首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
The fate of dissolved organic matter (DOM) during subsurface wetland treatment of wastewater effluent in a hot, semi-arid environment was examined. The study objectives were to (1) discern changes in the character of dissolved organics as consequence of wetland treatment (2) establish the nature of wetland-derived organic matter, and (3) investigate the impact of wetland treatment on the formation potential of trihalomethanes (THMs). Subsurface wetland treatment produced little change in DOM polarity (hydrophobic-hydrophilic) distribution. Biodegradation of labile effluent organic matter (EfOM) and internal loading of wetland-derived natural organic matter (NOM) together produced only minor changes in the distribution of carbon moieties in hydrophobic acid (HPO-A) and transphilic acid (TPI-A) isolates of wetland effluent. Aliphatic carbon decreased as a percentage of total carbon during wetland treatment. The ratio of atomic C:N in wetland-derived NOM suggests that its character is determined by microbial activity. Formation of THMs upon chlorination of HPO-A and TPI-A isolates increased as a consequence of wetland treatment. Wetland-derived NOM was more reactive in forming THMs and less biodegradable than EfOM. For both HPO-A and TPI-A fractions, relationships between biodegradability and THM formation potential were similar among EfOM and NOM isolates; the less biodegradable isolates exhibited greater THM formation potential.  相似文献   

2.
Her N  Amy G  Chung J  Yoon J  Yoon Y 《Chemosphere》2008,70(3):495-502
Natural organic matter (NOM) characteristics were determined for three ground waters exhibiting different water quality conditions. The water quality of the three feed waters collected at various water table depths was characterized by XAD-8/-4 resin adsorption, high performance size exclusion chromatography with ultraviolet and dissolved organic carbon (DOC) detections, and Fourier transform infrared spectroscopy (FTIR) to determine NOM fractionation, molecular weight, and NOM functional groups, respectively. Systematic studies were conducted to identify potential NOM foulants in ground water for nanofiltration (NF) membrane fouling. The results show that the hydrophobic fraction of NOM in all of the samples was significantly high (71-93%) compared to the hydrophilic (1.7-22.6%) and transphilic (5.3-6.6%) fractions. However, insignificant flux-decline (less than 5%) was observed for the highest DOC (36.9 mg l(-1)) and hydrophobic NOM (93%) containing groundwater compared to the other lesser DOC and hydrophobic NOM containing ground waters. This is presumably due to either higher fractions of hydrophilic and transphilic NOM or inorganic interactions that may be major foulants. Based on FTIR, aromatic foulants were observed at 1662 cm(-1) (CO-NH2 or CO conjugated with aromatic rings) for the fouled NF membrane with the relatively low DOC source waters. The contact angle of the clean membrane (52 degrees ) decreased with fouling up to 42-47 degrees for fouled membranes with the various samples.  相似文献   

3.
Coagulation has been proposed as a best available technology for controlling natural organic matter (NOM) during drinking water treatment. The presence of heavy metals such as copper(II) in source water, which may form copper-NOM complexes and/or interact with a coagulant, may pose a potential challenge on the coagulation of NOM. In this work, the effect of copper(II) on NOM removal by coagulation using alum or PAX-18 (a commercial polymerized aluminum chloride from Kemiron Inc., Bartow, Florida) was examined. The results show that the presence of 1 to 10 mg/L of copper(H) in the simulated waters improved the total organic carbon (TOC) removal by up to 25% for alum coagulation and by up to 22% for PAX-18 coagulation. The increased NOM removal with the presence of copper(II) in the waters can most likely be ascribed to the formation copper-NOM complexes that may be more adsorbable on aluminum precipitates and to the formation of copper(II) co-precipitates that may also adsorb NOM. The presence of 1 to 5 mg/L of copper(I) in the waters containing 3 mg/L NOM as carbon was reduced below the maximum contaminant level goal (1.3 mg/L as copper) using either coagulant. The results suggest that the presence of copper(H) in source water may not adversely affect the NOM removal by coagulation. A good linear correlation was observed between the TOC removal efficiency and the log-total moles of the precipitated metals, which include the metal ion from a coagulant and the divalent metal ion(s) in source water.  相似文献   

