首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Summary In Australia, the southern populations of the yellow-faced honeyeater, Lichenostomus chrysops (Meliphagidae), perform annual migrations, with routes following the eastern coastline. In order to assess the role of magnetic cues in the migratory orientation of this diurnal migrant, its directional behaviour was recorded in recording cages under natural and experimentally manipulated magnetic-field conditions. During autumn the birds tested indoors in the local geomagnetic field showed a directional change from north initially to northwest later in the season (Fig. 1 a, b), which corresponds well with the general pattern of movement of this species in the field. Deflecting magnetic north to ESE resulted in a clockwise shift of the mean direction by 77° and 71°, respectively (Fig. 1 c, d), while no significant directional tendencies were observed in a magnetic field with a compensated horizontal component (Fig. 1 e, f; see Table 1). In outdoor tests in spring, the birds preferred southerly directions when tested in the local geo-magnetic field. In a magnetic field with a reversed vertical component (i.e. with an inclination pointing down instead of upwards) the birds reversed their directional tendencies and oriented northward (Fig. 2, Table 2). These results clearly show: (1) that yellow-faced honeyeaters can use the magnetic field for direction finding, and (2) that their magnetic compass functions as an inclination compass, as has been shown for several holarctic migrants.Correspondence to: W. Wiltschko  相似文献   

2.
Although hirundines have been used extensively in homing experiments, to date no investigation of their migratory orientation has been carried out, despite the well-known migratory habits of many species of this family. This paper reports on a study of the orientation of the barn swallow (Hirundo rustica), a typical diurnal trans-Saharan migrant. Modified Emlen funnels were used to verify the suitability of this species for cage experiments and investigate the role of visual and magnetic cues during the birds first migratory journey. Juvenile swallows were mist-netted at a roost site in central Italy and then tested in a site 19 km apart. Orientation experiments were performed under four experimental conditions: natural clear sky and simulated overcast, in both local and shifted magnetic fields (magnetic North=geographical West). Under clear sky, the swallows tended to orient phototactically toward the best-lit part of the funnel and failed to respond to the magnetic field shift. Under overcast conditions, they oriented northward and modified their directional choices as expected in response to the shifted magnetic North. On the whole, our data indicate that swallows can use magnetic information for compass orientation. Possible explanations for the northward orientation of birds tested under overcast conditions are discussed.Communicated by W. Wiltschko  相似文献   

3.
A series of experiments on the littoral amphipod Talitrus saltator (Montagu) was carried out between April and September, 1978–1981, both under natural conditions and inland with artificial landscapes of different heights on the horizon, in order to assess the visual importance of the landscape in zonal orientation in populations from the Mediterranean coast, and to determine interactions between solar orientation and orientation based on the landscape. Inland, orientation in controls (permitting only vision of the sky and the sun) was compared to that of the experimental individuals, who could see a simulated landscape positioned landwards to them and seawards. In nature, sandhoppers released in a level arena with the landscape screened from view were compared with others released in an unscreened arena and on the sand in absolutely natural conditions. Situations where solar orientation contradicted local cues were produced both by releasing the sandhoppers on a shore diversely orientated to their own, and by shifting their internal clock by nine hours. Results show that T. saltator uses the landscape as a cue in its orientation towards the sea, in conjunction with solar orientation: the latter being the principal factor involved even when the sandhoppers are separated from the local optical factor in the sky (in trials at a distance from the sea). In fact, with the artificial landscape set seawards, none of the populations we studied showed any orientation based on the landscape comparable in accuracy to orientation based exclusively on the sun. From the experiments carried out in natural conditions, it is possible to deduce that conflicting conditions gave rise to two types of results: deviation from the mean direction and an increase in dispersion, up to total dispersion when the local factors were in total contrast to solar orientation (clock-shifted sandhoppers released on the sand).  相似文献   

