forests (2.5 ha). Similarly, population density (Huggins estimator) in ponderosa pine forest was half (1.1 squirrels/ha) that of mixed-conifer forest (2.2 squirrels/ha). Tree canopy cover was the single best correlate of squirrel density (r = 0.77), with an apparent threshold of 55% canopy cover separating stands with low- from high-density populations. Pradel estimates of annual recruitment were lower in open pine (0.28) than in young (0.35) and mature (0.37) forest. High recruitment was most strongly associated with high understory plant species richness and truffle biomass. Annual survival rates ranged from 45% to 59% and did not vary among cover types. Survival was most strongly associated with understory species richness and forage lichen biomass. Maximum snow depth had a strong negative effect on survival. Rate of per capita increase showed a density-dependent response. Thinning and prescribed burning in ponderosa pine and dry mixed conifer forests to restore stable fire regimes and forest structure might reduce flying squirrel densities at stand levels by reducing forest canopy, woody debris, and the diversity or biomass of understory plants, truffles, and lichens. Those impacts might be ameliorated by patchy harvesting and the retention of large trees, woody debris, and mistletoe brooms. Negative stand-level impacts would be traded for increased resistance and resilience of dry-forest landscapes to now-common, large-scale stand replacement fires.  相似文献   

12.
Statistical characterization of past fire regimes is important for both the ecology and management of fire-prone ecosystems. Survival analysis—or fire frequency analysis as it is often called in the fire literature—has increasingly been used over the last few decades to examine fire interval distributions. These distributions can be generated from a variety of sources (e.g., tree rings and stand age patterns), and analysis typically involves fitting the Weibull model. Given the widespread use of fire frequency analysis and the increasing availability of mapped fire history data, our goal has been to review and to examine some of the issues faced in applying these methods in a spatially explicit context. In particular, through a case study on the massive Cedar Fire in 2003 in southern California, we examine sensitivities of parameter estimates to the spatial resolution of sampling, point- and area-based methods for assigning sample values, current age surfaces versus historical intervals in generating distributions, and the inclusion of censored (i.e., incomplete) observations. Weibull parameter estimates were found to be roughly consistent with previous fire frequency analyses for shrublands (i.e., median age at burning of ~30–50 years and relatively low age dependency). Results indicate, however, that the inclusion or omission of censored observations can have a substantial effect on parameter estimates, far more than other decisions about specifics of sampling.
Max A. MoritzEmail:
  相似文献   

13.
The high-latitude coral communities of southern Africa suffered minimal impacts during past mass bleaching events. Recent reports indicate an increase in bleaching frequency during the last decade, yet the actual levels of thermal stress and contributing factors in these bleaching events, and the degree of acclimatisation or adaptation on these reefs are poorly understood. During the 2005 warm-water anomaly in the southern Indian Ocean we conducted bleaching surveys and collected samples for genotyping of the algal symbiont communities at 21 sites in southern Mozambique and South Africa. Coral bleaching reached unprecedented levels and was negatively correlated with both latitude and water depths. Stylophora pistillata and Montipora were the most susceptible taxa, whereas three common branching corals had significantly different bleaching responses (Stylophora > Acropora > Pocillopora). Temperature records indicated that localised strong upwelling events coupled with persistent above-average seawater temperatures may result in accumulated thermal stress leading to bleaching. Symbiodinium in 139 scleractinian corals belonged almost exclusively to clade C, with clade D symbionts present in only 3% of the colonies. Two atypical C subclades were present in Stylophora and Pocillopora colonies and these were more abundant in shallow than deeper sites. Taxon-specific differences in bleaching responses were unrelated to different clades of algal symbionts and suggest that Symbiodinium C subtypes with diverse thermal tolerance, coupled with acclimatisation and morphology of the host colony influence the bleaching response. Additionally, the predominance of putatively thermal-sensitive Symbiodinium in southern African corals may reflect a limited experience of bleaching and emphasises the vulnerability of these reefs to moderate levels of thermal stress.  相似文献   

