首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Killer whale (Orcinus orca Linnaeus, 1758) abundance in the North Pacific is known only for a few populations for which extensive longitudinal data are available, with little quantitative data from more remote regions. Line-transect ship surveys were conducted in July and August of 2001–2003 in coastal waters of the western Gulf of Alaska and the Aleutian Islands. Conventional and Multiple Covariate Distance Sampling methods were used to estimate the abundance of different killer whale ecotypes, which were distinguished based upon morphological and genetic data. Abundance was calculated separately for two data sets that differed in the method by which killer whale group size data were obtained. Initial group size (IGS) data corresponded to estimates of group size at the time of first sighting, and post-encounter group size (PEGS) corresponded to estimates made after closely approaching sighted groups. ‘Resident’-type (fish-eating) killer whales were more abundant than the ‘transient’-type (mammal-eating). Abundance estimates of resident killer whales (991 [95% CI = 379–2,585] [IGS] and 1,587 [95% CI = 608–4,140] [PEGS]), were at least four times greater than those of the transient killer whales (200 [95% CI = 81–488] [IGS] and 251 [95% CI = 97–644] whales [PEGS]). The IGS estimate of abundance is preferred for resident killer whales because the estimate based on PEGS data may show an upward bias. The PEGS estimate of abundance is likely more accurate for transients. Residents were most abundant near Kodiak Island in the northern Gulf of Alaska, around Umnak and Unalaska Islands in the eastern Aleutians, and in Seguam Pass in the central Aleutians. This ecotype was not observed between 156 and 164°W, south of the Alaska Peninsula. In contrast, transient killer whale sightings were found at higher densities south of the Alaska Peninsula between the Shumagin Islands and the eastern Aleutians. Only two sightings of ‘offshore’-type killer whales were recorded during the surveys, one northeast of Unalaska Island and the other south of Kodiak Island. These are the first estimates of abundance of killer whale ecotypes in the Aleutian Islands and Alaska Peninsula area and provide a baseline for quantifying the role of these top predators in their ecosystem. Electronic Supplementary Material  Supplementary material is available in the online version of this article at and is accessible for authorized users.
Alexandre N. ZerbiniEmail:
  相似文献   

2.
Longitudinal capture-mark-recapture data were used to estimate abundance and survival rates for green turtles (Chelonia mydas) in San Diego Bay, California, USA. These turtles were closely associated with warm effluent from a power plant during winter months. The life stage distribution of green turtles in the bay ranged from post-pelagic juveniles to adults (44.0–110.4 cm straight carapace length). During 99 capture sessions between December 2, 1990, and March 25, 2009, 96 individual green turtles were caught. To estimate abundance and survival rates, robust-design mark-recapture models were fitted to capture-recapture histories using software MARK. The estimated annual survival rate was 0.861 (SE = 0.147, 95% CI = 0.356–0.986), whereas annual abundance ranged from 16 (SE = 6.3, 95% CI = 4–29) to 61 (SE = 13.2, 95% CI = 36–88). This study provides the first survival rate and abundance estimates for a green turtle foraging population in the highly industrialized San Diego Bay.  相似文献   

3.
The abundance of New Zealand subantarctic southern right whales (Eubalaena australis) was estimated for the first time using mark-recapture methods based on photo-identification and microsatellite genotyping (13 loci). Individual identification photographs of 383 whales and microsatellite genotypes of 235 whales were collected during annual austral winter field surveys from 1995 to 1998. Given the 4-year survey period and lack of geographic and demographic closure, we estimated super-population abundance using the POPAN Jolly-Seber model implemented in the software programme MARK. Models with constant survivorship but time-varying capture probability and probability of entry into the population were the most suitable due to the survey design. This provided estimates of abundance in 1998 of 908 non-calf whales (95% C.L. = 755, 1,123) for the photo-identification and 910 non-calf whales (95% C.L. = 641, 1,354) for the microsatellite genotype data sets. The current estimate of 900 whales may represent less than 5% of the pre-whaling abundance in New Zealand waters.  相似文献   

