首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Frolan A. Aya  Isao Kudo 《Marine Biology》2010,157(10):2157-2167
Use of stable isotope signatures to trace diet patterns in cultured marine bivalves, particularly when changing culture habitat, requires knowledge of the isotopic shift and enrichment between diet and consumer’s tissues. The aim of this study was to determine the patterns of isotope change and the variability of enrichment values (∆δ13C and ∆δ15N) in different tissues (muscle, gonad, digestive gland) of the Japanese scallop (Mizuhopecten yessoensis). It was hypothesized that the isotopic signatures of a consumer’s tissues changed during settlement and that the changes were related to variations in the isotopic signatures of food sources and gut contents. Particular attention was paid to the isotope enrichment between the diet and a consumer’s tissues using isotope analysis of gut content. Muscle δ15N values decreased significantly 3–5 months post-settlement in a nearshore seabed, concomitant with the ingestion of lower δ15N food. For juvenile scallops, sinking particles (SP) were considered a more important dietary source than suspended particulate organic matter (SPOM), based on the correspondence between SP and gut contents δ13C. Enrichment values (∆δ13C and ∆δ15N) varied with tissue and season. ∆δ15N was 2.4‰ in muscle, 1.2‰ in gonad, and 0.7‰ in the digestive gland. ∆δ13C was 3.2‰ in muscle, 2.3‰ in gonad, and −0.5‰ in the digestive gland. ∆δ15N was the lowest in summer (0.3‰), and ∆δ13C was the highest in autumn (2.8‰). ∆δ15N values were significantly influenced by age, but not ∆δ13C. Patterns of isotope ratios and enrichment values may be related to physiological attributes and differences in diet. This is the first study to demonstrate isotopic shift and enrichment encountered in different tissues of a cultured scallop when changing culture habitat.  相似文献   

2.
To test the hypothesis that stable isotope ratios from marine organisms vary, the δ15N and δ13C values from fish and squid collected in Alaskan waters were measured across years (1997, 2000, and 2005), seasons, geographic locations, and different size/age classes, and between muscle tissue and whole animals. Temporal, geographic, and ontogenetic differences in stable isotope ratios ranged from 0.5–2.5‰ (δ15N) to 0.5–2.0‰ (δ13C). Twenty-one comparisons of stable isotope values between whole organisms and muscle tissue revealed only four small differences each for δ15N and δ13C, making costly and space prohibitive collection of whole animals unnecessary. The data from this study indicate that significant variations of stable isotope values from animals in marine systems necessitates collection of prey and predator tissues from the same time and place for best interpretation of stable isotope analysis in foraging ecology studies.  相似文献   

3.
Fundamental to the accuracy of stable isotope analysis in trophodynamic studies is the ability to predict discrimination between a consumer and its diet. Despite the widespread use of stable isotope analysis in trophic ecology, uncertainty still surrounds the factors affecting consumer-diet discrimination. Here we present evidence that diet quality and location of muscle tissue analysed affects the consumer-diet discrimination for the western rock lobster, Panulirus cygnus. Consumer-diet δ15N and δ13C discrimination for western rock lobster tail tissue were 1.67–2.97 and 2.92–3.60‰, respectively, with δ13C discrimination differing to values reported in the literature. Differences in nitrogen and carbon discrimination were observed between tail and leg tissue of lobsters of 1.22 and 1.13‰, respectively. Diet quality was also found to affect consumer-diet discrimination, with high protein pilchard diet leading to lower δ15N and higher δ13C discrimination. Diet quality should be considered as a factor that has the potential to affect consumer-diet discrimination when interpreting results from stable isotope studies.  相似文献   

