首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
D. Daby 《Marine Biology》2003,142(1):193-203
Seagrass distribution was recorded by snorkel dives on a grid of stations in the waterfront of Club Méditerranée at Mon Choisy-Trou Aux Biches lagoon (NW Mauritius) and subsequently mapped using SURFER 6 computer software. Above-ground (AG) and below-ground (BG) standing biomass in terms of dry weight (DW) and ash-free dry weight (AFDW) as well as shoot density and shoot length were monitored monthly from June1997 to May1998 in a mixed stand of Halodule uninervis and Syringodium isoetifolium (dominant) at a shallow, nearshore station in the lagoon. Measurements of physical and chemical parameters [water temperature, current speed, salinity, pH, dissolved oxygen (DO), nitrate and phosphate concentrations] were made simultaneously, as well as at a reference station (ORE) outside the coral reef. The bottom sediment was analysed for grain size and type composition. Variation patterns were examined and statistical correlations drawn to relate plant performance to the environmental variables measured. The SURFER 6 programme generated a satisfactory contour map of seagrass distribution in the lagoon with a cover range of 0-60%. The densest patches occurred adjacent to the shoreline experiencing weaker water currents (3-13 cm s-1) rather than near the reef (5-35 cm s-1), where seagrasses were absent. Sand (0.063-2 mm grain size) constituted 97.2% and 77.6% of the nearshore and near-reef sediment, respectively. The dominant grain types were derived from corals (about 80%) and mollusc shells (about 14%). The recorded range of total standing biomass for H. uninervis was 243.1-468.2 g DW m-2 (326.9ᇛ.7 g) or 71.7-141.2 g AFDW m-2 (96.8ᆨ.1 g) and for S. isoetifolium it was 271.7-758 g DW m-2 (460.4끯.1 g) or 119-220.5 g AFDW m-2 (155.1ᆮ.5 g), with a maximum biomass increase during September-December in both species. AG:BG biomass ratios were generally <1 and approximated 1 during the warmest months of December-February only. Mean shoot density (1,077-4,364 shoots m-2 in the overall range of 998-4,428 shoots m-2) and mean shoot length (10.9-20.8 cm in the overall range of 7-31 cm) in S. isoetifolium were higher than in H. uninervis (1,732-4,137 shoots m-2 in the overall range of 1,522-4,327 shoots m-2 and 7.9-13.7 cm in the overall range of 6-20 cm, respectively). Temperature showed strong positive correlations with total AFDW biomass of both species (r=0.755, P<0.01 for H. uninervis; r=0.679, P<0.02 for S. isoetifolium) and with DO (r=0.925, P<0.01). High DO levels (10.7-11.2 mg l-1) coincided with optimum standing biomass at 27.2°C. Correlations were also strong with shoot density (r=0.881, P<0.01 for H. uninervis; r=0.952, P<0.01 for S. isoetifolium) and shoot length (r=0.752, P<0.01 for H. uninervis; r=0.797, P<0.01 for S. isoetifolium). Under optimal environmental conditions, nutrient inputs from surface run-off or underground freshwater seepage in the lagoon due to heavy rainfall may boost up seagrass biomass, as suggested by positive significant correlations between phosphate levels and AG AFDW biomass (r=0.63, P<0.05 for H. uninervis; r=0.65, P<0.05 for S. isoetifolium) and shoot density (r=0.6, P<0.05 for H. uninervis; r=0.687, P<0.02 for S. isoetifolium). The results generated in this study suggest local seagrass standing biomass is comparable to that reported in monospecific stands from elsewhere. Anthropogenic activities increasingly draw down the resilience of the seagrass beds around Mauritius, and preventative measures are indispensable to achieve coastal ecological stability.  相似文献   

