首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The difference between the cadmium uptake via food and seawater in Mytilus edulis has been studied. This was done by labelling algae with Cd-109 and seawater with Cd-115m. Mussels were fed on six different quantities of Isochrysis galbana. Cadmium uptake via algae was more efficient at low food levels, while accumulation from seawater was linearly correlated with food quantities. Cadmium from food contributed only little to the body burden (0.2–0.5%). Half-lives for the elimination of cadmium ranged from 96–190 d and increased with decreasing availability of algae, presumably due to slowed down metabolism. Differences in elimination patterns suggest a release of both isotopes from different storage depots. A computer model shows that the food pathway can only play a significant role if algae are highly contaminated. It also demonstrates the paradox that in long-term studies the highest contribution of food-derived cadmium to the body burden must be expected near maintenance food concentrations.  相似文献   

2.

Goal and Scope

This study was undertaken to investigate the differences in heavy metal burden between the organisms and environmental compartments and to evaluate the role of Dreissena polymorpha as a bioindicator organism.

Methods

The concentrations of zinc, copper, cadmium and lead in whole soft body and selected tissues of D. polymorpha at two river habitats in Austria were examined using atomic absorption spectroscopy (AAS). Concentrations in organisms were compared to those in sediment and water.

Results and Conclusion

Zebra mussels of the river Drau showed generally higher heavy metal concentrations as compared to mussels of the river Danube and contained elevated zinc and cadmium levels as compared to metal concentrations found in soft tissues of zebra mussels from uncontaminated sites in Germany and The Netherlands. The essential metals zinc and copper were mainly accumulated in gills, foot and byssal gland tissue of the mussel, in contrast to the non-essential metals cadmium and lead which were found predominantly in the midgut gland. The heavy metal concentrations in both, sediments and mussel tissue, were higher than in water samples. There was no correlation between the concentrations in water and in the organisms except for zinc. In contrast, correlations were found between concentrations in sediments and mussel soft tissue.

Recommendation and Perspective

Further investigations should include the examination of sediments and consider the mechanism of food uptake to assess the role of D. polymorpha as a bioindicator organism.  相似文献   

3.
Palaemon serratus Pennant larvae from females caught near Roscoff (France) or the Bay of Biscay in 1983, were reared in the laboratory. From hatching to the first stage after metamorphosis, the larvae were exposed to zinc and cadmium introduced separately or together into the rearing medium. At the end of experimental contamination, the concentrations of the two metals in the organisms were determined. The level of zinc in organisms was mainly independent of its concentration in the water, suggesting that the bioaccumulation of this essential trace element is controlled by some physiological process. The accumulation of cadmium in the larvae paralleled the overloads of this metal in the water. Increased zinc concentrations in water have little or no effect on the cadmium levels in organisms. The most important interaction between these two metals is an antagonism exerted by cadmium on the biological uptake of zinc.  相似文献   

4.
Sewage sludge contains rich organic matter and nutrients essential for the growth of plants but the presence of toxic heavy metals restricts its land application. To overcome this, the study aims an eco-friendly approach for leaching out heavy metals. Sewage sludge from sewage treatment plant, Chennai, India was characterised. The analysis of total heavy metal concentration was done by digesting in nitric acid and different forms were extracted by community bureau of reference sequential method. Heavy metals: As, Cd, Cr, Cr, Ni, Pb and Zn were determined using inductively coupled plasma optical emission spectrometry Perkin Elmer Optima 5300 DV. The experimental set-up for heavy metal leaching was held for five consecutive days at different concentrations of humic acid (0.1%, 0.5% and 1%) at varied pH (5–9). Results revealed that at the end of fifth day at pH 8, 1% humic acid is capable of leaching out 75.5% cadmium, 66.0% nickel, 52.0% lead, 51.2% zinc, 31.2% copper and 8.5% cadmium from sewage sludge. Statistically positive correlation (0.7088) existed between the percentage of heavy metals leached out and the sum of soluble and reducible fractions. Thus, from ecological point of view, humic acid can be used to leach out heavy metals from sewage sludge serving the need in restoration of soil fertility upon land application.  相似文献   