4.
Goslan EH  Gurses F  Banks J  Parsons SA 《Chemosphere》2006,65(7):1113-1119
A comparison of four treatment technologies for reduction of natural organic matter (NOM) in a reservoir water was made. The work presented here is a laboratory based evaluation of NOM treatment by UV-C photolysis, UV/H(2)O(2), Fenton's reagent (FR) and photo-Fenton's reagent (PFR). The work investigated ways of reducing the organic load on water treatment works (WTWs) with a view to treating 'in-reservoir' or 'in-pipe' before the water reaches the WTW. The efficiency of each process in terms of NOM removal was determined by measuring UV absorbance at 254 nm (UV(254)) and dissolved organic carbon (DOC). In terms of DOC reduction PFR was the most effective (88% removal after 1 min) however there were interferences when measuring UV(254) which was reduced to a lesser extent (31% after 1 min). In the literature, pH 3 is reported to be the optimal pH for oxidation with FR but here the reduction of UV(254) and DOC was found to be insensitive to pH in the range 3-7. The treatment that was identified as the most effective in terms of NOM reduction and cost effectiveness was PFR.  相似文献   

5.
This study investigated the effects of pH (6-10) and ozone dose [0.4-3.0?mg O(3)/mg dissolved organic carbon (DOC)] on the content and structure of haloacetic acid (HAA) precursors in groundwater rich in natural organic matter (NOM; DOC 9.85?±?0.18?mg/L) during drinking water treatment. The raw water was ozonated in a 2 L glass column. NOM fractionation was carried out using XAD resins. HAA formation potential (HAAFP) was determined according to standard EPA Method 552. NOM characterization revealed it is mostly hydrophobic (65?% fulvic and 14?% humic acids). Hydrophobic NOM significantly influences HAA formation, as confirmed by the high HAAFP (309?±?15?μg/L). Ozonation at pH?6-10 led to changes in NOM structure, i.e. complete humic acid oxidation, and increased the hydrophilic NOM fraction content (65-90?% achieved using 3.0?mg O(3)/mg DOC). The highest degree of NOM oxidation and HAA precursor removal was achieved at pH?10 (up to 68?% HAAFP). Ozonation pH influenced the distribution of HAA precursor content, as increasing the pH from 6 to 10 increased the reactivity of the hydrophilic fraction, with the HAAFP increasing from 19.1?±?6.0?μg/mg DOC in raw water to 152?±?8?μg/mg DOC in ozonated water. The degree of HAA precursor removal depends on the dominant oxidation mechanism, which is related to the applied ozone dose and the pH of the oxidation process. Ozonation at pH?10 favours the mechanism of radical NOM oxidation and was the most effective for HAAFP reduction, with the efficacy of the process improving with increasing ozone dose.  相似文献   

6.
Earlier studies had shown significant differences in sorption of nine pesticides in soils collected from two landuses (native vegetation and market gardens), which could not be explained on the basis of organic carbon content alone. Consequently it was hypothesised that the differences in sorption behaviour between the two landuses may be due to variation in the chemistry of the organic carbon. In this study the relationship between sorption behaviour of the nine chemicals and soil organic carbon chemistry, as determined by solid-state (13)C NMR spectroscopy, was investigated. No significant differences were found between the two landuses in the distribution of the four main spectral regions of the (13)C NMR spectra of soil OC, except for the carbonyl fraction (165-220ppm), which may reflect the low OC content of the soils from both landuses. For all chemicals, except prometryne, the most significant (P<0.01 or P<0.001) relationship between K(d) values and types of OC was found with the aromatic (110-165ppm) or the alkyl (0-45ppm) fraction. A comparison was made of the variability of K(d) values normalized over OC (i.e. K(oc)), alkyl, aromatic and alkyl+aromatic fractions. Expressing K(d) values for all chemicals, except azinphos methyl, in soils under native vegetation as K(alkyl) or K(aromatic) greatly decreased the variability compared with the K(oc) value. However in the cultivated soils only the sorption coefficients for DEA, DIA and fenamiphos showed a decrease in variability when expressed as K(alkyl) or K(aromatic). This reflected the stronger relationship between sorption coefficients and the alkyl and aromatic fraction of soil OC in soils from native vegetation compared with those determined from the market garden soils. The different relationships between sorption coefficients and types of OC of the two landuses also suggests that the type of aromatic and alkyl carbon under the two landuses is different and NMR characterisation of the OC was not sufficient to distinguish these differences.  相似文献   