2.
The fecundity of nine species of adult female calanoid copepods, and molting rates for copepodite stages of Calanus marshallae were measured in 24 h shipboard incubations from samples taken during the upwelling season off the Oregon coast. Hydrographic and chlorophyll measurements were made at approximately 300 stations, and living zooplankton were collected at 36 stations on the continental shelf (<150 m depth) and 37 stations offshore of the shelf (>150 m depth) for experimental work. In our experiments, maximum egg production rates (EPR) were observed only for Calanus pacificus and Pseudocalanus mimus, 65.7 and 3.9 eggs fem-1 day-1 respectively, about 95% of the maximum rates known from published laboratory observations. EPR of all other copepod species (e.g., C. marshallae, Acartia longiremis and Eucalanus californicus) ranged from 3% to 65% of maximum published rates. Fecundity was not significantly related to body weight or temperature, but was significantly correlated with chlorophyll a concentration for all species except Paracalanus parvus and A. longiremis. Copepod biomass and production in on-shelf waters was dominated by female P. mimus and C. marshallae, accounting for 93% of the adult biomass (3.1 mg C m-3) and 81% of the adult production (0.19 mg C m-3 day-1). Biomass in the off-shelf environment was dominated by female E. californicus, P. mimus, and C. pacificus, accounting for 95% of the adult biomass (2.2 mg C m-3) and 95% of the adult production (0.08 mg C m-3 day-1). Copepodite (C1-C5) production was estimated to be 2.1 mg C m-3 day-1 (on-shelf waters) and 1.2 mg C m-3 day-1 (off-shelf water). Total adult + juvenile production averaged 2.3 mg C m-3 day-1 (on-shelf waters) and 1.3 mg C m-3 day-1 (off-shelf waters). We compared our measured female weight-specific growth rates to those predicted from the empirical models of copepod growth rates of Huntley and Lopez [Am Nat (1992) 140:201-242] and Hirst and Lampitt [Mar Biol (1998) 132:247-257]. Most of our measured values were lower than those predicted from the equation of Huntley and Lopez. We found good agreement with Hirst and Lampitt for growth rates <0.10 day-1 but found that their empirical equations underestimated growth at rates >0.10 day-1. The mismatch with Hirst and Lampitt resulted because some of our species were growing at maximum rates whereas their composite empirical equations predict "global" averages that do not represent maximum growth rates.  相似文献   

3.
Role of echinoderms in benthic remineralization in the Chukchi Sea   总被引:1,自引:0,他引:1  
The role of large, epibenthic organisms in carbon cycling at high latitudes is difficult to assess using standard ship-board collection techniques. We used a remotely operated vehicle equipped with video imaging to examine the distribution and abundance of epibenthic organisms in the northeast Chukchi Sea during June 1998. At each of 11 sites, we collected between 25 and 50 images from a minimum of 20 min of video. We observed 15 different epibenthic taxa, with the echinoderms (Ophiura sarsia, O. maculata, Ophiopholis aculeata, Stegophiura nodosa, and Echinarachinus parma) overwhelmingly dominating the epibenthos. Echinoderm density was highly variable, ranging from 0.2 to 256.6 individuals m-2 (median=16.3), and echinoderm biomass varied between <0.5 and 4,988 mg C m-2 (median=737). The highest biomass of ophiuroids recorded (3,388 mg C m-2) is 30% higher than the highest previously reported from an Arctic shelf. Using a relationship between biomass and respiration developed for deep-sea organisms living at cold temperatures, we estimated respiration rates from <0.1 to 15.0 mg C m-2 day-1 (median=1.9). Respiration rates measured on board were several orders of magnitude higher than those obtained from the predictive equation. Further work is needed to assess echinoderm respiration rates accurately under in situ conditions. Even with calculated minimal values for respiration rates, a comparison of epifaunal and infaunal respiration at four stations revealed that echinoderm respiration accounted for as much as 25% of total respiration. High epifaunal respiration rates and biomass values are likely supported by high concentrations of particulate organic carbon carried by Bering Sea water flowing through the eastern Chukchi Sea. Our observations support observations from the Eurasian Arctic that echinoderms dominate the epibenthos of Arctic shelves and that the role of these organisms in carbon remineralization must be considered if we are to generate accurate models of carbon cycling in the Arctic.  相似文献   