4.
Abstract: Often abundance of rare species cannot be estimated with conventional design‐based methods, so we illustrate with a population of blue whales (Balaenoptera musculus) a spatial model‐based method to estimate abundance. We analyzed data from line‐transect surveys of blue whales off the coast of Chile, where the population was hunted to low levels. Field protocols allowed deviation from planned track lines to collect identification photographs and tissue samples for genetic analyses, which resulted in an ad hoc sampling design with increased effort in areas of higher densities. Thus, we used spatial modeling methods to estimate abundance. Spatial models are increasingly being used to analyze data from surveys of marine, aquatic, and terrestrial species, but estimation of uncertainty from such models is often problematic. We developed a new, broadly applicable variance estimator that showed there were likely 303 whales (95% CI 176–625) in the study area. The survey did not span the whales' entire range, so this is a minimum estimate. We estimated current minimum abundance relative to pre‐exploitation abundance (i.e., status) with a population dynamics model that incorporated our minimum abundance estimate, likely population growth rates from a meta‐analysis of rates of increase in large baleen whales, and two alternative assumptions about historic catches. From this model, we estimated that the population was at a minimum of 9.5% (95% CI 4.9–18.0%) of pre‐exploitation levels in 1998 under one catch assumption and 7.2% (CI 3.7–13.7%) of pre‐exploitation levels under the other. Thus, although Chilean blue whales are probably still at a small fraction of pre‐exploitation abundance, even these minimum abundance estimates demonstrate that their status is better than that of Antarctic blue whales, which are still <1% of pre‐exploitation population size. We anticipate our methods will be broadly applicable in aquatic and terrestrial surveys for rarely encountered species, especially when the surveys are intended to maximize encounter rates and estimate abundance.  相似文献   

5.
Analyses of social structures in baleen whales are rare, and so far, they are thought to consist of mostly short and unstable associations. We investigated the association patterns of individual humpback whales from a summer feeding aggregation in the Gulf of St. Lawrence from 1997 to 2005. Photo-identified animals were sexed using genetic methods and were grouped into five categories: juvenile males/females, mature males and lactating/non-lactating females. We calculated half-weight association indices within and between the groups and found that 45% of the observation showed single animals and another 45% small groups (two to three) consisting mainly of mature animals besides lactating females. Using permutation tests, we found evidence for long-term associations between mature males and non-lactating females as well as among non-lactating females. Standardised lagged association rates revealed that these male–female groups disassociated quickly over about 2 weeks, whereas associations increased again towards the beginning of the breeding season. Non-lactating females of similar age engaged in multi-seasonal stable pairs for up to six consecutive feeding seasons; no mature male–female association was observed in consecutive years. The females with the most stable and long-term associations also had the highest reproductive output. While the risk of predation could not explain these long-term bonds, feeding cooperation seemed the most plausible explanation for group forming behaviour during the summer months.  相似文献   

6.
《Ecological modelling》2005,188(1):41-51
In plants that produce seeds with contrasting genetic background (selfed versus outcrossed), the question arises whether the ecological function of the two types of progeny differ. This paper addresses this issue for the ant-dispersed Calathea micans by introducing a novel application of the Neubert–Caswell model for analysis of wave speed for structured populations. Because dispersal as well as vital rates are structured, the model allows for distinct dispersal kernels for different types of progeny and thus permits comparisons of the sensitivity to changes in demographic and dispersal parameters of in situ population growth rate versus population spread across space. The study site was a lowland, evergreen tropical rain forest at La Selva Biological station, Costa Rica, where the species is commonly found throughout the forest. In C. micans, seeds produced by open flowers (potentially outcrossed) or by closed flowers (selfed) bear oily arils and are dispersed by ants. Five life-history stages were used to characterize the population: seedlings originating from seeds produced by open flowers, seedlings originating from seeds produced by closed flowers, juvenile vegetative plants, reproductive plants without new shoots and reproductive plants with new shoots. Demography varied seasonally. Transitions were estimated from marking and following the fate of plants (N = 400) in a natural population over a dry and a wet season. The population dynamics was described by a 10 × 10 matrix, with five life-history stages and two habitat states. The habitat states cycle repeatedly, dry–wet–dry–wet. To estimate dispersal kernels for each seed type, individual seeds (N = 225 and 306 seeds produced by open and closed flowers, respectively) were color-coded and placed in depots, allowing the ants to redistribute them. Five months later, seedlings with an attached seed coat bearing the intact color-coding, were surveyed around the depots. Radial distances and angles were recorded for each seedling (N = 67 and 81 seedlings arising from open and closed flowers, respectively). The results of the model give an asymptotic growth rate of 1.06 per season and an asymptotic rate of spread of 8.36 cm per season. There is a high correlation (r = 0.99) between elasticity of growth rate and elasticity of rate of spread of the population. Both rates are most sensitive to changes in stasis of juveniles during the dry season. However, most interesting is the analysis that revealed that population spread is more sensitive than in situ population growth to demographic rates of seedlings arising from open flowers. The analysis suggests a new way of thinking about ecological functions of multiple modes of reproduction.  相似文献   