7.
Chen J  Gu B  Leboeuf EJ  Pan H  Dai S 《Chemosphere》2002,48(1):59-68
Natural organic matter (NOM) is known to be complex in nature with varying structural and functional characteristics. In this study, an aquatic NOM was fractionated into the polyphenolic-rich (NOM-PP) and the carbohydrate-rich (NOM-CH) fractions in an attempt to better characterize their chemical and structural properties along with a reference soil humic acid (SHA). Various spectroscopic techniques were employed for the study, including ultraviolet-visible (UV/Vis). 13C-nuclear magnetic resonance, Fourier-transform infrared, fluorescence, and electron paramagnetic resonance spectroscopies. Results indicate that the relative abundance of aromatic C=C and methoxyl (-OCH3) functional groups are in the order of SHA > NOM-PP > NOM-CH. However, the aquatic NOM-PP and NOM-CH fractions are characterized by high contents of carboxylic and alcoholic functional groups relative to the SHA. In particular, the NOM-PP fraction appears to contain more phenolic and ketonic functional groups than the NOM-CH and SHA fractions, and it gives a strong fluorescence and high paramagnetic spin count. On the other hand, the NOM-CH fraction possesses a relatively low amount of carbon but a high amount of oxygen or oxygen-containing structural features, such as carbohydrate-OH and carboxylic groups, and shows the least fluorescence intensity and paramagnetic spin counts. Results of these spectroscopic studies confirm the heterogeneous nature of NOM, and point out the importance of isolation and improved characterization of various NOM subcomponents in order to better understand the behavior and roles of NOM in the natural environment.  相似文献   

8.
Fluorescence spectroscopic studies of natural organic matter fractions   总被引:31,自引:0,他引:31  
Chen J  LeBoeuf EJ  Dai S  Gu B 《Chemosphere》2003,50(5):639-647
Because of the well-known molecular complexity and heterogeneity of natural organic matter (NOM), an aquatic bulk NOM was fractionated into well-defined polyphenolic-rich and carbohydrate-rich subfractions. These fractions were systematically characterized by fluorescence emission, three dimensional excitation-emission matrices, and synchronous-scan excitation spectroscopy in comparison with those of the reference International Humic Substances Society soil humic acid and Suwannee River fulvic acid. Results indicate that fluorescence spectroscopy can be useful to qualitatively differentiate not only NOM compounds from varying origins but also NOM subcomponents with varying compositions and functional properties. The polyphenolic-rich NOM-PP fraction exhibited a much more intense fluorescence and a red shift of peak position in comparison with the carbohydrate-rich NOM-CH fraction. Results also indicate that synchronous excitation spectra were able to provide improved peak resolution and structural signatures such as peak positioning, shift, and intensity among various NOM components as compared with those of the emission and excitation spectra. In particular, the synchronous spectral peak intensity and its red shift in the region of about 450-480 nm may be used to indicate the presence or absence of high molecular weight and polycondensed humic organic components, or the multicomponent nature of NOM or NOM subcomponents.  相似文献   

9.
Natural organic matter (NOM) is found in all surface, ground and soil waters. During recent decades, reports worldwide show a continuing increase in the color and NOM of the surface water, which has an adverse affect on drinking water purification. For several practical and hygienic reasons, the presence of NOM is undesirable in drinking water. Various technologies have been proposed for NOM removal with varying degrees of success. The properties and amount of NOM, however, can significantly affect the process efficiency. In order to improve and optimise these processes, the characterisation and quantification of NOM at different purification and treatment processes stages is important. It is also important to be able to understand and predict the reactivity of NOM or its fractions in different steps of the treatment. Methods used in the characterisation of NOM include resin adsorption, size exclusion chromatography (SEC), nuclear magnetic resonance (NMR) spectroscopy, and fluorescence spectroscopy. The amount of NOM in water has been predicted with parameters including UV-Vis, total organic carbon (TOC), and specific UV-absorbance (SUVA). Recently, methods by which NOM structures can be more precisely determined have been developed; pyrolysis gas chromatography-mass spectrometry (Py-GC-MS), multidimensional NMR techniques, and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The present review focuses on the methods used for characterisation and quantification of NOM in relation to drinking water treatment.  相似文献   