4.
During three "Polarstern" cruises to the ice-covered Greenland Sea (spring 1997, summer 1994, autumn 1995) studies on the under-ice habitat (morphology, hydrography, ice-algal biomass) and on the macrofaunal, autochthonous under-ice amphipods (species diversity, abundance) were carried out in order to describe environmental controls and seasonal patterns in this community. In spring, the ice underside was rather smooth and whitish, while in summer melting structures and sloughed-off ice-algal threads were observed, in autumn detritus clumps accumulated in depressions at the ice underside. Only in summer, a thin layer of warm (up to -0.6°C) and less saline (as low as S=6.3) water was found at the ice-water interface above Polar Water. Integrated ice-algal biomass was highest during autumn (2.6 mg chl a m-2) and lowest during summer (1.2 mg chl a m-2). Four species of under-ice amphipods occurred in spring and summer (Apherusa glacialis, Onisimus glacialis, O. nanseni, Gammarus wilkitzkii), but only the last species was observed at the ice underside in autumn. A. glacialis and G. wilkitzkii were equally abundant in spring; A. glacialis dominated in summer. The highest total abundance of amphipods occurred during summer (31.9 ind. m-2), compared to lower abundances in spring and autumn (5.3 and 1.1 ind. m-2, respectively). A factor analysis revealed seasonal patterns in the data set, which mainly influenced A. glacialis, and species-specific relations between several environmental factors and the distribution of under-ice amphipods. Abundance of A. glacialis was closely related to the under-ice hydrography and ice-algal biomass, whereas the other amphipod species were more influenced by the under-ice morphology. It is therefore stated that the observed thinning of the Arctic sea ice and the resulting increased meltwater input and change in morphology of floes will have a profoundly adverse effect on the under-ice amphipods.  相似文献   

5.
The population dynamics of small tiger prawns (Penaeus esculentus and P. semisulcatus) were studied at three sites around north-western Groote Eylandt, Gulf of Carpentaria, Australia, between August 1983 and August 1984. Seagrasses typical of open-coastline, reef-flat and river-mouth communities were found in the shallow depths (2.5 m) at these sites. The temperature and salinity of the bottom waters did not differ among the shallowest depths of the three sites and mean values at night ranged from 21.9 to 32.0 °C, and from 30.1 to 37.5% S. Data from fortnightly sampling with beam trawls showed that virtually all post-larvae (90%) were caught in the intertidal and shallow subtidal waters (2.0 m deep). At one site, where the relationship between seagrass biomass, catches and depth could be studied in detail, high catches were confined to seagrass in shallow water, within 200 m of the high-water mark. This was despite the fact that seagrass beds of high biomass (>100 g m-2 between August and February) were found nearby, in only slightly deeper water (2.5 m). It is likely, therefore, that only the seagrass beds in shallow waters of the Gulf of Carpentaria act as important settlement and nursery areas for tiger prawns. In general, catches of tiger prawn postlarvae (both P. esculentus and P. semisulcatus) and juvenile P. esculentus on the seagrass in the shallowest waters at each site were higher in the tropical prewet (October–December) and wet (January–March) seasons than at other times of the year. Juvenile P. semisulcatus catches were highest in the pre-wet season. While seasonal differences accounted for the highest proportion of variation in catches of tiger prawn postlarvae and juvenile P. semisulcatus, site was the most important factor for juvenile P. esculentus. In each season, catches of juvenile P. esculentus were highest in the shallow, open-coastline seagrass, where the biomass of seagrass was highest. The fact that the type of seagrass community appears to be more important to juvenile P. esculentus than to postlarvae, suggests that characteristics of the seagrass community may affect the survival or emigration of postlarval tiger prawns. Few prawns (<10%) from the seagrass communities in shallow waters exceeded 10.5 mm in carapace length. Despite the intensive sampling, growth was difficult to estimate because postlarvae recruited to the seagrass beds over a long period, and the residence times of juveniles in the sampling area were relatively short (8 wk).  相似文献   