7.
Entanglement in fixed fishing gear affects whales worldwide. In the United States, deaths of North Atlantic right (Eubalaena glacialis) and humpback whales (Megaptera novaeangliae) have exceeded management limits for decades. We examined live and dead whales entangled in fishing gear along the U.S. East Coast and the Canadian Maritimes from 1994 to 2010. We recorded whale species, age, and injury severity and determined rope polymer type, breaking strength, and diameter of the fishing gear. For the 132 retrieved ropes from 70 cases, tested breaking strength range was 0.80–39.63 kN (kiloNewtons) and the mean was 11.64 kN (SD 8.29), which is 26% lower than strength at manufacture (range 2.89–53.38 kN, mean = 15.70 kN [9.89]). Median rope diameter was 9.5 mm. Right and humpback whales were found in ropes with significantly stronger breaking strengths at time of manufacture than minke whales (Balaenoptera acuturostrata) (19.30, 17.13, and 10.47 mean kN, respectively). Adult right whales were found in stronger ropes (mean 34.09 kN) than juvenile right whales (mean 15.33 kN) and than all humpback whale age classes (mean 17.37 kN). For right whales, severity of injuries increased since the mid 1980s, possibly due to changes in rope manufacturing in the mid 1990s that resulted in production of stronger ropes at the same diameter. Our results suggest that broad adoption of ropes with breaking strengths of ≤7.56 kN (≤1700 lbsf) could reduce the number of life‐threatening entanglements for large whales by at least 72%, and yet could provide sufficient strength to withstand the routine forces involved in many fishing operations. A reduction of this magnitude would achieve nearly all the mitigation legally required for U.S. stocks of North Atlantic right and humpback whales. Ropes with reduced breaking strength should be developed and tested to determine the feasibility of their use in a variety of fisheries.  相似文献   

8.
Cover Caption     
Cover: Each year, over 1 million people journey to the Stellwagen Bank National Marine Sanctuary for commercial whale-watching trips that view endangered whales, such as this breaching humpback. In an attempt to safeguard whales while providing viewers with an educational experience a voluntary conservation approach is being used in the area.The National Oceanic and Atmospheric Administration wrestles with the value of such voluntary approaches versus regulations as a management tool. See pages 450–457. Photo by Oktay Kaya.  相似文献   

9.
Understanding the dynamics of population recovery is particularly complex when an organism has multiple, remote breeding and feeding grounds separated by one of the longest known migration routes. This study reports on the most comprehensive assessment of humpback whale (Megaptera novaeangliae) movements between remote Antarctic waters south of New Zealand and east Australia (EA), and the migratory corridors and breeding grounds of Australia and Oceania. A total of 112 individual whales were identified; 57 from microsatellites and 61 by fluke with 23 % (n = 26) matched to sites outside Antarctica. Despite large datasets from other southern regions being included in the comparison, the whales were predominantly linked to EA (n = 24). Only two matches to the Oceania catalogues directly north was surprising; therefore the primary feeding grounds of these endangered whales still remain unknown. The confirmation of the Balleny Islands as an important feeding ground for EA whales could provide an insight into reasons behind the rapid recovery of this population. Determining the feeding grounds of Oceania’s whales may explain whether prey energetics or migration length are limiting factors to their recovery and will allow an understanding of future ecosystem changes in these whales.  相似文献   