4.
 The present study was conducted on a Mediterranean beach (Burano, southern Tuscany, Italy) to examine the timing, orientation, and motivating and directing factors of the spontaneous movements of the sandhopper Talitrus saltator (Montagu, 1808). In April 1994, October 1994 and June 1995, during different moon phases, traps were positioned in the eulittoral zone, which intercepted sandhoppers when walking on the sand surface. At the same time environmental parameters were registered. Contemporaneously, orientation tests were carried out on active individuals using two arenas, one of which permitted a view of both sky and landscape and one which prohibited the landscape view. The results show landward migration after sunset, for juveniles later than for adults, nonoriented activity for 2 or 3 h after midnight and seawards zonal recovery before and after sunrise. The main microclimatic factor modulating activity was sand temperature, while the nonoriented activity between the two migratory movements seems to be endogenously determined. Both sky and landscape cues are used by sandhoppers for orienting their course, but the landscape view is sufficient and necessary on new moon nights. These results contribute to solution of the controversy on the mechanisms actually motivating sandhoppers in nature. Received: 24 September 1996 / Accepted: 25 October 1996  相似文献   

5.
Marine copepods commonly exhibit vertical movements in the water column over the diel cycle, termed diel vertical migration (DVM), with the most common pattern being an ascent in the water column to minimum depth around sunset and descent to maximum depth around sunrise. The present study characterized the DVM pattern of the pontellid copepod Calanopia americana Dahl in the Newport River estuary (North Carolina, USA, in July 2003). The estuary is shallow and well-mixed, and the study site (34°43N; 76°40W), 1.5 km inside the estuary entrance, is unusual in lying within a gyre where tidal currents are always in the seaward direction. Changes in C. americana vertical abundance were related to spectrally relevant changes in light throughout the diel cycle. Simultaneous measurements of light and zooplankton abundance near the surface (0.5 m depth) and near the bottom (0.5 m above bottom) were made over one 4-h period and two 3-day periods during different phases of the tide. These observations suggest that C. americana undertook twilight DVM in the Newport River estuary; an ascent to the surface occurred at sunset, followed by a descent to near the bottom around midnight, with a second ascent to the surface and then descent to near bottom at sunrise. DVM in C. americana was independent of the tidal cycle, with the initial ascent in the water column at sunset possibly associated with relative rates of irradiance change. Copepod vertical movements were consistent with a night-active endogenous rhythm, and appeared independent of the abundance of predatory chaetognaths, Sagitta spp. In DVM studies with migrators like C. americana that are broadly sensitive to visible wavelengths of light, measuring photosynthetically active radiation may be a reasonable alternative to measuring light in a spectrally relevant photometric unit.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00227-005-1569-x.Communicated by J.P. Grassle, New Brunswick  相似文献   

6.
Summary To test whether the initial night sky orientation response of migratory pied flycatchers (Ficedula hypoleuca) is calibrated from the ambient magnetic field experienced by birds during their first summer, three groups of pied flycatchers were hand-reared and then held under different magnetic field conditions during the course of the summer. All groups were held outdoors and given full exposure to the day and night sky. One group was exposed to the local earth's magnetic field. A second group was exposed to a magnetic field of local earth strength, local earth inclination shifted 105° counter-clockwise relative to the local earth's field. The last group was exposed to a vertical, and thus nondirectional magnetic field.In autumn, the birds were tested for their orientation under the night sky in the absence of a directional magnetic field. When tested, all three groups were oriented with mean directions varying from south to southeast. No statistical differences emerged in any between group comparisons. The data indicate that earth's magnetism does not serve as a calibrating reference in the development of a pied flycatcher's initial orientation response to the night sky.  相似文献   

7.
To investigate how visual cues are integrated into a navigational strategy for homing in the Australian sleepy lizard (Tiliqua rugosa), lizards were displaced beyond their home range, either with full access to visual cues or with no access to visual cues during the displacement. Homeward orientation was significantly worse when lizards were denied visual cues during the displacement than when they were not. However when lizards were displaced with their field of view restricted to the sky, their homeward orientation was equally as good as that of lizards displaced with no visual restriction. These experiments suggest that sleepy lizards use celestial cues to determine the compass bearing of the outward journey, and reverse this bearing to orient in the homeward direction (course reversal). In a subsequent experiment, lizards oriented randomly with respect to home when the parietal eye was entirely covered with a patch during the displacement and return, while control lizards fitted with a sham parietal eye patch were well oriented towards home. In both groups, the lateral eyes were unobstructed and had complete access to visual cues including celestial cues and landmarks. These results suggest that the parietal eye plays a highly significant role in sleepy lizard homing, perhaps mediating a sky polarization compass sense.  相似文献   