6.
Biomass, photosynthesis and growth of the large, perennial brown alga Laminaria saccharina (L.) Lamour. were examined along a depth gradient in a high-arctic fjord, Young Sound, NE Greenland (74°18'N; 20°14'W), in order to evaluate how well the species is adapted to the extreme climatic conditions. The area is covered by up to 1.6-m-thick ice during 10 months of the year, and bottom water temperature is <0°C all year round. L. saccharina occurred from 2.5 m depth to a lower depth limit of about 20 m receiving 0.7% of surface irradiance. Specimen density and biomass were low, likely, because of heavy ice scouring in shallow water and intensive feeding activity from walruses in deeper areas. The largest specimens were >4 m long and older than 4 years. In contrast to temperate stands of L. saccharina, old leaf blades (2-3 years old) remained attached to the new blades. The old tissues maintained their photosynthetic capacity thereby contributing importantly to algal carbon balance. The photosynthetic characteristics of new tissues reflected a high capacity for adaptation to different light regimes. At low light under ice, or in deep water, the chlorophyll a content and photosynthetic efficiency (!) were high, while light compensation (Ec) and saturation (Ek) points were low. An Ec of 2.0 µmol photons m-2 s-1 under ice allowed photosynthesis to almost balance, and sometimes exceed, respiratory costs during the period with thick ice cover but high surface irradiance, from April through July. Rates of respiration were lower than usually found for macroalgae. Annual elongation rates of leaf blades (70-90 cm) were only slightly lower than for temperate L. saccharina, but specific growth rates (0.48-0.58 year-1) were substantially lower, because the old blades remained attached. L. saccharina comprised between 5% and 10% of total macroalgal biomass in the area, and the annual contribution to primary production was only between 0.1 and 1.6 g C m-2 year-1.  相似文献   

7.
This study examines experimentally how water movement may alter epiphyte-grazer systems in intertidal seagrass beds. Field observations in the Sylt-Rømø Bay (German Wadden Sea, SE North Sea) showed that the biomass of seagrass epiphytes was highest on seagrasses exposed to water movement, whereas at sheltered sites the epiphyte cover was negligible. In contrast, the seagrass shoot density and aboveground biomass was comparably sparse and the abundance of Hydrobia ulvae was extremely low at exposed areas, but showed maximum values at sheltered seagrass beds. Cross transplantation experiments and enclosure experiments between sheltered and exposed seagrass beds showed that adhering snails were washed off from seagrasses soon after transplantation into an exposed seagrass bed, and epiphytes started to grow. After 4 weeks the epiphyte biomass was similar to the that of the adjacent exposed seagrass bed. When heavily epiphytised seagrasses were transplanted from exposed into sheltered areas, the epiphytes were completely grazed down by immigrating snails within a week. Experiments carried out by means of an in situ "three-current-flume", modifying the entire current velocity, showed that snail density was significantly negatively correlated with increasing current velocity, whereas epiphyte biomass showed a significant positive correlation with current speed. These results suggest a cascading impact of hydrodynamics on an epiphyte-grazer system in intertidal seagrass beds, by directly affecting the density of grazers and indirectly leading to enhanced epiphyte growth, thereby inhibiting seagrass development. Additionally it shows that cascading effects within the trophic web cannot only be triggered by biotic interdependencies, but can also be caused by physical factors.  相似文献   

8.
H. Auel  W. Hagen 《Marine Biology》2002,140(5):1013-1021
During the "International Arctic Ocean Expedition 1991" (20 August-21 September 1991) mesozooplankton was sampled at six stations in the Nansen, Amundsen and Makarov Basins of the central Arctic Ocean from 1,500 m depth to the surface by multiple opening/closing net hauls. Total mesozooplankton abundance decreased from 268 ind. m-3 in the surface layer (0-50 m) to <25 ind. m-3 below 200 m depth. The small copepods Oithona similis and Microcalanus pygmaeus, as well as copepod nauplii, were most abundant close to the surface, while Oncaea borealis and Spinocalanus spp. frequently occurred at greater depth. Mesozooplankton dry mass (DM) integrated over the upper 1,500 m of the water column was surprisingly stable throughout the investigation area and measured 2.0ǂ.3 g DM m-2. Dry mass in the upper 50 m measured 20.9 mg m-3 and was dominated by Calanus hyperboreus (57.4%) and C. glacialis (21.1%). C. finmarchicus was very abundant only in the Nansen Basin. Below 200 m the calanoid copepods Metridia longa, Microcalanus pygmaeus and Pareuchaeta spp., the decapod Hymenodora glacialis and chaetognaths of the genus Eukrohnia were the principal contributors to biomass values of <1 mg DM m-3. Hence, vertical changes in abundance, biomass and species composition were much more pronounced than regional differences between the basins. Three different mesozooplankton communities were differentiated according to their faunistic composition and are discussed in context with the major water masses: Polar Surface Water, Atlantic Layer and Arctic Deep Water.  相似文献   

