首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Urban soil Pb contamination is a great human health risk. Lead distribution and source in topsoils from 14 parks in Shanghai, China were investigated along an urban-rural gradient. Topsoils were contaminated averagely with 65 mg Pb kg−1, 2.5 times higher than local soil background concentrations. HCl-extracts contained more anthropogenic Pb signatures than total sample digests as revealed by the higher 207/206Pb and 208/206Pb ratios in extracts (0.8613 ± 0.0094 and 2.1085 ± 0.0121 versus total digests 0.8575 ± 0.0098 and 2.0959 ± 0.0116). This suggests a higher sensitivity of HCl-extraction than total digestion in identifying anthropogenic Pb sources. Coal combustion emission was identified as the major anthropogenic Pb source (averagely 47%) while leaded gasoline emission contributed 12% overall. Urbanization effects were observed by total Pb content and anthropogenic Pb contribution. This study suggests that to reduce Pb contamination, Shanghai might have to change its energy composition to clean energy.  相似文献   

2.
A set of toxic metals, i.e. As, Hg, Pb, Cd, Cu, Zn, Ni and Cr, in urban and suburban SDSs were investigated comparatively in the biggest metropolitan area of China, Shanghai. Results showed that all of the metals except As were accumulated greatly, much higher than background values. Geo-accumulation index indicated that metal contamination in urban SDSs was generally heavier than that in suburban SDSs. Potential ecological risk index demonstrated that overall risks caused by metals were considerable. Cd contributed 52% to the overall risk. Multivariate statistical analysis revealed that in urban SDSs, Zn, Ni, Cd, Pb, Cu and Cr were related to traffic and industry; coal combustion led to elevated levels of Hg; soil parent materials controlled As contents. In suburban SDSs, Pb, Cu, As and Cd largely originated from traffic pollution; Zn, Ni and Cr were associated with industrial contaminants; Hg was mainly from domestic solid waste.  相似文献   

3.
Sphagnum mosses received from a herbarium and collected recently from a peat bog surface, were used to assess the isotopic character of past and recent atmospheric Pb deposition in Switzerland and to constrain possible Pb sources. Lead removed from the moss surface was isotopically similar to that measured in the corresponding solid plant, suggesting that neither preservative actions for the herbarium samples nor dust had affected the isotopic composition of the samples. The addition of HCl to aqueous extracts to remove surface particles from the plants released more Pb compared to H2O alone. The changes in isotope ratios between Sphagnum collected during the past c. 130 yr were significantly greater than the small fluctuations between and among species collected at any one time. Three isotope ratio plots and emission inventories indicated that the most likely source of atmospheric Pb was coal-burning at the turn of the century, fly ash from waste incineration until approximately 1950, and gasoline combustion after that. The pollution record derived from the Sphagnum plants is in good agreement with other archives from Switzerland (peat, sediment, ice) and with other herbarium records in Europe.  相似文献   

4.
An approximately 59-year (1955–2014) sedimentary record of metal elements (Cu, Pb, Zn, Ni, Co, Mn, and Fe) in a sediment core, collected from the Huaihe River, Huainan City, Anhui Province, China, was reconstructed by using 210Pb geochronology. Copper, Zn, Ni, Co, and Mn evaluated by enrichment factor (EF) indicated minor contamination due to water pollution accidents of the Huaihe River that occurred in 1990s and 2004. Lead presented the most severe pollution among the metals studied, especially during 1957–1974. The use of leaded petrol and atmospheric deposition of coal combustion flue gases could have contributed to Pb contamination. In spite of the general good quality (mean sediment pollution index (SPI) 35.69) of the sediment core evaluated by SPI based on the principal component analysis, worse sediment qualities in the upper section (<6 cm, 2004) were still observed, suggesting intensive human activities causing the increasing concentrations of metals in recent decades.  相似文献   

5.
Polycyclic aromatic hydrocarbons (PAHs) seasonal variation and sources in Ubeji, Ifie, and Egbokodo Creeks of the Niger Delta, Nigeria, were predicted using diagnostic ratios (DRs) of parent PAHs (Phe/Phe + Ant; Flu/Flu + Pyr; BaA/BaA + Chry, and Ind/Ind + BghiP) and principal component analysis (PCA). A total of 222 sediment core samples were collected during the wet (August 2010) and the dry seasons (January 2011). The samples were dried and Soxhlet extracted; sample extracts were fractionated and analyzed by gas chromatography/flame ionization detection (GC/FID) to identify individual PAHs. The diagnostic PAH ratios revealed that PAHs in the sediment cores at the three creeks, in both seasons, mainly stemmed from the combustion process (pyrogenic sources). Principal component analysis further confirmed that wood-burning, coal combustion, diesel, gasoline-powered vehicular emissions, and petroleum combustion were the dominant contributors of PAHs sources at the sampling location. This study provided information on the origin and sources of PAHs in sediment cores, which may be useful for regulatory actions, environmental quality management, contamination history, and environmental forensic studies.  相似文献   