8.
The present paper reports on the first orientation experiments conducted on the strand-living beetle Eurynebria complanata (Linnaeus, 1767) (Coleoptera, Carabidae). The experiments were carried out from June to October 1988. Two different populations were used: one inhabiting a Tyrrhenian beach in Italy and the other a beach on the Atlantic coast of France. Response to sun compass cues was demonstrated in each population at the collection site and for the French population after transportation to Italy, where experiments were carried out on a differently oriented beach. Landscape cues were shown to improve the beetle's orientation capacity when these were tested together with a visible sun. Artificial landscapes were also tested under laboratory conditions. Different-sized silhouettes were placed in the four cardinal directions, and these envoked different responses depending on their height. The beetles oriented towards a black silhouette when this subtended an angle of 25°. The results obtained for the two populations are compared and discussed from an eco-ethological point of view.  相似文献   

9.
Summary If savannah sparrows, (Passerculus sandwichensis), a North American night migrant, select a migratory heading based upon the setting sun, a shift in the position of that cue should produce a predictable shift in the migrant's nocturnal orientation. I tested this hypothesis by shifting the sunst position with mirrors and by recording the bird's orientation in Emlen funnels. The control group displayed directionality appropriate for spring migration (=342°). The mean heading of experimentals (=272°), which were exposed to a cue-shifted situation, was in the expected westerly direction relative to the control mean (P<0.05, V-test). The setting sun appears to be a sufficient source of directional information for this avian migrant.  相似文献   

10.
Summary Thermal preferences of well-fed and food-limited fire ant colonies (Solenopsis invicta) were studied in relation to colony growth and metabolic costs. The growth curve for well-fed colonies was strongly skewed toward warmer temperatures with maximal growth occurring near 32° C (Fig. 2A). The growth curve for food-limited colonies was skewed toward cooler temperatures with maximal colony size occurring around 25° C (Fig. 2B). Food-limited colonies apparently grew larger at cooler temperatures because metabolic costs of workers were reduced. A series of binary choice tests confirmed three predictions concerning fire ant thermal preferences (Figs. 3–4). First, well-fed colonies preferred brood temperatures very near the optimum for colony growth (31° C versus 32° C). Colonies were also able to select appropriate suboptimal growth temperatures when the optimal range was unavailable. Secondly, as predicted, a large percentage of colony workers ( 30% in well-fed colonies) consistently chose cooler temperatures than those selected for the brood. This strategy probably increases longevity of workers not directly associated with brood care. Thirdly, food-limited colonies preferred cooler temperatures than well-fed colonies. Metabolic costs of food-limited colonies were reduced by approximately 7% because of (1) slightly cooler brood temperatures (30° C versus 31° C) and because (2) an additional 20–30% of the workers selected cooler temperatures. The addition of excess food reversed food-limited thermal preferences within 12 h for the brood (Fig. 5) and several days for the workers. Contrary to expectations, thermal preferences for brood in food-limited colonies did not match the food-limited growth curve, perhaps because fire ant colonies can choose to rear brood at warm temperatures while maintaining accumulated colony biomass at cooler temperatures. Correspondence to: S.D. Porter  相似文献   

11.
Time of departure and landing of nocturnal migrants are of great importance for understanding migratory strategy used by birds. It allows us to estimate flying time and hence the distance that migrants cover during a single night. In this paper, I studied the temporal schedule of nocturnal departures of European robins during spring migration. The study was done on the Courish Spit on the Baltic Sea in 1998–2003 by retrapping 51 ringed birds in high mist nets during nocturnal migratory departure. Take-offs of individual birds occurred between the first and tenth hour after sunset (median 176 min after sunset). Departure time was not related to fuel stores at arrival and departure, stopover duration and progress of the season. The results suggest that one reason for temporal variation in take-off time was differential response of European robins with high and low motivation to depart to such triggers as air pressure and its trend. If these parameters reach a certain minimum threshold shortly before sunset, robins with a high migratory motivation take off in the beginning of the night. When air pressure or its trend reaches a maximum, it may trigger to take off later during the night birds with lower initial motivation for departure, including those that have low refuelling efficiency. In regulation of timing of take-offs of robins, an important role is also played by their individual endogenous circadian rhythm of activity which is related to the environment in a complex way.  相似文献   