9.
In this study, spatial and vertical distributions of the invasive ctenophore Mnemiopsis leidyi in the Caspian Sea were evaluated by using data collected at 41 stations during the August 2001 cruise. A comparison of data from different depths revealed that M. leidyi were generally confined to surface waters. The maximum size of the ctenophore was only 41-45 mm, and the bulk of individuals (85.5%) were <10 mm in length. The average and maximum biomasses of M. leidyi were calculated as 120 and 351 g wet weight m-2, respectively. Whilst highest biomasses were observed in the western and central Middle Caspian Sea, hot spot areas of reproduction were present along the coasts of the western Caspian Sea, with abundance values of up to 2285 ind. m-2. The impact of such high densities of M. leidyi is expected to be significant for the pelagic ecosystem of the Caspian Sea.  相似文献   

10.
This article describes the life-history strategy of the blue sprat Spratelloides robustus in South Australia and compares the demographic traits observed with those of other clupeoids. Validation studies that involved marking the sagittae of captive fish with oxy-tetracycline suggested that growth increments are deposited daily. The oldest fish examined was 82 mm caudal fork length and 241 days old, which suggests S. robustus may live for less than 1 year. Growth rates were high during larval stages (0.34 mm dayу) and remained high throughout juvenile (0.33 mm dayу) and adult stages (0.19 mm dayу). S. robustus reached 50% maturity at approximately 60 mm caudal fork length after approximately 135 days. Spawning occurred from October to February (spring to late summer) and larvae were found mainly in Spencer Gulf, Gulf St Vincent, and Investigator Strait. Females spawned multiple batches of demersal eggs every 1-2 days. Batch fecundities were low (mean=756, SD=341) and increased linearly with length and weight. The life history of S. robustus is dissimilar to other small to medium-sized temperate clupeoids, but similar to those of many small sub-tropical and tropical clupeoids, including other Spratelloides species. Gulf St Vincent and Spencer Gulf may be considered to be "seasonally subtropical systems" in an otherwise temperate region that support a suite of species, including S. robustus, that have life-history strategies similar to those of sub-topical and tropical taxa.  相似文献   

11.
K. Swadling 《Marine Biology》2001,139(3):597-603
The spatial distribution and population structure of two dominant ice-associated copepods, Drescheriella glacialis and Paralabidocera antarctica, were studied during winter at nine locations in east Antarctic fast ice. These species accounted for at least 90% of the total metazoan abundance at each location. Abundances were high, reaching 175 individuals l-1 (190,000 m-2) for D. glacialis and 660 l-1 (901,000 m-2) for P. antarctica. These abundances were probably partly supported by the high biomass of ice-algae (Pearson correlation coefficient, r=0.75), as indicated by chlorophyll-a concentrations (1.7-10.1 µg l-1). The population structures of each species suggested very different life-history strategies. All developmental stages of D. glacialis were isolated from the ice cores, including females with egg sacs, supporting the hypothesis that this species reproduces in the sea ice during winter. This strategy might assist D. glacialis in leading a continually colonising existence, whereby it responds opportunistically to the availability of favourable habitat patches. The populations of P. antarctica were composed primarily of nauplii (>99%), consistent with past observations of a synchronised life cycle for this species. The strong coupling of the developmental cycle of P. antarctica to the growth and decay of sea ice suggests that local extinctions might occur in areas where ice break-out is unpredictable.  相似文献   

12.
H. Wennhage  L. Pihl 《Marine Biology》2001,139(5):877-889
In demersal fish species with a pelagic larval stage, settlement patterns may be a consequence of variations in larval supply, habitat selection at settlement, and processes acting between the time of settlement and the time of benthic sampling. This study describes temporal (1994-1998) and spatial variation in plaice (Pleuronectes platessa L.) settlement densities in four semi-isolated nursery areas with similar habitat characteristics, in the non-tidal Gullmarsfjord on the west coast of Sweden. Juvenile abundance varied by a factor of ten, both among years and among nursery grounds. For the 3 years when larval sampling was undertaken (1994-1996) and all nursery areas, there was a significant positive relationship between larval supply and juvenile abundance (linear regression: r2=0.45, n=24, P<0.001). On the southern side of the fjord, a significant positive relationship between larval and juvenile abundance was found in one area (r2=0.62, n=6, P<0.05). The absolute mortality rate of plaice after settlement was related to the initial settlement density (r2=0.95, n=20, P<0.001), and to the abundance of predatory shrimps Crangon crangon (r2=0.44, n=20, P<0.01). Plaice otoliths were found in 6% of the shrimp stomachs analysed from an area with high density (13.3 m-2) of newly settled plaice. The present study suggests that the density of juvenile plaice was limited by larval supply to the nursery grounds. Consistency in the relative abundance of juveniles among nursery grounds between years also suggested that some nursery areas may be in the settlement shadow of others. The irregular nature of the coastline in combination with larval depletion could thereby cause small-scale (103-104 m) variation in settlement densities of the same order of magnitude as the inter-annual variability in recruitment to individual nursery grounds.  相似文献   