10.
Chi FH  Amy GL 《Chemosphere》2004,55(4):515-524
In groundwater systems, dissolved natural organic matter (NOM) can influence the mobility of organic contaminants by altering the contaminant behavior in water and solid phases. The transport of anthracene and benz(a)anthracene (B(a)A) was studied in the presence and absence of NOM and/or soil organic matter (SOM) in column experiments. The results show that sorption are related to the properties of polycyclic aromatic hydrocarbons (PAHs), NOM and SOM. In the Fe-quartz media, the amount of NOM (20 mg/l) in solution had a little effect on increasing the apparent solubility of anthracene and countering increased anthracene sorption. In the natural (Bemidji) soil, Suwannee river fulvic acid (SRFA, 20 mg/l) and Suwannee river humic acid (SRHA) in water did not compete with SOM for anthracene, indicating that SOM has higher partition efficiency for anthracene. It was also observed that slow diffusion through an organic phase apparently caused most of the observed tailing in column breakthrough curves (BTCs). Even though the fOC of washed Bemidji sediment was very low, the transport of B(a)A was retarded significantly, however, and the transport of B(a)A was shown to be facilitated by dissolved NOM.  相似文献   

11.
Distributions and concentrations of PAHs in Hong Kong soils   总被引:19,自引:0,他引:19  
Surface soil (0-10 cm) samples from 53 sampling sites including rural and urban areas of Hong Kong were collected and analyzed for 16 EPA priority polycyclic aromatic hydrocarbons (PAHs). Total PAH concentrations were in the range of 7.0-410 microg kg(-1) (dry wt), with higher concentrations in urban soils than that in rural soils. The three predominant PAHs were Fluoranthene, Naphthalene and Pyrene in rural soils, while Fluoranthene, Naphthalene and Benzo(b + k)fluoranthene dominated the PAHs of urban soils. The values of PAHs isomer indicated that biomass burning might be the major origin of PAHs in rural soils, but vehicular emission around the heavy traffic roads might contribute to the soil PAHs in urban areas. A cluster analysis was performed and grouped the detectable PAHs under 4 clusters, which could be indicative of the PAHs with different origins and PAHs affected by soil organic carbon contents respectively.  相似文献   

12.
Ding G  Rice JA 《Chemosphere》2011,84(4):519-526
The chemical composition and physical conformation of natural organic matter (NOM) play a major role in regulating its capacity to retain hydrophobic organic compounds. Naphthalene and phenanthrene were used to study the correlations between sorption/desorption isotherm nonlinearity and compositional data obtained from quantitative 13C solid-state DPMAS NMR spectroscopy for soil and peat organic matter with or without lipids. Sorption experiments were conducted using a batch equilibration method. Desorption experiments were carried out immediately following the sorption experiments by three successive decant-refill cycles. Hysteresis was observed in all samples. Nonlinear sorption behavior was increased by removal of lipids from the NOM. The hysteresis index, obtained from the ratio of the Freundlich exponents (N values) for the desorption and sorption isotherms, was lower in the lipid-extracted NOM samples than in the same samples without lipid extraction. The relationship between the extent of hysteresis and the characteristics of the 13C DPMAS NMR spectra indicates that altering NOM composition through lipid extraction not only increased the proportion of aromatic-C content, but also increased sorption/desorption hysteresis. Our data also suggest that the hysteresis index is negatively related to aromaticity.  相似文献   

13.
The present work investigates the impacts and mechanisms associated with natural organic matter (NOM) in the Fe0 treatment system of Cu2+ and Zn2+ under roof runoff conditions. The NOM in runoff waters was characterized using XAD-4/8 adsorption resins, copper complexation, acidic capacity and liquid chromatography with online carbon detection. Batch kinetic experiments and flow-through configurations were performed and the results of metal removal were elucidated taking into account the characteristics of NOM. Based on the findings, it is shown that NOM influences the removal of metals through several complex pathways. At an un-favored condition for adsorption of metals, i.e., on iron corrosion products, at pH相似文献   