12.
Experiments were carried out to investigate the use of magnetic compass cues in the nocturnal homing orientation of the alpine newt Triturus alpestris. Tests were carried out at a site 9 km to the east–northeast of the breeding pond. Newts were tested at night in an outdoor circular arena that provided an unimpeded view of celestial cues, in one of four symmetrical alignments of an earth-strength magnetic field. In tests carried out under partly cloudy skies newts exhibited homeward magnetic compass orientation. Because the moon was visible in some trials, but obscured by clouds in others, we investigated whether the presence of the moon contributed to the scatter in the distribution of magnetic bearings. When the moon was visible, the distribution of magnetic bearings was more scattered than when the moon was obscured by clouds, although in neither case was the distribution significant due, in part, to the small sample sizes. Moreover, when the moon was visible, newts oriented along a bimodal axis perpendicular to the moon azimuth, suggesting that the presence of the moon may have affected the newts behavior. To provide a more rigorous test of the role of magnetic compass cues when celestial cues were unavailable, nocturnal tests were carried out during the following migratory season under total overcast. In the absence of celestial compass cues, the distribution of magnetic bearings exhibited highly significant orientation in the homeward direction. These findings indicate that newts are able to orient in the homeward direction at night using the magnetic compass as the sole source of directional information. Moon light altered the newts behavior. However, this apparently resulted from the asymmetrical distribution of moon light in the testing arena, rather than the use of an alternative compass.  相似文献   

13.
Foraging strategies of the marine iguana,Amblyrhynchus cristatus   总被引:1,自引:0,他引:1  
Summary Two foraging strategies were found in marine iguanas (Amblyrhynchus cristatus); (1) subtidal feeding: the animals swam out to sea and dived for algae in the subtidal zone; (2) intertidal feeding: the animals foraged around low tide in the intertidal zone on more or less exposed algae. Most marine iguanas were very consistent in their foraging strategy and so could be classified as subtidal feeders (SFs) or intertidal feeders (IFs). Feeding strategy was weight-related (Fig. 1), not sexspecific. Animals 1,200 g were IFs, animals >1,800 g SFs. Some iguanas in between followed a mixed foraging strategy. SFs foraged independently of the tides, IFs always around low tide (Figs. 2, 3). Feeding time patterns of IFs and SFs are described (Table 1). Sea motion seemed to have little effect on the foraging pattern of SFs, but strongly influenced that of IFs (Fig. 2). The smaller a marine iguana, the faster it cooled when immersed in water (Fig. 4). The difference between water temperature and core temperature of animals returning from foraging was significantly greater in IFs than SFs (Fig. 5). SFs swimming in very cold water regulated their body temperature to prevent excessive cooling. Possible costs and benefits of the two foraging strategies are discussed. Only part of a marine iguana population lives really amphibiously and only ca. 5% of a 24 h day is spent close to or in the water. All social activities, including mating, take place on land. These life history characteristics preclude those adaptations to an amphibious way of life that would at the same time reduce the iguanas' ability to be maximally active at their typical terrestrial body temperature of 35° C.  相似文献   

14.
I. Novaczek 《Marine Biology》1984,82(3):241-245
Gametophytes of Ecklonia radiata (C.Ag.)J.Ag. from two New Zealand locations with different field temperature ranges were exposed to temperatures of 5° to 26°C in saturating light. Plants from Goat Island Bay (Lat. 36° 16S, Long. 174°48E) grew in 9.3° to 25°C and reproduced in 9.3° to 24°C. There was no growth at 8°C and plants died at 26°C. Plants from the cooler location, Houghton Bay (Lat. 41°20S, Long. 174°40E), grew from 8° to 24°C and reproduced up to 15°C but not at 21.5°C. The plants did not grow at 6°C and died at 26°C. The timing of the first cell division and subsequent growth rate were retarded close to the upper and lower tolerance limits. Reproduction was a broad optimum of roughly 12° to 20°C. Within this range, fertile female gametophytes grown at lower temperatures had fewer, larger cells and thus fewer potential ova than those grown at higher temperatures.  相似文献   