5.
Callianassa australiensis (Dana) that survived 14 d acute lethality studies were analysed to determine the concentrations of zinc, cadmium and copper in the whole shrimp and in various parts of the body. Using regression analysis, the influence of each metal upon the uptake of the others was studied. Zinc and cadmium appeared to enhance the uptake of each other. In a mixture of zinc and copper, the uptake of zinc was enhanced and that of copper was inhibited. In a mixture of cadmium and copper, the uptake of copper was inhibited by the presence of cadmium, but cadmium uptake was unaffected in the presence of copper. In a mixture of all three metals, similar effects were observed except that zinc and copper, occurring together, appeared to have no effect upon cadmium uptake. Additional 14 d experiments with cadmium suggested that accumulation of this metal was a function of metal concentration in the water and of duration of exposure. The whole shrimp cadmium concentration also appeared to be a function of the size of the shrimp. The variation in concentration factors is described and the need for further research on the effects of combinations of metals on various organisms is emphasized.  相似文献   

6.
This study was undertaken to investigate the natural variation of heavy metals in the polychaete Nereis diversicolor O. F. Müller and to examine this variation with respect to physiological and environmental parameters. During a 2 yr period from October 1980 to October 1982, concentrations of copper, zinc and iron in N. diversicolor from the Tees Estuary, North East England, were found to vary significantly with time. A seasonal influence on whole body copper concentration, in part related to the reproductive cycle, was observed. Zinc concentrations in N. diversicolor increased during periods of rapid growth and may represent a physiological demand for this metal. Whole body concentrations of iron appeared to be independent of size of worm, sexual maturation and sediment concentrations.  相似文献   

7.
为考察多种重金属同时存在的混合溶液对藻类的生物毒性,选择Cr(Ⅲ)、Pb(Ⅱ)、Hg(Ⅱ)、Cd(Ⅱ)、Mn(Ⅱ)5种重金属,以按照国家饮用水卫生标准限值浓度配制的单一重金属溶液和多种重金属混合溶液为受试样品,并利用本实验室开发的藻红外测试技术,评价了低浓度下单一重金属溶液和多种重金属共存溶液对藻的生物毒性。实验结果显示:按照饮用水标准限值配制的5种单一重金属溶液均未观察到对藻有生物毒性,但在多种重金属共存的27个不同组合的混合溶液中,有73.1%的样品表现出明显的生物毒性;藻响应出现率与混合溶液中重金属的总浓度呈正相关关系(r=0.8942)。当多种重金属以二元至五元混合时,藻响应出现率分别为50%、80%、100%、100%,表明随着重金属组分的增加,混合溶液的毒性作用越来越显著。当不同混合溶液的重金属总浓度大于0.11 mg·L-1时,平均累积藻响应占比显著上升到93%,表明重金属混合溶液中藻的毒性与总浓度之间存在剂量响应关系。采用平均藻响应出现率分析,结果显示混合溶液中不同重金属的相对影响顺序为:Cr(Ⅲ)87.5%>Pb(Ⅱ)和Hg(Ⅱ)58.3%>Cd(Ⅱ)和Mn(Ⅱ)54.3%,表明Cr(Ⅲ)表现出的藻毒性远高出其他重金属。现行的水质标准通常采用单一指标和限值,本研究结果表明采用单一指标不能有效规避多种污染物共存体系的环境风险。  相似文献   

8.
We studied distribution of heavy metals [lead (Pb), copper (Cu) and zinc (Zn)] in surface soil at an electronic-waste (e-waste) recycling workshop near Metro Manila in the Philippines to evaluate the pollution size (spot size, small area or the entire workshop), as well as to assess heavy metal transport into the surrounding soil environment. On-site length-of-stride-scale (~70 cm) measurements were performed at each surface soil point using field-portable X-ray fluorescence (FP-XRF). The surface soil at the e-waste recycling workshop was polluted with Cu, Zn and Pb, which were distributed discretely in surface soil. The site was divided into five areas based on the distance from an entrance gate (y-axis) of the e-waste recycling workshop. The three heavy metals showed similar concentration gradients in the y-axis direction. Zn, Pb and Cu concentrations were estimated to decrease to half of their maximum concentrations at ~3, 7 and 7 m from the pollution spot, respectively, inside the informal e-waste recycling workshop. Distance from an entrance may play an important role in heavy metal transport at the soil surface. Using on-site FP-XRF, we evaluated the metal ratio to characterise pollution features of the solid surface. Variability analysis of heavy metals revealed vanishing surficial autocorrelation over metre ranges. Also, the possibility of concentration prediction at unmeasured points using geostatistical kriging was evaluated, and heavy metals had a relative “small” pollution scales and remained inside the original workshop compared with toxic organohalogen compounds. Thus, exposure to heavy metals may directly influence the health of e-waste workers at the original site rather than the surrounding habitat and environmental media.  相似文献   