14.
We applied the simulation model ROMUL of soil organic matter dynamics in order to analyse and predict forest soil organic matter (SOM) changes following stand growth and also to identify gaps of data and modelling problems. SOM build-up was analysed (a) from bare sand to forest soil during a primary succession in Scots pine forest and (b) on mature forest soil under Douglas fir plantations as an example of secondary succession in The Netherlands. As some of the experimental data were unreliable we compiled a set of various scenarios with different soil moisture regime, initial SOM pools and amount and quality of above and below ground litter input. This allowed us to find the scenarios that reflect the SOM dynamics more realistically. In the Scots pine forest, total litter input was estimated as 0.50 kg m−2 year−1. Two scenarios were defined for the test runs: (a) forest floor moisture regimes—‘dry, mesic and hydric’ and (b) augmenting a root litter pool with three ratios of needles and branches to roots: 1:1, 1:1.5 and 1:2.0. The scenario finally compiled had the following characteristics: (a) climate for dry site with summer drought and high winter moisture of forest floor; (b) a litter input of 0.25 kg m−2 year−1 above ground and 0.50 kg m−2 year−1 below ground; (c) a low nitrogen and ash content in all litter fall fractions. The test runs for the estimation of the initial SOM pools and the amount and proportion of above and below ground litter fall were also performed in the Douglas fir plantation. The inputs of above ground litter tested in various combinations were 0.30 and 0.60 kg m−2 year−1, and below ground litter 0.30, 0.60 and 0.90 kg m−2 year−1. The scenario that fitted the experimental data had an SOM pool of 20–25 kg m−2, an aboveground litter input of 0.6 kg m−2 year−1and a below ground litter input of 0.9 kg m−2 year−1. The long-term simulation corresponded well with the observed patterns of soil organic matter accumulation associated with the forest soil development in primary and secondary succession. During primary succession in Scots pine forest on dry sand there is a consistent accumulation of a raw humus forest floor. The soil dynamics in the Douglas fir plantation also coincide with the observed patterns of SOM changes during the secondary succession, with SOM decreasing significantly under young forest, and SOM being restored in the older stands.  相似文献   

15.
Longleaf pine (Pinus palustris) woodlands and savannas are among the most frequently burned ecosystems in the world with fire return intervals of 1-10 years. This fire regime has maintained high levels of biodiversity in terms of both species richness and endemism. Land use changes have reduced the area of this ecosystem by >95%, and inadequate fire frequencies threaten many of the remnants today. In the absence of frequent fire, rapid colonization of hardwoods and shrubs occurs, and a broad-leaved midstory develops. This midstory encroachment has been the focus of much research and management concern, largely based on the assumption that the midstory reduces understory plant diversity through direction competition via light interception. The general application of this mechanism of degradation is questionable, however, because midstory density, leaf area, and hardwood species composition vary substantially along a soil moisture gradient from mesic to extremely xeric sites. Reanalysis of recently reported data from xeric longleaf pine communities suggests that the development of the forest floor, a less conspicuous change in forest structure, might cause a decline in plant biodiversity when forests remain unburned. We report here a test of the interactions among fire, litter accumulation, forest floor development, and midstory canopy density on understory plant diversity. Structural equation modeling showed that within xeric sites, forest floor development was the primary factor explaining decreased biodiversity. The only effects of midstory development on biodiversity were those mediated through forest floor development. Boundary line analysis of functional guilds of understory plants showed sensitivity to even minor development of the forest floor in the absence of fire. These results challenge the prevailing management paradigm and suggest that within xeric longleaf pine communities, the primary focus of managed fire regime should be directed toward the restoration of forest floor characteristics rather than the introduction of high-intensity fires used to regulate midstory structure.  相似文献   

16.
Understanding and being able to predict forest fire occurrence, fire growth and fire intensity are important aspects of forest fire management. In Canada fire management agencies use the Canadian Forest Fire Danger Rating System (CFFDRS) to help predict these elements of forest fire activity. In this paper a review of the CFFDRS is presented with the main focus on understanding and interpreting Canadian Fire Weather Index (FWI) System outputs. The need to interpret the outputs of the FWI System with consideration to regional differences is emphasized and examples are shown of how the relationship between actual fuel moisture and the FWI System’s moisture codes vary from region to region. Examples are then shown of the relationship between fuel moisture and fire occurrence for both human- and lightning-caused fire for regions with different forest composition. The relationship between rate of spread, fuel consumption and the relative fire behaviour indices of the FWI System for different forest types is also discussed. The outputs of the CFFDRS are used every day across Canada by fire managers in every district, regional and provincial fire management office. The purpose of this review is to provide modellers with an understanding of this system and how its outputs can be interpreted. It is hoped that this review will expose statistical modellers and other researchers to some of the models used currently in forest fire management and encourage further research and development of models useful for understanding and managing forest fire activity.
B. Mike WottonEmail:
  相似文献   