15.
Summary The tropical South American teleost Eigenmannia lineata showed a spontaneous preference for the female type, compared with the male type, of its sexually dimorphic, weak-electric organ discharge (EOD). Female and male EODs differ in waveform and harmonic content. An isolated fish was simultaneously stimulated with digitally synthesized natural male and female EODs of equal peak-to-peak amplitudes, at ±35 Hz frequency difference centered on its stable resting discharge frequency. The stimulus dipoles were arranged symmetrically to the right and left of the fish's hiding place. All stimulus conditions were permuted at random sequence. Among 11 fish tested, 8 showed a statistically significant preference for one stimulus, the female type, as measured by the amount of time a fish spent close to a stimulus dipole (P<0.05 in each fish, two-tailed). Thus female EODs rather than male EODs were more attractive to adult and juvenile fish of both sexes. It was also concluded that E. lineata is capable of discriminating female from male EODs by a complex sensory capacity requiring neither amplitude nor frequency cues. The EOD waveform changed very little within the ecological range of water conductivities (approximately 10–100 S·cm-1); the P/N-ratio (a waveform character based on zerocrossing intervals) depended only weakly, but significantly, on conductivity (negative correlation in all four fish). Also, the effect of temperature on EOD waveform was very weak: Q 10-values of the P/N-ratio were below but close to 1 in all fish (27±5°C). Thus, it can be concluded that the EOD waveform is remarkably stable within widely changing conditions-even beyond the variation found in the field-and is therefore potentially useful as a social cue.  相似文献   

16.
Summary The carabid beetle Notiophilus biguttatus hunts springtails and mites by visual cues. The preycapture behaviour of the beetle and the escape behaviour of the springtails were analysed by means of highspeed films. N. biguttatus has between 900 and 1250 ommatidia in each compound eye. The visual space covers ca. 200° in the horizontal plane, with a binocular overlap of no more than 74°. The fovea, the part of the eye where the pseudopupil is largest, points straight ahead of a beetle in its normal posture.The structure of the visual space was determined from measurements of the optical axes in the horizontal plane (plane of fixation) over the middle of the eye. Because of the slanted position of the ommatidia under the cornea, the optical axes point more towards the front or the back of the animal than do the anatomical axes.The optical axes were used to construct the binocular visual space in the horizontal plane. The point E , to which an estimation of distance is possible, lies on the midline 42.6 mm away from the front edges of the eyes. Resolution rapidly decreases with increasing distance, particularly depth resolution.At a distance corresponding to that from which the beetle attacks its prey, depth and width resolution correspond roughly to the dimensions of the smallest prey animals. The smallest measured directional corrections made by the beetle prior to attack (2°–3°) correspond approximately to the divergence angles in the fovea ( h=2.2°), and the smallest measured distance correction prior to attack (0.2 mm) corresponds approximately to the depth resolution at attack distance.Supported by the Deutsche Forschungsgemeinschaft (SFB 4)  相似文献   

17.
To assess the role of celestial rotation during daytime in the development of the magnetic compass course, pied flycatchers (Ficedula hypoleuca Pallas, Muscicapidae) were handraised in Latvia under various celestial and magnetic conditions. Tests were performed during autumn migration in the local geomagnetic field (50 000 nT, 73° inclination) in the absence of celestial cues. A group of birds that had never seen the sky showed a bimodal preference for the migratory southwest-northeast axis, whereas a second group that had been exposed to the natural sky from sunrise to sunset in the local geomagnetic field showed a unimodal preference for the seasonally appropriate southwesterly direction. A third group that had also been exposed to the daytime sky, but in the absence of magnetic compass information, also oriented bimodally along a southwest-northeast axis. These findings demonstrate that observing celestial rotation during daytime enables birds to choose the right end of the migratory axis for autumn migration at the Latvian test location. This transformation of axial behavior into appropriate migratory orientation, however, requires the birds to have simultaneous access to information on both celestial rotation and the geomagnetic field. Received: 19 September 1997 / Accepted after revision: 22 November 1997  相似文献   