9.
Pot experiments were conducted on cole (Brassica) grown in soils jointly treated with traces of two heavy metals cadmium (Cd) and zinc (Zn). As the concentration of heavy metals in the soil increased, the uptake of these metals by the plants rose. However, the ratio of heavy metal concentration in soil to uptake by plants increased at a slower rate. Bioavailability of heavy metals considered between the roots and soil using non-linear regressions was shown to be statistically significant. Similarly, the bioavailability of these two heavy metals between leaves and roots using a linear regression was also statistically significant. The bioconcentration factors (BCFs) for Cd and Zn were 0.282 and 4.289, respectively. Significant variation of BCF with the heavy metal bioavailability in soil was noted from non-linear models. The transfer factors (TFs) were 4.49 for Cd and 1.39 for Zn. The Zn concentration in leaves under all treatments did not exceed threshold set standards, but Cd levels exceeded these standards when the concentration of Cd in the soil was more than 1.92 mg kg?1 dry weight (dw). Data indicate that cole (Brassica) is not a suitable crop for oasis soils because of plant contamination with heavy metals, especially Cd.  相似文献   

10.
To determine the role of echinoderms as bioindicators of seawater pollution we collected sea‐water and urchin samples from two sites in N. Peloponnesus, Greece. One site was in Patraicos gulf (Patras) and was influenced by point source pollution (urban sewage outfalls) while the second was in Korinthiacos gulf (Akoli) with no evident habitat pollution.

Three heavy metals (copper, nickel and zinc) have been measured in the gonads of two edible species of echinoderms, Arbacia lixula and Paracentrotus lividus.

Statistical treatment of the results showed statistically significant differences in bioaccu‐mulation related to the dry‐weight of gonads, to species, to sex of echinoderms, to season of sampling and to sampling station.

The concentrations of zinc were higher than those of Ni and Cu at in both sampling sites.

Microbiological analysis showed that contamination of the urchins was correlated to that of the surrounding seawater.

Finally both sampling sites seems to be influenced, directly or indirectly, by heavy metal and bacterial habitat pollution.  相似文献   

11.
The use of algae to control heavy metals in the environment   总被引:1,自引:0,他引:1  
Aqueous effluents from a lead mining and milling operation located in southeastern Missouri, USA, caused a degradation of stream quality despite treatment by a large tailings pond. The receiving stream was choked with algal mats which accumulated unexpectedly large amounts of manganese, lead and zinc. A wastewater treatment system was designed to utilize algae and benthic macrophytes to remove metals from the tailings pond effluent. The system has proved successful and water quality in the receiving stream has been improved to drinking water standards.Experiments were conducted to understand more fully the phenomenon of heavy metal accumulation by algae. Radionuclides (210Pb,203Hg,65Zn,109Cd) were used in conjunction with commercially available microculture apparatus to screen several species of algae for heavy metal accumulation. It was found that all species of algae studied concentrated mercury, green algae were more efficient accumulators of cadmium than blue-green algae, one alga (Chlamydomonas) proved best at removing lead from solution and no alga studied removed zinc.  相似文献   

12.
Studies concerning bioaccumulation kinetics and bioconcentration factor (BCF) of heavy metals like zinc (Zn), lead (Pb), chromium (Cr), cadmium (Cd), and copper (Cu) in earthworm Eudrilus eugeniae tissues including integument, gizzard, clitellum, and head region were undertaken. Calculated BCF, predicted K ow, and predicted K oc showed a significant correlation between heavy metals in different earthworm tissues, in substrate spiked with heavy metals. The regression coefficient (r 2) between heavy metal uptake concentration and exposure time varied between 0.73 and 0.99, indicating significant correlation. The K oc was a maximum of 13.9016 in case of Cu and integument at an exposure time of 100 days and a minimum of 0.1114 in case of Cr with respect to head at the same exposure time. Earthworms accumulated heavy metals following chronic exposure to municipal solid waste containing heavy metals. BCF and uptake rate kinetics of heavy metals were calculated and showed increased values in head tissue followed by integument.  相似文献   