6.
Total lead (Pb) concentration and Pb isotopic ratio (206Pb/207Pb) were determined in 140 samples from the Seine River basin (France), covering a period of time from 1945 to 2011 and including bed sediments (bulk and size fractionated samples), suspended particulate matter (SPM), sediment cores, and combined sewer overflow (CSO) particulate matter to constrain the spatial and temporal variability of the lead sources at the scale of the contaminated Seine River basin. A focus on the Orge River subcatchment, which exhibits a contrasted land-use pattern, allows documenting the relation between hydrodynamics, urbanization, and contamination sources. The study reveals that the Pb contamination due to leaded gasoline that peaked in the 1980s has a very limited impact in the river nowadays. In the upstream Seine River, the isotopic ratio analysis suggests a pervasive contamination which origin (coal combustion and/or gasoline lead) should be clarified. The current SPM contamination trend follows the urbanization/industrialization spatial trend. Downstream of Paris, the lead from historical use originating from the Rio Tinto mine, Spain (206Pb/207Pb?=?1.1634?±?0.0001) is the major Pb source. The analysis of the bed sediments (bulk and grain size fractionated) highlights the diversity of the anthropogenic lead sources in relation with the diversity of the human activities that occurred in this basin over the years. The “urban” source, defined by waste waters including the CSO samples (206Pb/207Pb?=?1.157?±?0.003), results of a thorough mixing of leaded gasoline with “historical” lead over the years. Finally, a contamination mixing scheme related to hydrodynamics is proposed.  相似文献   

7.
Contamination of the environment from atmospheric deposition during the twentieth century is pervasive even in areas ostensibly considered pristine or remote from point sources. In this study, Pb concentrations in a 210Pb-dated peat core collected from the Okefenokee Swamp, GA were used to assess historical contaminant input via atmospheric deposition. Lead isotope ratios were determined by dynamic reaction cell ICP-MS (DRC-ICP-MS). Increases in Pb concentration occurred in the late nineteenth century and a marked rise in Pb concentrations pre-dated the widespread use of leaded gasoline within the US. The 206Pb/207Pb ratios of 1.19 during this period were consistent with coal combustion emissions. A later increase in Pb concentration, concurrent with a trend toward more radiogenic 206Pb/207Pb ratios in gasoline is consistent with an increased input of Pb from leaded gasoline emissions. However, it appears that coal combustion emissions remain a major source of Pb to the Okefenokee.  相似文献   

8.
Black carbon in Slovenian alpine lacustrine sediments   总被引:11,自引:0,他引:11  
Muri G  Cermelj B  Faganeli J  Brancelj A 《Chemosphere》2002,46(8):1225-1234
Black carbon (BC) contents were measured in recent sediments in five high altitude remote alpine lakes, i.e. Lake Krisko Sup., Lake Ledvica, Lake Planina, Lake Krn and Lovrensko Lake, and the eutrophic subalpine Lake Bled in Slovenia to follow the history of atmospheric pollution of fossil fuel and local biomass burning in Alps. Organic carbon (OC), its 13C values, total nitrogen and sedimentation rates using 210Pb activity data were also measured. The highest BC contents, reaching 20 mg/gdw, were noted in remote alpine lakes while in the subalpine Lake Bled sediment the concentrations were lower reaching 5 mg/gdw. Lower BC/OC ratios, ranging between 4% and 8%, were typical for remote alpine lakes and increased to about 10% in subalpine Lake Bled. The latter clearly shows the marked importance of local direct pollution sources in comparison to remote atmospheric input which decreases in a W-E direction in parallel with decreasing amounts of precipitation. Based on 210Pb sedimentation data, the minimal BC accumulation rates in sediment cores were detected in the pre-industrialisation period. In the last decades of 20th century the BC contents decreased probably due to reduced emission of pollutants.  相似文献   