4.
Oceanographic sampling is often limited to local and temporally concise assessments of complex, transient, and widespread phenomena. However, long-lived, migratory pelagic vertebrates such as leatherback turtles (Dermochelys coriacea, Vandelli 1761) can provide important integrated information about broad-scale oceanographic processes. Therefore, the present study analyzed stable carbon and nitrogen isotope ratios (δ13C and δ15N) of egg yolk and red blood cells from nesting leatherback populations from Costa Rica in the eastern Pacific in 2003–2004 and 2004–2005 and from St. Croix in the North Atlantic in 2004 and 2005 to establish differences between nutrient sourcing and its influence on higher trophic level consumers in both ocean basins. Whereas δ13C signatures were similar between Costa Rica (−19.1±0.7‰) and St. Croix (−19.4±1.0‰) leatherbacks, reflecting the pelagic foraging strategy of the species, Costa Rica leatherback δ15N signatures (15.4±1.8‰) were significantly enriched relative to St. Croix leatherback δ15N signatures (9.8±1.5‰). This δ15N difference likely reflects inter-basin differences in nitrogen cycling regimes and their influence on primary productivity being transferred through several trophic levels. Thus, high-order marine consumer movements, habitat preferences, and stable isotope signatures can be combined with ocean sampling to elucidate interactions between oceanographic processes and marine megafauna.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

5.
Ecologists primarily use δ15N values to estimate the trophic level of organisms, while δ13C, and even recently δ15N, are utilized to delineate feeding habitats. However, many factors can influence the stable isotopic composition of consumers, e.g. age, starvation or isotopic signature of primary producers. Such sources of variability make the interpretation of stable isotope data rather complex. To examine these potential sources of variability, muscle tissues of yellowfin tuna (Thunnus albacares) and swordfish (Xiphias gladius) of various body lengths were sampled between 2001 and 2004 in the western Indian Ocean during different seasons and along a latitudinal gradient (23°S to 5°N). Body length and latitude effects on δ15N and δ13C were investigated using linear models. Both latitude and body length significantly affect the stable isotope values of the studied species but variations were much more pronounced for δ15N. We explain the latitudinal effect by differences in nitrogen dynamics existing at the base of the food web and propagating along the food chain up to top predators. This spatial pattern suggests that yellowfin and swordfish populations exhibit a relatively unexpected resident behaviour at the temporal scale of their muscle tissue turnover. The body length effect is significant for both species but this effect is more pronounced in swordfish as a consequence of their different feeding strategies, reflecting specific physiological abilities. Swordfish adults are able to reach very deep water and have access to a larger size range of prey than yellowfin tuna. In contrast, yellowfin juveniles and adults spend most of their time in the surface waters and large yellowfin tuna continue to prey on small organisms. Consequently, nitrogen isotopic signatures of swordfish tissues are higher than those of yellowfin tuna and provide evidence for different trophic levels between these species. Thus, in contrast to δ13C, δ15N analyses of tropical Indian Ocean marine predators allow the investigation of complex vertical and spatial segregation, both within and between species, even in the case of highly opportunistic feeding behaviours. The linear models developed in this study allow us to make predictions of δ15N values and to correct for any body length or latitude differences in future food web studies.  相似文献   