13.
The dynamics of heavy metals in plant-soil interactions   总被引:1,自引:0,他引:1  
The effects of soil contamination by heavy metals are studied by a mathematical interaction model, validated by experimental results. The model relates the dynamics of uptake of heavy metals from soil to plants. The model successfully fitted the experimental data and made it possible to predict the threshold values of total mortality. Data are taken from soil with Cd, Cu and Zn treatments for alfalfa, lettuce, radish and Thlaspi caerulescens, measuring the concentrations in the aboveground biomass of plants. At low concentrations, the effects of heavy metals are moderate, and the dynamics seem to be linear. However, increasing concentrations exhibit nonlinear behaviors.  相似文献   

14.
Qin Xu 《毒物与环境化学》2013,95(1-4):183-196
Effects of the heavy metals zinc and cadmium on the free amino acid (FAA) pool of Gammarus pulex were studied at different metal concentrations and combinations as well as different exposure times. The dominant effect of these two metals was the reduction of most free amino acids and the whole FAA pool, except in the 10‐day low zinc and cadmium concentration exposures which resulted in a rise of free amino acid pool.

Among the free amino acids, the most sensitive to zinc exposure, were alanine, glutamic acid, arginine, and taurine; valine, leucine, asparagine, and isoleucine were among the most sensitive to cadmium. No predictable changes of individual free amino acids were shown in the mixed metals exposures. Elevation of taurine concentration was constant in seven of the eight treatments, it is suggested that this elevation may be related to the hepatopancreatic damage observed and induced synthesis of metallothioneins.  相似文献   

15.
Discharges of nutrients, urea, dissolved organic matter and heavy metals by a sewage underwater pipeline are analysed in comparison to environmental conditions in a shallow coastal zone. Variable thermo-haline stratifications of the water column and currents in upper (2.62–34.97 cm s?1) and deeper (0.83–10.91 cm s?1) layers drive vertical diffusion and lateral transport of wastewaters. Loads of reactive phosphorus (0.13 tons d?1) and ammonium (1.62 tons d?1) by the pipeline are not negligible compared to the major river loads in the gulf. High concentrations of urea (≤11.51 μmol N dm?3) were found in the area of wastewater release. Ammonium uptake (6.14–534 nmol N dm?3 h?1) strongly exceeded nitrate uptake (0.19–138 nmol N dm?3 h?1), indicating that discharges of ammonium by the pipeline are actively assimilated by plankton community even at low levels of light. Distribution of Zn (≤27.7 ppb), Cu (≤25.6 ppb), Cd (≤0.80 ppb) and Pb (≤13.5 ppb) in the water column and the measurement of their complex-forming capacity in seawater did not indicate a persistent perturbation of the pelagic environment due to heavy metals.  相似文献   

16.
Discharges of nutrients, urea, dissolved organic matter and heavy metals by a sewage underwater pipeline are analysed in comparison to environmental conditions in a shallow coastal zone. Variable thermo-haline stratifications of the water column and currents in upper (2.62-34.97 cm s-1) and deeper (0.83-10.91 cm s-1) layers drive vertical diffusion and lateral transport of wastewaters. Loads of reactive phosphorus (0.13 tons d-1) and ammonium (1.62 tons d-1) by the pipeline are not negligible compared to the major river loads in the gulf. High concentrations of urea (≤11.51 μmol N dm-3) were found in the area of wastewater release. Ammonium uptake (6.14-534 nmol N dm-3 h-1) strongly exceeded nitrate uptake (0.19-138 nmol N dm-3 h-1), indicating that discharges of ammonium by the pipeline are actively assimilated by plankton community even at low levels of light. Distribution of Zn (≤27.7 ppb), Cu (≤25.6 ppb), Cd (≤0.80 ppb) and Pb (≤13.5 ppb) in the water column and the measurement of their complex-forming capacity in seawater did not indicate a persistent perturbation of the pelagic environment due to heavy metals.  相似文献   