9.
Concentrations and fluxes of unresolved complex mixture of hydrocarbons (UCM) and polycyclic aromatic hydrocarbons (PAHs) were analyzed for two 210Pb dated sediment cores from the Pearl River Estuary (PRE) and the adjacent northern South China Sea (NSCS). Compound-specific stable carbon isotopic compositions of individual n-alkanes were also measured for identification of the hydrocarbon sources. The historical records of PAHs in the NSCS reflected the economic development in the Pearl River Delta during the 20th century. PAHs in the NSCS predominantly derive from combustion of coal and biomass, whereas PAHs in the PRE are a mixture of petrogenic and pyrogenic in origins. The isotopic profiles reveal that the petrogenic hydrocarbons in the PRE originate predominantly from local spillage/leakage of lube oil and crude oils. The accumulation rates of pyrogenic PAHs have significantly increased, whereas UCM accumulation has slightly declined in the NSCS in the recent three decades.  相似文献   

10.
Lead in grain size fractions of road-deposited sediment   总被引:13,自引:0,他引:13  
Road-deposited sediment (RDS) is an important environmental medium for assessing contaminant levels in urban systems. Their atmospheric resuspension has significant implications for human health, and storm water transport can directly impact aquatic biota. Data from 20 RDS samples from Palolo Valley, Oahu, Hawaii, were fractionated into six grain-size classes and analyzed for Pb using a weak HCl (0.5 M) digestion. Data indicate significant Pb contamination in all samples. Median labile Pb concentration (n = 120) was 170 mg/kg, with a range from 4 to 1750 mg/kg. The five sediment fractions < 1000 microm had statistically similar Pb concentrations, but all were significantly greater than the coarsest fraction examined (1000-2000 microm). Silt plus clay ( < 63 microm) was the single most important mass component with 38% of the total sediment stored in this fraction. Mass of sediment < 63 microm combined with a median labile Pb concentration of 222 mg/kg accounted for 51% of the total Pb load stored in road sediments. These findings are significant from an environmental management perspective, and these issues are discussed in light of street sweeper sediment grain size removal efficiencies.  相似文献   

11.
Diagnostic ratios and multivariate analysis were utilized to apportion polycyclic aromatic hydrocarbon (PAH) sources for road runoff, road dust, rain and canopy throughfall based on samples collected in an urban area of Beijing, China. Three sampling sites representing vehicle lane, bicycle lane and branch road were selected. For road runoff and road dust, vehicular emission and coal combustion were identified as major sources, and the source contributions varied among the sampling sites. For rain, three principal components were apportioned representing coal/oil combustion (54%), vehicular emission (34%) and coking (12%). For canopy throughfall, vehicular emission (56%), coal combustion (30%) and oil combustion (14%) were identified as major sources. Overall, the PAH's source for road runoff mainly reflected that for road dust. Despite site-specific sources, the findings at the study area provided a general picture of PAHs sources for the road runoff system in urban area of Beijing.  相似文献   

12.
The harmful effect of manmade particles on natural processes and human health is documented by a large number of studies showing a positive correlation between particulate matter (PM) concentration and health effects. Diminution of this health risk necessitates among others the precise knowledge of the particle sources, their physical and chemical properties and their dissemination in the environment. Pb isotope ratios have been successfully used during the past decades as tracers of anthropogenic Pb disseminated in the biosphere. Here we show that tree bark biomonitoring with lead (Pb), strontium (Sr) and neodymium (Nd) isotope ratios as tracers allow a thorough analysis of the impacts of industrial and other anthropogenic emissions on the urban environment. This is the first comprehensive multi-isotope tracer study of atmospheric pollution in an urban environment allowing to identify and to integrate the different plume paths of emissions in a digital map system. This innovative approach might become an important tool for environmental management and policy-making processes dealing especially with risks and surveillance of air quality in the urban environment.  相似文献   

13.
Lead isotopes and heavy metal concentrations were measured in two sediment cores sampled in estuaries of Xiangjiang and Lishui Rivers in Hunan province, China. The presence of anthropogenic contribution was observed in both sediments, especially in Xiangjiang sediment. In the Xiangjiang sediment, the lower 206Pb/207Pb and higher 208Pb/206Pb ratio, than natural Pb isotope signature (1.198 and 2.075 for 206Pb/207Pb and 208Pb/206Pb, respectively), indicated a significant input of non-indigenous Pb with low 206Pb/207Pb and high 208Pb/206Pb. The corresponding concentrations of heavy metals (As, Cd, Zn, Mn and Pb) were much higher than natural values, suggesting the contaminations of heavy metals from extensive ore-mining activities in the region.  相似文献   

