首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
选择贵州花江喀斯特峡谷为研究区,于2009年5月和9月对不同等级石漠化地的土壤动物多样性和花椒凋落物的分解速率进行研究。共获土壤动物3423只,隶属于3门7纲19目,共21个类群,优势类群为弹尾目(Collembola)、甲螨亚目(Oribatida)、中气门亚目(Mesostigmata);常见类群为前气门亚目(Prostigmata)、鞘翅目(Coleoptera)、双翅目(Diptera)、膜翅目(Hymenoptera)、半翅目(Hemiptera)。研究结果表明:(1)减少人为活动、有效保存地面凋落物、提高生境生物多样性可以迅速改良土壤生态环境,有效恢复土壤动物群落;(2)凋落物分解受土壤动物数量的影响最大,尤其是弹尾目和蜱螨目的数量起决定作用;(3)石漠化治理工程对花江石漠化治理和喀斯特生态环境的重建具有重要意义。  相似文献   

2.
2000年8月对湖南省张家界国家森林公园森林土壤进行了土壤动物调查,获各类动物1972个,分隶属于4门8纲24目,其中螨类和弹尾类为优势类群,双翅目和膜翅目为常见类群。初步研究表明,森林旅游对土壤动物类群和个体数目都有较大的影响。  相似文献   

3.
为阐明不同稀土处理对梅园土壤动物群落组成的影响,采用手拣法、干漏斗法和湿漏斗法对梅园各稀土处理区土壤动物群落组成进行系统调查,共得土壤动物标本8076个,隶属于4门15纲31目.其中昆虫纲物种最为丰富,有12目,占全部种群数的58.41%;;鞘翅目、膜翅目、蜱螨目、双翅目和弹尾纲等5种优势类群占土壤动物个体总数的81.44%.5种稀土处理区中,杂食性土壤动物功能团所占的比例均高于植食性功能团所占的比例,且杂食性土壤动物所占的比例依次为对照区(CK)(La处理区(下同)(Ce区(Pr区(Nd区(Sm区.不同浓度稀土处理区中土壤动物类群和个体数量均随着稀土浓度增加而减少,杂食性功能团所占的比例也高于植食性功能团所占的比例,且杂食性功能团所占的比例依次为对照区(CK)(25区(mg·kg-1处理区,下同)(50区(100区(500区(1000区(2000区(3000区.以Pr处理后的土壤动物物种数多,个体数量大,优势集中性指数高,优势物种优势性极明显,其它4种稀土在类群数、个体数、优势集中性指数和优势类群优势性和Pr规律基本相同,依次为Nd、Sm、Ce和La,但均比CK小.因此,5种稀土及其不同浓度处理区土壤动物群...  相似文献   

4.
重金属污染对土壤动物群落生态影响的研究   总被引:42,自引:2,他引:40  
研究结果表明,污染区土壤动物种类计有31类,蜱螨类和弹尾类为优势类群,其它29类为常见类群和希有类群;土壤动物种类和数量随着污染影响程度的增加而减少,土壤物数量变化主要由于优势类群的数量消长,土壤动物种类的减少则由于污染敏感种类的减少或消失。大型土壤动物蚯蚓和蜘蛛对重金属元素有强的富集能力,体现人的Cd,PhAs含量与土壤中Cd,Ph,As含量叶明显地正相关,而蜈蚣对重金属的富集明显减弱。  相似文献   

5.
对上海宝钢厂区不同季节、不同区域土层中土壤动物群落组成、垂直分布、季节变化和多样性进行了调查分析,结果表明:春季土壤动物类群和数量相对较少;办公区的土壤动物相对较少;垂直分布特点为0~5 cm>5~10 cm>10~15 cm;螨类和弹尾目是优势类群,螨类所占的比例严重影响着群落的多样性.  相似文献   