6.
Isotopic niches of emperor and Adélie penguins in Adélie Land,Antarctica   总被引:2,自引:1,他引:1  
Yves Cherel 《Marine Biology》2008,154(5):813-821
The emperor and Adélie penguins are the only two species of penguins that co-occur at high-Antarctic latitudes. We first measured and compared their isotopic niches on the same year in Adélie Land in spring, when the two species co-exist. Emperor and Adélie penguins segregated by their blood isotopic signatures, with adult δ13C values (−24.5 ± 0.2 and −25.4 ± 0.2‰, respectively) suggesting that emperor penguins foraged in more neritic waters than Adélie penguins in spring. At that time, difference in their δ15N values (4.1‰, 12.0 ± 0.4 vs. 7.9 ± 0.1‰) encompassed more than one trophic level, indicating that emperor penguins preyed mainly upon fish (and squids), while Adélie penguins fed exclusively on euphausiids. Second, we compared the food of breeding adults and chicks. The isotopic signatures of adults and chicks of emperor penguins were not statistically different, but δ15N value of Adélie penguin chicks was higher than that of adults (10.2 ± 0.8 vs. 9.0 ± 0.2‰). The difference showed that adult Adélie penguins captured higher trophic level prey, i.e. higher-quality food, for their chicks. Third, the isotopic signatures of Adélie penguins breeding in Adélie Land showed that adults fed on Antarctic krill in oceanic waters in spring and shifted to neritic waters in summer where they preyed upon ice krill for themselves and upon fish and euphausiids for their chicks. A comparison of isotopic niches revealed large overlaps in both blood δ13C and δ15N values within the community of Antarctic seabirds and pinnipeds. The continuum in δ15N values nevertheless encompassed more than one trophic level (5.2‰) from Adélie penguin and crabeater seal to the Weddell seal. Such a broad continuum emphasizes the fact that all Antarctic seabirds and marine mammals feed on varying proportions of a few crustacean (euphausiids) and fish (Antarctic silverfish) species that dominate the intermediate trophic levels of the pelagic neritic and oceanic ecosystems.  相似文献   

7.
Food sources for cultivated marine bivalves generally are not well identified, although they are essential for a better understanding of coastal ecosystems and for the sustainability of shellfish farming activities. In addition to phytoplankton, other organic matter sources (OMS), such as microphytobenthos and detritus (of terrestrial or marine origins), can contribute significantly to the growth of marine bivalves. The aim of this study was to identify the potential food sources and to estimate their contributions to the growth of the Pacific oyster (Crassostrea gigas) in two contrasting trophic environments of Normandy (France): the Baie des Veys (BDV) and the Lingreville area (LIN). Two sites were studied in the BDV area (BDV-S and BDV-N) and one in the LIN area. To estimate the contribution of each type of OMS, we used a combination of stable natural isotope composition (δ13C, δ15N) analysis of OMS and oyster tissue together with a modelling exercise. Field sampling was conducted every 2 months over 1 year. The sampled sources were suspended particulate organic matter from marine (PhyOM) and terrestrial (TOM) origins, microphytobenthos (MPB), detrital organic matter from the superficial sediment (SOM), and macroalgae (Ulva sp., ULV). A statistical mixing model coupled to a bioenergetic model was used to calculate the contributions of each different source at different seasons. Results showed that isotopic composition of the animal flesh varied with respect to the potential OMS over the year within each ecosystem. Significant differences were also observed among the three locations. For instance, the δ13C and δ15N values of the oysters ranged from −20.0 to −19.1‰ and from 6.9 to 10.8‰ at BDV-S, from −19.4 to −18.1‰ and from 6.4 to 10.0‰ at BDV-N, and from −21.8 to −19.4‰ and from 6.3 to 8.3‰ at LIN. The contributions of the different sources to oyster growth differed depending on the ecosystem and on the period of the year. Phytoplankton (PhyOM) predominated as the principal food source for oysters (particularly in the LIN location). MPB, TOM, and ULV detritus also possibly contributed to oysters’ diet during summer and autumn at the BDV-S and BDV-N sites. SOM was not considered an OMS because it was already a mix of the other four OMS, but rather a trophic reservoir that potentially mirrored the trophic functioning of marine ecosystems.  相似文献   

8.
Most studies on the foraging ecology of loggerhead turtles (Caretta caretta) have focused on adult females and juveniles. Little is known about the foraging patterns of adult male loggerheads. We analyzed tissues for carbon and nitrogen stable isotopes (δ13C and δ15N) from 29 adult male loggerheads tracked with satellite transmitters from one breeding area in Florida, USA, to evaluate their foraging habitats in the Northwest Atlantic (NWA). Our study revealed large variations in δ13C and δ15N and a correlation between both δ13C and δ15N and the latitude to which the loggerheads traveled after the mating season, thus reflecting a geographic pattern in the isotopic signatures. Variation in δ13C and δ15N can be explained by differences in food web baseline isotopic signatures rather than differences in loggerhead trophic levels. Stable isotope analysis may help elucidate residency and migration patterns and identify foraging sea turtle subpopulations in the NWA due to the isotopically distinct habitats used by these highly migratory organisms.  相似文献   