17.
The effect of deleterious concentration of zinc and copper provided either individually or in combination in the nutrient media was investigated in order to assess the effect of metal interaction in Vigna mungo (L.). Both metals showed negative effect and led to a marked decrease in seed germination (20%), seedling growth (91.7%) and nitrate reductase activity (85.7%) with the increase in metal concentrations. The present study also emphasizes on the response of catalase and peroxidase enzyme under zinc and copper stress. Both antioxidant enzymes exhibited an increasing trend under different treatment conditions but it was reverse at highly toxic metal concentration. The results showed active involvement of peroxidase enzyme in regulating oxidative stress rather than catalase enzyme, as the specific activity of peroxidase enzyme got increased by 8.94% under the combined metals stress whereas catalase activity got declined by 60.97% in comparison to control due to excessive stress. The combined effect of copper and zinc metal was more pronounced in comparison to their individual effects.  相似文献   

18.
Phosphate uptake by intertidal algae in relation to zonation and season   总被引:3,自引:0,他引:3  
The removal of phosphate from ambient seawater by whole plants of five species of fucoid algae, collected from the east coast of N. Ireland in 1988 and 1989, was followed over 6-h periods. A transient uptake pattern was observed forPelvetia canaliculata (L.) Dcne. et Thuret,Fucus spiralis L.,F. vesiculosus L. andF. serratus L., consisting of an initial period of high uptake, followed by a phase of zero uptake and then a period at an intermediate rate.Ascophyllum nodosum (L.) Le Jolis had a constant slow rate of uptake over 6 h. The initial uptake rate ofF. spiralis was significantly greater than that of any other species. Phosphate uptake over a 2-h period was measured at concentrations ranging from that of ambient seawater to 25µg-at. l–1 for whole plants ofF. spiralis andF. serratus, using a large scale batch method. A small scale batch method was used for whole plants ofP. canaliculata and sections of the other four species investigated. Uptake abilities of the algae at low concentrations of phosphate were compared using the parameterV 1 (the uptake rate at 1µg-at. l–1) and at high concentrations usingV max, the maximum uptake rate. These kinetic parameters of uptake were calculated using a method that avoids bias and permits statistical evaluation of the results. The fucoid algae studied could be divided into two distinct groups on the basis of their abilities to take up phosphate from seawater.P. canaliculata andA. nodosum had low values ofV 1 in winter, which were also correlated with their positions on the shore and did not vary between winter and summer. TheFucus species had higher values ofV 1 in winter, which were also correlated with their positions on the shore. In summer, however,V 1-values for these species decreased and no longer correlated with their shore heights. TheV max-value forF. spiralis was higher in winter than in summer but was signifcantly greater than that of any other species at all times of year. The ecological significance ofV max is discussed in relation to nutrient limitation and the possible occurrence of patches of high nutrient concentration in the intertidal environment.  相似文献   

19.
A greenhouse pot experiment was conducted to investigate the effects of the colonization of arbuscular mycorrhizal fungus (AMF) Glomus mosseae on the growth and metal uptake of three leguminous plants (Sesbania rostrata, Sesbania cannabina, Medicago sativa) grown in multi-metal contaminated soil. AMF colonization increased the growth of the legumes, indicating that AMF colonization increased the plant’s resistance to heavy metals. It also significantly stimulated the formation of root nodules and increased the N and P uptake of all of the tested leguminous plants, which might be one of the tolerance mechanisms conferred by AMF. Compared with the control, colonization by G. mosseae decreased the concentration of metals, such as Cu, in the shoots of the three legumes, indicating that the decreased heavy metals uptake and growth dilution were induced by AMF treatment, thereby reducing the heavy metal toxicity to the plants. The root/shoot ratios of Cu in the three legumes and Zn in M. sativa were significantly increased (P < 0.05) with AMF colonization, indicating that heavy metals were immobilized by the mycorrhiza and the heavy metal translocations to the shoot were decreased.  相似文献   

20.
Two species of blue green algae Spirulina platensis and Anacystis nidulans grown in artificial aqueous media were treated with Cu and Cd in concentrations of 0.01, 0.1, 1.0 and 10 ppm to study carbon assimilation and Chlorophyll (Chl) A content. The species were treated with concentrations of 0.1, 0.5, 1.0, 5.0 and 10.0 ppm to study the uptake of metals with exposure time. Carbon assimilation and Chl A content showed responses proportional to the concentration in the general form y = K + n ln C, where C is the concentration of metal in ppm, while in case of uptake the relation was y = KC”; (where C is the molar concentration x 10‐6 of the metal). The n values in case of uptake was found to be < 1 indicating a non‐Langmuir type of sorption. The concentration factors of metals decreased with metal concentration in the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号