6.
云山国家森林公园土壤动物资源生态特征   总被引:10,自引:0,他引:10  
1998年5月至2001年5月对云山国家森林公园土壤动物资源进行了生态特征研究,共获得土壤动物9769个,隶属6门13纲31个类目。亚热带土壤动物的类群在这里几乎都有分布。其中优势类群为蜱螨目、弹尾目及线虫类3类;常见类群有膜翅类、双尾目、原尾目、线蚓类、双翅目5类;其余为稀有类群。通过与我国东西方向及其南北方向上典型土壤动物生态群落的分析比较,研究过程发现,受其地表生物多样性的影响,云山土壤动物资源种群丰富;原始群落结构完整;区系组成地带过渡性明显;山体顶部灌丛地段节肢动物有个体偏大的生态特征。研究结果表明:地处我国南岭、雪峰山及滇黔桂地区3种不同类型山系过渡地带的云山国家森林公园,作为自然保护区,不但是一个资源丰富的地表生物生态基因库,同时还是一个异常宝贵的地下生物生态基因库。  相似文献   

7.
为了探讨保护性耕作对旱作农田土壤呼吸的影响,采用LI6400-09呼吸室在重庆北碚西南大学试验农场对平作(T)、垄作(R)、平作+覆盖(TS)、垄作+覆盖(RS)这4种处理下的西南紫色土丘陵区小麦/玉米/大豆套作体系中小麦作物生长季节的土壤呼吸及其水热生物因子进行了测定和分析.结果表明,小麦生殖生长阶段农田土壤呼吸速率变化范围为1.100~2.508μmol.(m2.s)-1,各处理的土壤呼吸速率差异显著,表现为RS>R>TS>T.各处理10 cm土层的土壤温度表现为T>R>TS>RS.土壤呼吸与土壤温度的关系符合指数函数,Q10值分别为1.25、1.20、1.31和1.26.5 cm土层的土壤含水量高低排序为TS>RS>T>R.土壤水分与土壤呼吸以抛物线曲线拟合最好,说明存在土壤呼吸最强的土壤含水量点,本研究得出小麦生殖生长阶段在土壤含水量的响应阈值为14.80%~17.47%.土壤动物中优势类群为弹尾目和螨目,与土壤呼吸存在一定相关性,对照处理和垄作下相关性高,而秸秆覆盖的处理土壤呼吸与土壤动物没有明显的相关性.  相似文献   

8.
热振森林大型土壤动物群落特征及其影响因素   总被引:1,自引:0,他引:1  
为了解西藏拉萨市林周县热振国家森林公园不同海拔大型土壤动物群落的空间分布特征及其与环境因子的关系,于2021年7月(夏季)根据其地理特征设置了三个不同海拔共9个样地.采用手捡法对大型土壤动物进行收集,并将其保存在75%酒精的收集管中,同时测定相应的环境因子.共捕获大型土壤动物1427个,经形态学鉴定隶属于2门5纲15目21科,其中优势类群为姬马陆科(Julidae)和蚁科(Formicidae),占总捕获量的66.0%.常见类群共10类,占总捕获量的31.3%;稀有类群占总捕获量的2.7%.热振国家森林公园大型土壤动物的类群、Shannon多样性指数、均匀度指数和优势度指数在三个不同海拔之间无显著性差异(P>0.05).大型土壤动物群落Jaccard相似性系数位于0.15~0.77.Pearson相关性结果显示,大型土壤动物个体数与海拔呈极显著负相关(P<0.01),与土壤温度和pH呈显著正相关(P<0.05);冗余分析显示,排序轴1和轴2共同解释了的类群组成变化的55.0%,全磷(TP)和有效磷(AP)为显著性解释变量,对大型土壤动物群落的解释率分别为29.6%和18.5%,是影响大型土壤动物群落的主要环境因子.  相似文献   

9.
敌草隆 ( diuron)是一种广泛被应用的取代脲类除草剂 ,其主要降解产物为 3,4-二氯苯胺[1] .研究 3,4-二氯苯胺在不同土壤中的降解动力学规律 ,并用土壤环境指示动物弹尾目 ( Collembola)跳虫 (Folsomia candida)跟踪指示该化合物在进一步降解过程中的毒性 .结果表明 :3,4-二氯苯胺在土壤中的降解行为可用一级反应动力学方程来较好地描述 ,其生态毒性明显高于母体化合物敌草隆 ,该化合物在粘土中的残留量低于砂土 ,但毒性却明显大于砂土 ,指出应注重同步研究农药降解产物的环境化学及生态毒性行为 .  相似文献   