18.
One of the great mysteries of coral-reef fish ecology is how larvae locate the relatively rare patches of coral-reef habitat on which they settle. The present study aimed to estimate, by experiments in aquaria, the sensory modalities of coral-reef fish larvae for senses used in searching for their species settlement habitat. Larval recognition of settlement habitat can be based on the detection of conspecifics and/or of characteristics of coral habitat using visual, chemical and mechanical cues. For this study, larvae were captured with crest nets and were then introduced into experimental tanks that allowed testing of each type of cue separately (visual, chemical or mechanical cues). Among the 18 species studied, 13 chose their settlement habitat due to the presence of conspecifics and not based on the characteristics of coral habitat, and 5 species did not move toward their settlement habitat (e.g. Scorpaenodes parvipinnis, Apogon novemfasciatus). Among the different sensory cues tested, two species used the three types of cues (Parupeneus barberinus and Ctenochaetus striatus: visual, chemical and mechanical cues), six used two types (e.g. Myripristis pralinia: visual and chemical cues; Naso unicornis: visual and mechanical cues), and five used one type (e.g. Chrysiptera leucopoma: visual cues; Pomacentrus pavo: chemical cues). These results demonstrate that many coral-reef fish larvae could in practice use sensory cues for effective habitat selection at settlement, and have the ability to discriminate species-specific sensory cues.Communicated by J. Krause  相似文献   

19.
A. C. Anil  J. Kurian 《Marine Biology》1996,127(1):115-124
Influence of food concentration (0.5, 1 and 2 x 105 cell ml–1 ofSkeletonema costatum), temperature (20 and 30°C) and salinity (15, 25 and 35) on the larval development ofBalanus amphitrite (Cirripedia: Thoracica) was examined. The mortality rate at 20°C was lower than at 30°C in general. Increase in food concentration from 0.5 to 1 x 105 cells ml–1 improved the survival rate, but this was not evident when food concentration was increased to 2 x 105 cells ml–1. The results indicate that food availability and temperature jointly determine the energy allocation for metamorphic progress. It was observed that the influence of the tested variables varied with instar. At 20 °C the mean duration of the second instar exceeded 3 d and was much longer than other instar durations. The fourth, fifth and sixth instars and the total naupliar period showed that the effect of different salinities at given food concentrations was negligible at 20°C, while at 30°C there was a marked decrease in duration with increasing salinity.  相似文献   

20.
In situ growth rates were determined, using two, 1-yr mark/recapture experiments, conducted between September 1991 and July 1993, for an undescribed mytilid, Seep Mytilid Ia, at three hydrocarbon seep sites in the Gulf of Mexico. The sites are located at depths of 540 to 730m, approximately 27°45N; 91°30W, and are separated by distances of 6 to 18 miles. These seep mytilids harbor methanotrophic endosymbionts and use methane as both a carbon and energy source. The mussel habitats were chemically characterized by analysis of water samples taken from precisely located microenvironments over, among and below the mussels, using small-volume, interstitial water samplers and the Johnson Sea Link submersible. Substantial differences were found in habital conditions, growth rates, and population structure for the mussels at the three sites examined. The growth rate of these seep mytilids reflects the methane concentration in their immediate habitat. Mussels at sites with abundant methane had growth rates that were comparable to shallow water mytilids at similar temperatures (5 to 8°C) with increases in shell length up to 17 mm yr–1 documented for smaller mussels (<40 mm shell length). In conjunction with measurements of growth rates, three condition indices (glycogen content, tissue water content, and the ratio of ash-free dry weight to shell volume) were used to determine the relationship between the condition of the mussels, their growth rates, and their habitat chemistry. The three condition indices were correlated with growth rate and were often significantly different between mussels in different samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号