13.
The populations of the copepod species Calanus finmarchicus, C. glacialis and C. hyperboreus were investigated in Disko Bay during a 14-month period in 1996-1997. The three species were predominant in the copepod community. The biomass reached a maximum at the beginning of June (127 mg C m-3). From the end of July until the end of April the following year, the biomass was <1-6 mg C m-3. All three species showed seasonal ontogenetic migration. The spring ascent for all three species was just prior to or in association with the break-up of sea ice and the development of the spring bloom, whereas descent occurred over a larger time span during summer. The main overwintering stages were CV for C. finmarchicus, CIV and CV for C. glacialis and C. hyperboreus. Peak abundance of juvenile copepodites, representing the new generation, was in August for C. finmarchicus, in July for C. glacialis and in May/June for C. hyperboreus. From the timing of reproduction and the population development, the life cycles were deduced to be 1 year for C. finmarchicus and at least 2 years for C. glacialis and C. hyperboreus. Secondary production and potential grazing impact of the Calanus community were estimated by two methods based on specific egg-production rates and temperature-dependent production. The Calanus community was not able to control the primary producers during the spring bloom but probably did during post-bloom. The estimates also indicated that grazing on ciliates and heterotrophic dinoflagellates contributes as an essential food source in the post-bloom period.  相似文献   

14.
Egg production and hatching success of the copepod Calanus finmarchicus was measured during spring and summer in the waters south-west of Iceland. Egg-production rates varied greatly, both temporally and spatially, with highest average rates found at a station with low chlorophyll-a concentrations (0.4 mg m-3). Excluding this high production rate from statistical analysis, the remaining egg-production rates were found to be positively correlated with phytoplankton biomass, as well as with parameters representing healthy phytoplankton condition, food quality and diatom-type fatty acids. Hatching success of eggs was negatively correlated with some saturated and monounsaturated fatty acids related to phytoplankton senescence.  相似文献   

15.
Recent studies in temporarily open estuaries of South Africa have shown that phytoplankton biomass is at times low, when compared to the high standing stock of the grazers. In situ grazing rates of the dominant zooplankton species were estimated at the Mpenjati Estuary once during the winter closed phase, in August 1999, and once during the summer open phase, in February 2000. The study aimed at determining what proportion of the energetic demands of the dominant grazers of the estuary is met by the available phytoplankton. Results show that the gut of all species exhibited higher pigment concentrations during the night than during the day, both in winter and summer. Gut pigment contents ranged from 0.27 to 5.38 ng pigm individual-1 in the mysid Gastrosaccus brevifissura, from 0.16 to 1.63 ng pigm individual-1 in the copepod Pseudodiaptomus hessei, from 0.12 to 0.45 ng pigm individual-1 in the copepod Acartia natalensis, and from 0.8 to 5.44 ng pigm individual-1 in the caridean Palaemon sp. [where pigm is the sum of chlorophyll-a (chl-a) and phaeopigments]. During the winter closed phase, gut evacuation rates for G. brevifissura, P. hessei, and A. natalensis were 0.62, 0.42, and 0.46 h-1, respectively. In summer, gut evacuation rates were 0.68, 0.48, and 0.46 h-1 for G. brevifissura, P. hessei, and Palaemon sp., respectively. The rate of gut pigment destruction for G. brevifissura was 99.6% of the total ingested, one of the highest values ever recorded for any crustacean. A gut pigment destruction of 79.0% was measured for Palaemon sp., 95.7% for P. hessei, and 93.8% for A. natalensis. During winter the total grazing impact of the dominant zooplankton species ranged from 5.05 to 22.7 mg chl-a m-2 day-1 and accounted for 34-69% of the available chl-a in the water column. During summer, the grazing impact ranged between 0.45 and 0.65 mg chl-a m-2 day-1, accounting for 17-41% of the available chl-a in the water column. This shows that the dominant zooplankton species of the Mpenjati have a very high grazing impact on algal cells. At times this may exceed 100% of the available phytoplankton production, suggesting that the zooplankton community may often resort to other food sources to meet all its energetic demands.  相似文献   