10.
Marine spatial planning provides a comprehensive framework for managing multiple uses of the marine environment and has the potential to minimize environmental impacts and reduce conflicts among users. Spatially explicit assessments of the risks to key marine species from human activities are a requirement of marine spatial planning. We assessed the risk of ships striking humpback (Megaptera novaeangliae), blue (Balaenoptera musculus), and fin (Balaenoptera physalus) whales in alternative shipping routes derived from patterns of shipping traffic off Southern California (U.S.A.). Specifically, we developed whale‐habitat models and assumed ship‐strike risk for the alternative shipping routes was proportional to the number of whales predicted by the models to occur within each route. This definition of risk assumes all ships travel within a single route. We also calculated risk assuming ships travel via multiple routes. We estimated the potential for conflict between shipping and other uses (military training and fishing) due to overlap with the routes. We also estimated the overlap between shipping routes and protected areas. The route with the lowest risk for humpback whales had the highest risk for fin whales and vice versa. Risk to both species may be ameliorated by creating a new route south of the northern Channel Islands and spreading traffic between this new route and the existing route in the Santa Barbara Channel. Creating a longer route may reduce the overlap between shipping and other uses by concentrating shipping traffic. Blue whales are distributed more evenly across our study area than humpback and fin whales; thus, risk could not be ameliorated by concentrating shipping traffic in any of the routes we considered. Reducing ship‐strike risk for blue whales may be necessary because our estimate of the potential number of strikes suggests that they are likely to exceed allowable levels of anthropogenic impacts established under U.S. laws. Evaluación del Riesgo de Colisiones de Barcos y Ballenas en la Planificación Marina Espacial  相似文献   

11.
Humpback whales (Megaptera novaeangliae) are managed by the International Whaling Commission as 7 primary populations that breed in the tropics and migrate to 6 feeding areas around the Antarctic. There is little information on individual movements within breeding areas or migratory connections to feeding grounds. We sought to better understand humpback whale habitat use and movements at breeding areas off West Africa, and during the annual migration to Antarctic feeding areas. We also assessed potential overlap between whale habitat and anthropogenic activities. We used Argos satellite‐monitored radio tags to collect data on 13 animals off Gabon, a primary humpback whale breeding area. We quantified habitat use for 3 cohorts of whales and used a state‐space model to determine transitions in the movement behavior of individuals. We developed a spatial metric of overlap between whale habitat and models of cumulative human activities, including oil platforms, toxicants, and shipping. We detected strong heterogeneity in movement behavior over time that is consistent with previous genetic evidence of multiple populations in the region. Breeding areas for humpback whales in the eastern Atlantic were extensive and extended north of Gabon late in the breeding season. We also observed, for the first time, direct migration between West Africa and sub‐Antarctic feeding areas. Potential overlap of whale habitat with human activities was the highest in exclusive economic zones close to shore, particularly in areas used by both individual whales and the hydrocarbon industry. Whales potentially overlapped with different activities during each stage of their migration, which makes it difficult to implement mitigation measures over their entire range. Our results and existing population‐level data may inform delimitation of populations and actions to mitigate potential threats to whales as part of local, regional, and international management of highly migratory marine species. Cuantificación de los Movimientos de Gran Amplitud y el Traslape Potencial con Actividad Antropogénica y las Ballenas Jorobadas en el Océano Atlántico Sur  相似文献   

12.
We used photographic mark-recapture methods to estimate the number of mammal-eating “transient” killer whales using the coastal waters from the central Gulf of Alaska to the central Aleutian Islands, around breeding rookeries of endangered Steller sea lions. We identified 154 individual killer whales from 6,489 photographs collected between July 2001 and August 2003. A Bayesian mixture model estimated seven distinct clusters (95% probability interval = 7–10) of individuals that were differentially covered by 14 boat-based surveys exhibiting varying degrees of association in space and time. Markov Chain Monte Carlo methods were used to sample identification probabilities across the distribution of clusters to estimate a total of 345 identified and undetected whales (95% probability interval = 255–487). Estimates of covariance between surveys, in terms of their coverage of these clusters, indicated spatial population structure and seasonal movements from these near-shore waters, suggesting spatial and temporal variation in the predation pressure on coastal marine mammals.  相似文献   

13.
A wide variety of sounds were recorded from two entrapped humpback whales (Megaptera novaeangliae), a female and a male, in Newfoundland, Canada, during the summers of 1975 and 1976. The sounds included pulsed moans, moans, yups, cries, chirps and clicks. Comparisons are made between the sounds of the two whales (male and female). The most frequently produced sounds, pulsed moans and moans, are compared with similar sounds that compose part of the winter song. The sounds from the New-foundland whales were not put together into songs.  相似文献   