17.
Fire is an important tool in the management of forest ecosystems. Although both prescribed and wildland fires are common in Turkey, few studies have addressed the influence of such disturbances on soil properties and root biomass dynamics. In this study, soil properties and root biomass responses to prescribed fire were investigated in 25-year-old corsican pine (Pinus nigra Arn.) stands in Kastamonu, Turkey. The stands were established by planting and were subjected to prescribed burning in July 2003. Soil respiration rates were determined every two months using soda-lime method over a two-year period. Fine (0-2 mm diameter) and small root (2-5 mm diameter) biomass were sampled approximately bimonthly using sequential coring method. Mean daily soil respiration ranged from 0.65 to 2.19 g Cm(-2) d(-1) among all sites. Soil respiration rates were significantly higher in burned sites than in controls. Soil respiration rates were correlated significantly with soil moisture and soil temperature. Fine root biomass was significantly lower in burned sites than in control sites. Mean fine root biomass values were 4940 kg ha(-1) for burned and 5450 kg ha(-1) for control sites. Soil pH was significantly higher in burned sites than in control sites in 15-35 cm soil depth. Soil organic matter content did not differ significantly between control and burned sites. Our results indicate that, depending on site conditions, fire could be used successfully as a tool in the management of forest stands in the study area.  相似文献   

18.
The allelopathic potential of oat (Avena sativa L., var. Argentina, Poaceae, Cyperales) was investigated under field and laboratory conditions. In field trials, oat plants provided an effective control of weeds, showing a species-specific impact: the most abundant weed species, Picris echioides was reduced by 94% in number of individuals. Aerial parts of oat plants, harvested immediately before soil incorporation, were utilized in a bioassay-guided isolation, which was aimed at identifying the phytotoxic compounds in a methanol/water extract of the aerial parts of the plants. Further partitions of extract gave an active n-butanol portion composed of flavonoids and saponins. Phytotoxic activity was detected for the flavonoid fraction, whereas no activity was found for the saponin mixture. Germination of an indicator species, lettuce (Lactuca sativa L.), was completely inhibited at flavonoid concentrations of 6.7, 10.0, and 20.0 mg/mL, and conversely the number of abnormal seedlings was greatly increased from 2% of control to over 96% at concentrations equal to 6.7 and 10.0 mg/mL. Analysis of the flavonoid fraction by ESI-MS techniques identified two components of the mixture as isoorientin 2-O-glucoside and isovitexin 2″-O-arabinoside. Saponins were characterized as avenacoside A, avenacoside B, 26-desglucoavenacoside A, and 26-desglucoavenacoside B. Both flavone C-glycosides and saponins were isolated previously from oat.  相似文献   

19.
20.
Abstract: Fire is frequently used for land management purposes and may be crucial for effective control of invasive non‐native plants. Nevertheless, fire modifies environments and may affect nontarget native biodiversity, which can cause conflicts for conservation managers. Native Australian reptiles avoid habitat invaded by the alien plant rubber vine (Cryptostegia grandiflora) and may be susceptible to the impacts of burning, a situation that provides a model system in which to examine possible conservation trade‐offs between managing invasive plants and maintaining native biodiversity. We used replicated, experimental fire treatments (unburned, dry‐season burned, and wet‐season burned) in 2 habitats (riparian and adjacent open woodland) to examine the short‐ (within 12 months of fire) and longer‐term (within 3 years of fire) changes of reptile assemblages in response to wet‐ and dry‐season burning for weed management in tropical savannas of northern Australia. Within 12 months of fire, abundances of the skink Carlia munda (Scincidae) were higher in the burned sites, but overall reptile composition was structured by habitat type rather than by effects of burning. Within 3 years of a fire, the effects of fire were evident. Reptiles, especially the gecko Heteronotia binoei (Gekkonidae), were least abundant in dry‐season burned sites; litter‐associated species, including Carlia pectoralis (Scincidae), were rarely observed in burned habitat; and there were fewer species in the wet‐season burned sites. Reptile abundance was associated with vegetation structure, which suggests that fire‐induced changes detrimentally altered the availability of resources for some reptiles, particularly leaf‐litter species. Invasive alien plants, such as rubber vine, have severe effects on native biodiversity, and control of such species is a fundamental land management objective. Nevertheless, fire management of invasive alien plants may adversely affect native biodiversity, creating a conservation conundrum. In such scenarios, land managers will need to identify the most desired conservation goal and consider the consequences for native biota.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号