14.
Atmospheric lead (Pb) pollution during the last century in central Yunnan province, one of the largest non-ferrous metal production centers in China, was reconstructed using sediment cores collected from Fuxian and Qingshui Lakes. Lead concentrations and isotopic ratios (207Pb/206Pb and 208Pb/206Pb) were measured in sediment cores from both lakes. The operationally defined chemical fractions of Pb in sediment core from Fuxian Lake were determined by the optimized BCR procedure. The chronology of the cores was reconstructed using 210Pb and 137Cs dating methods. Similar three-phase variations in isotopic ratios and enrichment factors of Pb were observed in the sediment cores from both lakes. Before the 1950s, the sediment data showed low 207Pb/206Pb and 208Pb/206Pb ratios and enrichment factors (EFs?=?~1), indicating that the sedimentary Pb was predominantly of lithogenic origin. However, these indices were increased gradually between the 1950s and the mid-1980s, implying an atmospheric Pb deposition. The EFs and isotopic ratios of Pb reached their peak during recent years, indicating aggravating atmospheric Pb pollution. The average anthropogenic Pb fluxes since the mid-1980s were estimated to be 0.032 and 0.053 g m?2 year?1 recorded in Fuxian and Qingshui cores, respectively. The anthropogenic Pb was primarily concentrated in the reducible fraction. Combining the results of Pb isotopic compositions and chemical speciations in the sediment cores and in potential sources, we deduced that recent aggravating atmospheric Pb pollution in central Yunnan province should primarily be attributed to regional emissions from non-ferrous metal production industries.  相似文献   

15.
Relations between urbanization and particle-associated contaminants in New England were evaluated using a combination of samples from sediment cores, streambed sediments, and suspended stream sediments. Concentrations of PAHs, PCBs, DDT, and seven trace metals (Cd, Cr, Cu, Hg, Ni, Pb, Zn) were correlated strongly with urbanization, with the strongest relations to percentage commercial, industrial, and transportation (CIT) land use. Average PAH and metal concentrations in the most urbanized watersheds were approximately 30 and 6 times the reference concentrations, respectively, in remote, undeveloped watersheds. One-quarter to one-half of sampling sites had concentrations of PAHs, Cu, Pb, or Zn above the probable effects concentration, a set of sediment quality guidelines for adverse effects to aquatic biota, and sediments were predicted to be toxic, on average, when CIT land use exceeded about 10%. Trends in metals in cores from urban watersheds were dominantly downward, whereas trends in PAHs in a suburban watershed were upward. A regional atmospheric-fallout gradient was indicated by as much as order-of-magnitude-greater concentrations and accumulation rates of contaminants in cores from an undeveloped reference lake in Boston compared to those from remote reference watersheds. Contaminant accumulation rates in the lakes with urbanization in their watersheds, however, were 1-3 orders of magnitude greater than those of reference lakes, which indicate the dominance of local sources and fluvial transport of contaminants to urban lakes. These analyses demonstrate the magnitude of urban contamination of aquatic systems and air sheds, and suggest that, despite reductions in contaminant emissions in urban settings, streams and lakes will decline in quality as urbanization of their watersheds takes place.  相似文献   

16.
Lead (Pb), like many other pollutants, is carried into the Arctic by long-range atmospheric transport from industrial centers at lower latitudes. Unlike other pollutants, Pb can be used to assess emission source regions through the use of stable Pb isotope analyses. Using sediment cores from 17 lakes (three profiles and 14 top/bottom sample pairs) in the Søndre Strømfjord (Kangerlussuaq) region, West Greenland (67°N), this study assesses the extent and origin of Pb pollution along a 150 km transect between the Inland Ice and Davis Strait. Like ice core analyses from the interior of Greenland, the isotope analyses suggest pre-industrial contamination, although significant concentration changes in the lake sediments do not occur until the 18th/19th centuries, with the maximum concentrations occurring about 1970. Compared to the background, the Pb concentrations in recent sediments have increased about 2.5-fold, with slightly higher enrichments towards the coast, where annual precipitation is highest. For all of the lakes, there is a major decline in the 206Pb/207Pb ratio in the recent sediments (mean 1.218±0.030) as compared to deeper sediments (mean 1.365±0.084). Using a Pb isotope mixing model, we calculated an excess Pb isotope ratio, i.e. the isotope ratio necessary to produce the observed declines in recent sediments. While studies of atmospheric aerosols in the high Arctic (206Pb/207Pb ratio ∼1.16) have indicated that Russian emissions (206Pb/207Pb ratio ∼1.15–1.16) are a dominant source of arctic pollution, the excess Pb ratios of the lake sediments in the Søndre Strømfjord region (206Pb/207Pb ratio ∼1.14–1.15), in the low Arctic, suggest that W Europe (206Pb/207Pb ratio ∼1.14) is also a major emission source for this region.  相似文献   