16.
Life-history traits of Plesionika martia (Milne Edwards, 1883) were studied through data collected during six seasonal trawl surveys carried out in the Ionian Sea (eastern-central Mediterranean) between July 1997 and September 1998. P. martia was found at between 304 and 676 m depth, with the highest density in the 400-600 m range. Intraspecific, size-related depth segregation was shown. Recruitment occurred in summer at the shallowest depths. Juveniles moved to the deepest grounds as they grew. The largest female and male were 26 and 25 mm carapace length, respectively. The sex ratio was slightly in favour of females at depths >400 m. Although a seasonal spawning peak was shown, the reproduction appears to be rather prolonged throughout the year. Females with ripe gonads were found from spring to autumn. Ovigerous females with eggs in late maturity stage were found year round. Large females could spawn more than one time within their annual reproductive cycle. The size at first maturity (50% of the ovigerous females) was 15.5 mm CL. Average brood size of eggs with a well-developed embryo was 2,966ǃ,521. Iteroparity, low fecundity and large egg size patterns were observed. Brood size increased according to the carapace length. Two main annual groups were found in the field population of the Ionian Sea. Estimates of the Von Bertalanffy growth parameters are: LX=30.5 mm, k=0.44 year-1 in females; LX=28.0 mm, k=0.50 year-1 in males. A negative allometry was detected mostly in the ovigerous females. The life cycle of P. martia is discussed in the light of life-history adaptations shown in other deep-water shrimp species.  相似文献   

17.
The population biology of Donax hanleyanus (Philippi, 1845) (Bivalvia: Donacidae) was studied by monthly sampling from June 1998 through June 2000, at Restinga da Marambaia Beach, Brazil. Two transects were established and divided into ten strata parallel to the waterline, and five replicates were taken with a 0.04 m2 sampler in each stratum. The highest densities of D. hanleyanus were recorded in winter (September 1998, July 1999) and autumn (April 2000). A stratified distribution was observed: recruits were found mainly in the middle swash zone, while juveniles and adults occurred across the tidal gradient up to the retention zone. Mortality rates did not differ significantly between years. Annual production (in ash-free dry mass) ranged from 0.76 g AFDM m-2 year-1 (1998) to 3.67 g AFDM m-2 year-1 (1999), while the production-to-biomass (P/B) ratio varied from 1.45 to 1.59. Life span was ca. 17 months. Of all variables tested, only two, one biological and one physical, seem to have influenced the population dynamics of this species. A significant negative correlation between the densities of the suspension-feeders D. hanleyanus and Emerita brasiliensis (Crustacea: Decapoda) indicated possible intraguild competition, and there was a significant exponential correlation between beach slope and the mean across-shore position of D. hanleyanus. Data compiled from literature suggests a latitudinal gradient in population parameters, with mortality and renewal rate (P/B) of different species of Donax increasing and life span decreasing from temperate to tropical regions. Other factors influencing population dynamics, such as food availability, and the contributions of individual and community biomass to energy and nutrient cycling are also discussed.  相似文献   