14.
Phylogenetically informed imputation methods have rarely been applied to estimate missing values in demographic data but may be a powerful tool for reconstructing vital rates of survival, maturation, and fecundity for species of conservation concern. Imputed vital rates could be used to parameterize demographic models to explore how populations respond when vital rates are perturbed. We used standardized vital rate estimates for 50 bird species to assess the use of phylogenetic imputation to fill gaps in demographic data. We calculated imputation accuracy for vital rates of focal species excluded from the data set either singly or in combination and with and without phylogeny, body mass, and life-history trait data. We used imputed vital rates to calculate demographic metrics, including generation time, to validate the use of imputation in demographic analyses. Covariance among vital rates and other trait data provided a strong basis to guide imputation of missing vital rates in birds, even in the absence of phylogenetic information. Mean NRMSE for null and phylogenetic models differed by <0.01 except when no vital rates were available or for vital rates with high phylogenetic signal (Pagel's λ > 0.8). In these cases, including body mass and life-history trait data compensated for lack of phylogenetic information: mean normalized root mean square error (NRMSE) for null and phylogenetic models differed by <0.01 for adult survival and <0.04 for maturation rate. Estimates of demographic metrics were sensitive to the accuracy of imputed vital rates. For example, mean error in generation time doubled in response to inaccurate estimates of maturation time. Accurate demographic data and metrics, such as generation time, are needed to inform conservation planning processes, for example through International Union for Conservation of Nature Red List assessments and population viability analysis. Imputed vital rates could be useful in this context but, as for any estimated model parameters, awareness of the sensitivities of demographic model outputs to the imputed vital rates is essential.  相似文献   

15.
The northern propellerclam Cyrtodaria siliqua is a common bycatch in the Arctic surfclam, Mactromeris polynyma fishery on Banquereau Bank in Eastern Canada. Samples of the propellerclam from this exploited fishery were used to determine the life history characteristics of the population. The age structure of the population is dominated by old animals to ages exceeding 100 years. We validated the age estimates for the propellerclam through analysis of bomb-produced radiocarbon in the shell growth increments deposited before, during and after the atmospheric atomic bomb testing periods of the 1950s and 1960s. Radiocarbon from shells with presumed birth dates between the late 1950s and 1970s clearly reflected the sharp increase in oceanic radiocarbon attributable to previous nuclear testing, indicating that age estimates based on shell increment counts are accurate. Estimates of von Bertalanffy growth parameters revealed that the growth rate of the population was relatively rapid for the first 20 years of life, slowing down to very low growth rates thereafter. Sexual maturity was estimated as being reached at 28.6 mm in length and 4.7 years in age. Size–weight morphometric relationships were also calculated.  相似文献   

16.
Will Observation Error and Biases Ruin the Use of Simple Extinction Models?   总被引:1,自引:0,他引:1  
Abstract: Estimating the risk of extinction for populations of endangered species is an important component of conservation biology. These estimates must be made from data that contain both environmental noise in the year-to-year transitions in population size (so-called "process error"), random errors in sampling, and possible biases in sampling ( both forms of observation errors). To determine how much faith to place in estimated extinction rates, it is important to know how sensitive they are to observation error. We used three simple, commonly employed models of population dynamics to generate simulated population time series. We then combined random observation error or systematic biases with those data, fit models to the time series data, and observed how close the extinction dynamics of the fitted models compared with the dynamics of the underlying models. We found that systematic biases in sampling rarely affected estimates of extinction risk. We also found that even moderate levels of random observation error do not significantly affect extinction estimates except over a small range of process errors, corresponding to the region where extinction risk is most uncertain. With more substantial sampling error, estimates of extinction risk degraded rapidly. Field census techniques for a variety of taxa often involve observation errors within ±32% of actual population sizes. For typical time series used in conservation, therefore, we often may not need to be overly concerned about observation errors as an extra source of imperfection in our estimated extinction rates.  相似文献   