17.
Six sediment cores were collected from Green Bay, Wisconsin, in order to identify possible sources of polycyclic aromatic hydrocarbons (PAHs) by a chemical mass balance (CMB) model. The cores which were obtained in 1995 had total PAH concentrations between 8.04 and 0.460 ppm. 210Pb and 137Cs dating was used to determine historical trends of PAH inputs, and elemental carbon particle analysis was done to characterize particles from combustion of coal, wood and petroleum. The results show that coke burning, highway dust, and wood burning are likely sources of PAHs to Green Bay. The contribution of coke oven emissions (CB) for the Green Bay cores is in the range of 5 to 90%. The overall highway dust (HWY) contribution is between 5 and 70%. There is a maximum (approximately 67%) contribution of HWY around 1988 which is in agreement with the historical US petroleum consumption. The wood burning (WB) contribution is between 1 to 30%, except in core GB-A where a maximum (approximately 50%) is found around 1994. The average relative errors of measurement for x2 equal to the number of degrees of freedom, are 52.5, 56.2, 36.2, 52.3, and 42.8 (df = 3) for the Green Bay cores A, B, C, E, and F, respectively. The sums of the contribution factors are less than one, indicating gain of inert biological or other bulk material between source and receptor. The results of carbon particles for Green Bay core D show that coal, oil, and wood burning are consistent with the CMB modeling results.  相似文献   

18.
The rapid economic development in the Pearl River Delta (PRD) region in South China in the last three decades has had a significant impact on the local environment. Estuarine sediment is a major sink for contaminants and nutrients in the surrounding ecosystem. The accumulation of trace metals in sediments may cause serious environmental problems in the aquatic system. Thirty sediment cores were collected in the Pearl River Estuary (PRE) in 2000 for a study on trace metal pollution in this region. Heavy metal concentrations and Pb isotopic compositions in the four 210Pb-dated sediment cores were determined to assess the fluxes in metal deposits over the last one hundred years. The concentrations of Cu, Pb and Zn in the surface sediment layers were generally elevated when compared with the sub-surface layers. There has been a significant increase in inputs of Cu, Pb and Zn in the PRE since the 1970s. The results also showed that different sampling locations in the estuary received slightly different types of inputs. Pb isotopic composition data indicated that the increased Pb in the recent sediments was of anthropogenic origin. The results of trace metal influxes showed that about 30% of total Pb and 15% of total Zn in the sediments in the 1990s were from anthropogenic sources. The combination of trace metal analysis, Pb isotopic composition and 210Pb dating in an estuary can provide vital information on the long-term accumulation of metals in sediments.  相似文献   

19.
We reviewed the published evidence of lead (Pb) contamination of urban soils, soil Pb risk to children through hand-to-mouth activity, reduction of soil Pb bioavailability due to soil amendments, and methods to assess bioaccessibility which correlate with bioavailability of soil Pb. Feeding tests have shown that urban soils may have much lower Pb bioavailability than previously assumed. Hence bioavailability of soil Pb is the important measure for protection of public health, not total soil Pb. Chemical extraction tests (Pb bioaccessibility) have been developed which are well correlated with the results of bioavailability tests; application of these tests can save money and time compared with feeding tests. Recent findings have revealed that fractional bioaccessibility (bioaccessible compared to total) of Pb in urban soils is only 5-10% of total soil Pb, far lower than the 60% as bioavailable as food-Pb presumed by U.S.-EPA (30% absolute bioavailability used in IEUBK model).  相似文献   

20.
The geochemical history of an upper deltaic plain pending tidal wetland restoration was reconstructed to assess remobilization of redox-sensitive constituents in sediment, identify depositional processes promoting geochemical retention, and determine the extent of contamination with Hg, As, Pb, Cu, and Zn. Three 12-14-m sediment cores were analyzed for bulk sediment geochemistry using ICP-AES. Rather than showing similar stratigraphic and geochemical down-core trends, cores had a unique record indicative of strong spatial gradients in deposition processes. Each strata type (e.g. basal clay, sand channel, distal floodplain, and agriculturally impacted surficial horizon) had a unique geochemical "fingerprint". The agriculturally impacted surficial layer showed high [Hg], [As], and [Pb]. The significance is that a restored upper delta will have a complex geomorphology defying conventional criteria of "success" in a restoration framework. Also, there is a significant risk of generating toxic, bio-available CH3Hg+ that would be hazardous to fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号