14.
The purpose of this study was to compare the molecular size distribution (MSD) of natural organic matter (NOM) in raw waters (RW) and drinking waters (DW), and to find out the differences between MSD after different water treatment processes. The MSD of NOM of 34 RW and DW of Finnish waterworks were determined with high-performance size-exclusion chromatography (HPSEC). Six distinct fractions were generally separated from water samples with the TSK G3000SW column, using sodium acetate at pH 7 as an eluent. Large and intermediate humic fractions were the most dominant fractions in surface waters (lakes and rivers), while in artificially recharged groundwaters and natural groundwaters intermediate and small fractions predominated. Water treatment processes removed the two largest fractions almost completely shifting the MSD towards smaller molecular size in DW. Granular activated carbon (GAC) filtration, ozonation, and their combination reduced all humic fractions compared to the conventional treatment. Humic fractions correlated with total organic carbon (TOC) content and chemical oxygen demand, this being especially true in RW. The results demonstrate that the HPSEC method can be applied for a qualitative and also for rough estimate quantitative analyzes of NOM directly from RW and DW samples without sample pretreatment.  相似文献   

15.
Kitis M  Kaplan SS 《Chemosphere》2007,68(10):1846-1853
The oxidative removal of natural organic matter (NOM) from waters using hydrogen peroxide and iron-coated pumice particles as heterogeneous catalysts was investigated. Two NOM sources were tested: humic acid solution and a natural source water. Iron coated pumice removed about half of the dissolved organic carbon (DOC) concentration at a dose of 3000 mg l(-1) in 24 h by adsorption only. Original pumice and peroxide dosed together provided UV absorbance reductions as high as 49%, mainly due to the presence of metal oxides including Al(2)O(3), Fe(2)O(3) and TiO(2) in the natural pumice, which are known to catalyze the decomposition of peroxide forming strong oxidants. Coating the original pumice particles with iron oxides significantly enhanced the removal of NOM with peroxide. A strong linear correlation was found between iron contents of coated pumices and UV absorbance reductions. Peroxide consumption also correlated with UV absorbance reduction. Control experiments proved the effective coating and the stability of iron oxide species bound on pumice surfaces. Results overall indicated that in addition to adsorptive removal of NOM by metal oxides on pumice surfaces, surface reactions between iron oxides and peroxide result in the formation of strong oxidants, probably like hydroxyl radicals, which further oxidize both adsorbed NOM and remaining NOM in solution, similar to those in Fenton-like reactions.  相似文献   

16.
可吸附有机卤化物的深度处理实验研究   总被引:5,自引:0,他引:5  
可吸附有机卤化物(AOX)是人为污染的重要标志之一,北京高碑店污水处理厂二级出水中约90%的AOX为可吸附有机氧化物(AOCl),研究了自氧氧化,粒状活性炭吸附,粉末活性炭吸附3种深度处理工艺对二级出水中AOX的去除作用,臭氧的氧化反应最多可去除约38%的AOX,粒状活性炭床可运行3200床体积,吸附容量为0.14mgAOX/g GH-16型活性炭,投加木质粉末活性炭200mg/L及25mg/L的聚合氯化铝,能去除24.7%的AOX。  相似文献   

17.

Introduction

The degradation and mineralization of two triketone (TRK) herbicides, including sulcotrione and mesotrione, by the electro-Fenton process (electro-Fenton using Pt anode (EF-Pt), electro-Fenton with BDD anode (EF-BDD) and anodic oxidation with BDD anode) were investigated in acidic aqueous medium.

Methods

The reactivity of both herbicides toward hydroxyl radicals was found to depend on the electron-withdrawing effect of the aromatic chlorine or nitro substituents. The degradation of sulcotrione and mesotrione obeyed apparent first-order reaction kinetics, and their absolute rate constants with hydroxyl radicals at pH?3.0 were determined by the competitive kinetics method.

Results and discussion

The hydroxylation absolute rate constant (k abs) values of both TRK herbicides ranged from 8.20?×?108 (sulcotrione) to 1.01?×?109 (mesotrione) L?mol?1?s?1, whereas those of the TRK main cyclic or aromatic by-products, namely cyclohexane 1,3-dione , (2-chloro-4-methylsulphonyl) benzoic acid and 4-(methylsulphonyl)-2-nitrobenzoic acid, comprised between 5.90?×?108 and 3.29?×?109?L?mol?1?s?1. The efficiency of mineralization of aqueous solutions of both TRK herbicides was evaluated in terms of total organic carbon removal. Mineralization yields of about 97?C98% were reached in optimal conditions for a 6-h electro-Fenton treatment time.