10.
土壤动物与其生存环境息息相关.土壤质地优良,食物种类丰富多样,则土壤动物个体数、类群数、多样性显著增多.目前,国内学者多侧重研究农田、森林、草原等生态系统土壤动物群落结构,而流域生态系统土壤动物研究较少涉及.对此,从土壤动物的水平分布、垂直分布和群落多样性三个方面来综述流域生态系统相关因素对土壤动物的影响具有代表性.在此基础上借鉴其他生态系统土壤动物相关研究并且结合流域生态系统自身特点拓展土壤动物研究方向,为研究区土地利用方向提供依据.研究流域中不同环境因素对土壤动物区系的影响,了解国内外土壤动物的研究和流域生态系统对土壤动物影响的进展.对于生态环境的恢复与重建具有重大意义.  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

14.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

15.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

16.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

17.
Single and joint effects of pesticides and mercury on soil urease   总被引:6,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

18.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

19.
A field study was conducted in the Taihu Lake region, China in 2004 to reveal the organochlorine pesticide concentrations in soils after the ban of these substances in the year 1983. Thirteen organochlorine pesticides (OCPs) were analyzed in soils from paddy field, tree land and fallow land. Total organochlorine pesticide residues were higher in agricultural soils than in uncultivated fallow land soils. Among all the pesticides, ΣDDX (DDD, DDE and DDT) had the highest concentration for all the soil samples, ranging from 3.10 ng/g to 166.55 ng/g with a mean value of 57.04 ng/g and followed by ΣHCH, ranging from 0.73 ng/g to 60.97 ng/g with a mean value of 24.06 ng/g. Dieldrin, endrin, HCB and α-endosulfan were also found in soils with less than 15 ng/g. Ratios of p,p'-(DDD DDE)/DDT in soils under three land usages were: paddy field > tree land > fallow land, indicating that land usage inlfuenced the degradation of DDT in soils. Ratios of p,p'-(DDD DDE)/DDT >1, showing aged residues of DDTs in soils of the Taihu Lake region. The results were discussed with data from a former study that showed very low actual concentrations of HCH and DDT in soils in the Taihu Lake region, but according to the chemical half-lives and their concentrations in soils in 1980s, the concentration of DDT in soils seemed to be underestimated. In any case our data show that the ban on the use of HCH and DDT resulted in a tremendous reduction of these pesticide residues in soils, but there are still high amounts of pesticide residues in soils, which need more remediation processes.  相似文献   

20.
The contribution of aliphatic-rich plant biopolymer to sorption of hydrophobic organic compounds is significantly important because of their preservation and accumulation in the soil environment,but sorption mechanism is still not fully understood.In this study, sorption of 1-naphthol by plant cuticular fractions was examined to better understand the contributions of respective fraction.Toward this end,cuticular materials were isolated from the fruits of tomato by chemical method.The tomato cuticle sheet consisted of waxes (6.5 wt%),cuticular monomer (69.5 wt%),and polysaccharide (24.0 wt%).Isotherms of l-naphthol to the cuticular fractions were nonlinear (N value (0.82-0.90)) at the whole tested concentration ranges.The KodKow ratios for bulk cuticle (TC1),dewaxed cuticle (TC2),cutin (TC4),and desugared cuticle (TC5) were larger than unity,suggested that tomato bulk cuticle and cutin are much powerful solption medium.Sorption capability of cutin (TC4) was 2.4 times higher than the nonsaponifiable fraction (TC3).The 1-naphthol interactions with tomato cuticular materials were governed by both hydrophobic-type interactions and polar (H-bonding) interactions. Removal of the wax and polysaccharide materials from the bulk tomato cuticle caused a significant increase in the sorption ability of the cuticular material.There was a linear negative trend between K_(oc) values and the amount of polysaccharides or fraction's polarities ((N O)/C);while a linear positive relationship between K_(oc) values and the content of cutin monomer (linear R~2=0.993) was observed for present in the cuticular fractions.Predominant sorbent of the hydrophobic organic compounds (HOCs) in the plant cuticular fraction was the cutin monomer,contributing to 91.7% of the total sorption of tomato bulk cuticle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号