18.
N. Reuss  L. Poulsen 《Marine Biology》2002,141(3):423-434
An investigation of the fatty acid composition of a natural arctic plankton community was carried out over two fishing banks located between 63°N and 65°N off the West Greenland coast. Samples for fatty acid analyses, species determination and biomass assessments of the plankton community were taken at the depth of fluorescence maximum. High biomass and diatom dominance during the spring bloom and low biomass and flagellate dominance in the post-bloom period were reflected by the fatty acid profiles. The total amount of fatty acid ranged from 55 to 132 µg l-1 during the spring bloom and from 1 to 5 µg l-1 during the post bloom. Analysis of the fatty acids showed that when the plankton was dominated by diatoms of the genera Thalassiosira and Chaetoceros, the proportions of C16:1(n-7) and C20:5(n-3) were correspondingly high. C18s, and particularly C18:1(n-9), were more abundant when the plankton was dominated by small autotrophic flagellates, primarily haptophytes. We found a good positive correlation between the common diatom marker, C16:1(n-7)/C16:0, and the biomass percentage of diatoms (r=0.742, P<0.001), as well as between the biomass percentage of flagellates and total C18 fatty acids (r=0.739, P<0.001). This supports the use of these specific fatty acids and fatty acid ratios as general biomarkers of the plankton community. However, the fatty acids are not specific enough to sufficiently characterise the composition of the plankton community, and microscopical support is needed to verify observed trends.  相似文献   

19.
The three juvenile phases of the spiny lobster Panulirus argus (algal phase: 5-15 mm carapace length, CL; postalgal phase: 15-45 mm CL, and subadults: 45-80 mm CL) occur in the reef lagoon at Puerto Morelos, Mexico. The algal phase abounds in this lagoon, which is covered by extensive seagrass-algal meadows, but the density of postalgal and subadult juveniles is low, owing to the scarcity of crevice-type shelters suitable for these phases. The feeding ecology of the three juvenile phases was investigated to examine whether spatial or temporal differences in food intake, diet composition, or nutritional condition occurred among phases and could partially account for the low abundance of the larger juveniles. Juveniles were collected by divers at night, from January to November 1995, throughout the mid-lagoon and back-reef zones. Percent stomach fullness, relative weight of the digestive gland (RWDG, an index of nutritional condition), percent frequency of occurrence and percent volume of food categories in the diet were compared between sexes, juvenile phases, molt stages (postmolt, intermolt, premolt), seasons, and sampling zones (mid-lagoon and back-reef zones). Significant differences in stomach fullness occurred only among molt stages, mainly because postmolt individuals had emptier stomachs. The main food categories in all juvenile phases were crustaceans (mostly hermit crabs and brachyurans) and gastropods, but the food spectrum was wide, including many other animal taxa as well as plant matter. In June 1995, the epibenthic macrofauna was sampled in five sites in the lagoon that differed in their amount of vegetation. The most abundant taxa in all sites were decapods and gastropods, but density and diversity measures showed that the distribution of these potential prey taxa for juvenile P. argus was rather patchy. Diet overlap in juvenile lobsters was high between sexes, juvenile phases, sampling zones, seasons, and molting stages, indicating that all juveniles fed on the same general food categories throughout time. The only factor that affected the RWDG was the juvenile phase. RWDG was significantly lower in subadults than in algal and postalgal phases, suggesting a poorer nutritional condition in the largest juveniles. This may be related to the scarcity of suitable shelters for large juveniles throughout the lagoon, which may preclude subadults from exploiting food resources in areas of the lagoon where shelter is limited.  相似文献   

20.
Quantitative data collected with different bottom trawls at the Great Meteor Seamount (subtropical NE Atlantic, 30°N; 28.5°W) in 1967, 1970 and 1998 are compared. Bootstrap estimates of total catch per unit effort increased from 6.96 and 10.8 ind. m-1 h-1 in 1967 and 1970, respectively, to 583.98 ind. m-1 h-1 in 1998. Gear effects and an effect of gear over time accounted for 47.1% and 20% of species variability. Further significant factors were time of day and habitat, while season was not significant. A total of 43 species was collected. Including supplementary species information, a grand total of 46 species was found associated with the Great Meteor Seamount. Diversity was higher in 1967 and 1970 (Shannon's diversity: H'=2.5 and 1.6) than in 1998 (H'=0.9). Species-environment relationships are discussed in terms of a sound-scattering layer-interception hypothesis, i.e. utilisation of prey from a diurnally moving sound-scattering layer for the bentho-pelagic community. This is probably augmented by concentration effects in a circular current around the seamount (Taylor-column). Long-term changes are discussed with respect to a decrease in biodiversity due to considerable increases in Macroramphosus scolopax and Capros aper. In 1998, the increase of abundance of Trachurus picturatus and the respective decreases for genuine benthic species were likely to have been caused by a change of gear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号