Conclusions

The mineralization process steps involved the oxidative opening of the aromatic or cyclic TRK by-products, leading to the formation of short-chain carboxylic acids, and, then, of carbon dioxide and inorganic ions.  相似文献   

18.
Degradation of diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] in aqueous solution and the proposed degradation mechanism of diuron by ozonation were investigated. The factors that affect the degradation efficiency of diuron were examined. The generated inorganic ions and organic acids during the ozonation process were detected. Total organic carbon removal rate and the amount of the released Cl(-) increased with increasing ozonation time, but only 80.0% of the maximum theoretical concentration of Cl(-) at total mineralization was detected when initial diuron concentration was 13.8 mg L(-1). For N species, the final concentrations of NO3(-) and NH4+ after 60 min of reaction time were 0.28 and 0.19 mg L(-1), respectively. The generated acetic acid, formic acid and oxalic acid were detected during the reaction process. The main degradation pathway of diuron by ozonation involved a series of dechlorination-hydroxylation, dealkylation and oxidative opening of the aromatic ring processes, leading to small organic species and inorganic species. The degradation efficiency of diuron increased with decreasing initial diuron concentration. Higher pH value, more ozone dosage, additive Na2CO3, additive NaHCO3 and additive H2O2 were all advantageous to improve the degradation efficiency of diuron.  相似文献   

19.
H Gaboriau  A Saada 《Chemosphere》2001,44(7):1633-1639
The adsorption of heavy fuel oil No. 2 (F2) on a reference kaolinite (Arvor kaolin, France), and the influence of this anthropic organic matter on the phenanthrene (PHEN) retention capacity of a kaolinite were investigated in the laboratory. The heaviest and most polar compounds of F2 are adsorbed on kaolinite preferentially to the other compounds and also partly irreversibly. The precoating of kaolinite by F2 significantly increases the sorption of PHEN in the range of concentrations studied (10-500 microg l(-1)). The partition coefficients normalized to organic carbon content (Koc) of kaolin precoated with fuel oil (5.2 < log Koc < 5.5) are one order of magnitude higher than those of the original kaolin (4.2 < logKoc < 4.5), and show very good agreement with the literature for polluted industrial soils. The Koc measured on the uncoated kaolin are in close agreement with the values determined for natural soils in which humic substances represent the organic component. This demonstrates that the composition of organic matter is the primary factor in PHEN retention by the soils. Therefore, in predicting the transport of PHEN, and other Polycyclic aromatic hydrocarbons (PAHs) in general, in soils of industrial sites containing heavy hydrocarbons or tars requires that the specific nature of the organic matter contained in these soils be taken into consideration.  相似文献   

20.
Chiang PN  Wang MK  Chiu CY  King HB  Hwong JL 《Chemosphere》2004,54(2):217-224
The carbon isotope analysis [delta13C values] of organic samples can be a useful research in ecological studies because delta13C values are indicative of the plant source. This study investigated the changes in plant communities along the grassland-forest boundary in the alpine forest at Ta-Ta-Chia long term ecological research (LTER) site in central Taiwan using carbon isotope data. The aim of this study was focused on the forest fire affected the change of vegetation community. Four pedons from grassland dominated by Miscanthus transmorrisonensis (pedons 1 and 2), transition zone by Tsuga and Yushania nittakeyamensis (pedon 3), and forest zone by Tsuga and nittakeyamensis (pedon 4) were examined. Soil organic matter (SOM) delta13C values in the upper soil horizon were similar to delta13C values of the overlaying vegetation types. This indicates that the boundary between these plant communities remained the same in the past decades. The delta13C values of the grassland SOM ranged from -19.4 per thousand to -24.1 per thousand, showing decrease with soil depth. This suggests that C4 plants (transmorrisonensis) have replaced C3 plants of Tsuga and nittakeyamensis. The delta13C values of the Tsuga forest area (pedon 4) range from -27.0 per thousand to -23.5 per thousand and showed only slight change with soil depth, implying that C3 plants have remained the major species in the forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号