17.
The hawksbill marine turtle (Eretmochelys imbricata) is listed on the IUCN Red List as critically endangered but little is known about its demography to support robust diagnosis of population trends. Moreover, adult female hawksbills do not nest each year due to environmentally mediated physiological constraints and this skipped breeding behaviour presents a major challenge in data collection and for estimating demographic parameters from such data sets. We estimated demographic parameters such as survival and breeding probabilities for a major Indo-Pacific nesting hawksbill population using a capture-mark-recapture (CMR) study and a multistate open robust design statistical modelling approach, which accounts for breeding omission and the staggered arrival and departure of nesters during each season. Our study used CMR histories for 413 nesting hawksbills tagged on Varanus Island (Western Australia) over a 4-month sampling period each year for 20 austral summer nesting seasons between 1987 and 2007. The estimated annual survival probability for these nesting hawksbills was constant over the 20 years at ca. 0.947 (95% CI: 0.91–0.97), which is encouragingly high for a population associated with industry. The estimated annual conditional nesting (breeding) probability for female hawksbills that had skipped the previous nesting season was time-specific ranging from 0.07 to 0.29 (mean = 0.18, CV = 41.3%), which presumably reflects the interaction between turtle physiology and in-water habitat quality. The mean conditional probability of breeding again having skipped 2 prior consecutive nesting seasons was ca. 0.83 (95% CI: 0.73–0.89), indicating a high frequency of breeding season omission. The annual nesting probability for females that had nested the previous season was 0, reflecting known obligate skipped breeding (reproductive omission) that is characteristic of hawksbill populations in response to high energy demands of vitellogenesis and breeding migration. These are the first estimates of annual survival and state-dependent breeding probabilities for any Indo-Pacific hawksbill stock that provide a basis for developing a better understanding of regional population dynamics for this critically endangered species.  相似文献   

18.
Rates of respiration and protein synthesis were measured during embryonic and larval development of Antarctic asteroids with different life-history modes (non-feeding and feeding larvae: Acodontaster hodgsoni, Porania antarctica, Odontaster meridionalis). Patterns of respiration for these species all show an increase during embryogenesis, with subsequent maintenance of routine respiration (“starvation resistance”), even in the absence of food for ~4 months (O. meridionalis). Fractional rates of protein synthesis (i.e., rate per unit mass of whole-body protein content) in the Antarctic larvae are essentially identical to those of temperate species. Larvae of O. meridionalis had an average fractional synthesis rate of 0.52% ± 0.05 h−1 at −1.0°C, which is comparable to the temperate asteroid Asterina miniata at 0.53% ± 0.14 h−1 at 15°C. For embryos of the asteroids A. hodgsoni and P. antarctica, fractional rates of protein synthesis (~0.2% h−1) also are comparable to those reported for embryos of temperate echinoderm species. While rates of synthesis are high, rates of protein deposition are relatively low (percent of protein synthesized that is retained for growth). During a ~4 month growth period for larvae of O. meridionalis, the average protein depositional efficiency was 5.2%. This contrasts with higher rates of depositional efficiency reported for similar developmental stages of temperate echinoderm species. The biological significance of maintaining high rates of macromolecular synthesis for species with low rates of cell division and low protein depositional efficiencies is intriguing in the context of understanding the mechanistic bases of extended life spans and dispersal potential in response to changing Antarctic environments.  相似文献   

19.
Attempts to identify predictors and mechanisms of invasion success have been weakened by poor data quality, mostly because monitoring does not begin immediately after introduction events. To overcome this issue, we used data from conservation translocations of threatened bird species. We analyzed information on >1200 translocation events of >150 bird species to investigate how life-history traits affect population establishment measured based on rates of survival and reproduction. Species position along the slow–fast life-history continuum was a key predictor of translocation success. Species with fast-paced life histories were less likely to survive (over both short- and mid-term) and more likely to breed successfully than species with slow life histories. The temporal partitioning of reproductive effort (number of clutches per year) also affected the probability of successful reproduction. Our results illustrate how conservation-motivated reintroduction programs can provide proxies for the initial stages of the invasion process, enabling empirical tests of predictions from life-history theory and informing management.  相似文献   

20.
Abstract:  Demographic data of rare and endangered species are often too sparse to estimate vital rates and population size with sufficient precision for understanding population growth and decline. Yet, the combination of different sources of demographic data into one statistical model holds promise. We applied Bayesian integrated population modeling to demographic data from a colony of the endangered greater horseshoe bats (Rhinolophus ferrumequinum) . Available data were the number of subadults and adults emerging from the colony roost at dusk, the number of newborns from 1991 to 2005, and recapture data of subadults and adults from 2004 and 2005. Survival rates did not differ between sexes, and demographic rates remained constant across time. The greater horseshoe bat is a long-lived species with high survival rates (first year: 0.49 [SD 0.06]; adults: 0.91 [SD 0.02]) and low fecundity (0.74 [SD 0.12]). The yearly average population growth was 4.4% (SD 0.1%) and there were 92 (SD 10) adults in the colony in year 2005. Had we analyzed each data set separately, we would not have been able to estimate fecundity, the estimates of survival would have been less precise, and the estimate of population growth biased. Our results demonstrate that integrated models are suitable for obtaining crucial demographic information from limited data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号