9.
Mucus released by scleractinian corals can act as an important energy and nutrient carrier in coral reef ecosystems, and a distinct isotopic signature would allow following the fate of this material. This study investigates the natural C and N stable isotopic signatures of mucus released by four scleractinian coral genera (Acropora, Fungia, Pocillopora and Stylophora) in comparison with those of suspended particulate organic matter (POM) in seawater of a Northern Red Sea fringing coral reef near Aqaba, Jordan. The natural δ13C and δ15N signatures of coral mucus differed significantly from seawater POM for the majority of seasonal comparisons, but were inappropriate for explicit tracing of mucus in the coral reef food web. Thus, a labeling technique using stable isotope tracers (13C and 15N) was developed that produced δ13C values of up to 122 ± 5‰ (mean ± SE) and δ15N of up to 2,100 ± 151‰ in mucus exuded by Fungia corals. 13C and 15N-enriched compounds were rapidly (within 3 h) and light-dependently transferred from the endosymbiotic zooxanthellae to the mucus-producing coral host. The traceability of 15N-labeled mucus was examined by evaluating its uptake and potential utilization by epizoic acoelomorph Waminoa worms naturally occurring on a range of scleractinian coral taxa. This tracer experiment resulted in uptake of coral mucus by the coral-associated acoelomorphs and further demonstrated the possibility to trace stable isotope-labeled coral mucus by revealing a new trophic pathway in coral reef ecosystems.  相似文献   

10.
Cephalopod beaks retrieved from stomachs of dead emperor penguin chicks at Pointe Géologie, Terre Adélie, provide information on taxonomic and size composition of the penguin’s squid diet, on the trophic range of the squid species preyed upon and on the fractional trophic impact of the penguin on the whole food web. Emperor penguins prey upon four squid species (Psychroteuthis glacialis, Kondakovia longimana, Gonatus antarcticus, Alluroteuthis antarcticus) and do not take squid larger than 480 mm mantle length. Larger squid live either below the penguin’s diving range or are beyond its handling capacity. Nitrogen stable isotope ratios indicate that squids cover a range of about two trophic levels (2.5–8‰ δ15N). The impact of the emperor penguin, however, concentrates on the upper part of this range, about 68% of its squid prey being >6‰ δ15N. The principal components of the emperor’s diet, fish, krill and squid, differ distinctly in average trophic level. Consequently the trophic position of the emperor penguin changes accordingly with diet composition and may differ by almost one trophic level between different emperor penguin colonies.  相似文献   

11.
The stable isotope ratio 12C/13C was used to investigate the source of carbon in free-living barnacles and in coral-inhabiting barnacles from the Red Sea. The δ13C of most of the barnacles collected on the open shore ranges between −17.5 and −19.7‰, indicating relative enrichment of light carbon originating from the open-sea phytoplankton. Those collected in closed habitats showed heavier isotopic composition. The δ13C of the coral-inhabiting barnacles ranges from −14.1 to −16.7‰, suggesting that the carbon contribution of open-sea plankton to these barnacles is less important than it is to free-living barnacles. We hypothesize that coral organic matter and zooxanthellae expelled by the host coral contribute carbon to the barnacle, and that a mixture of this relatively heavy carbon with carbon from other sources is responsible for the high values of δ13C in coral barnacles. Received: 28 February 1997 / Accepted: 16 September 1997  相似文献   

12.
In summer 1998, shallow water corals at Sesoko Island, Japan (26°38′N, 127°52′E) were damaged by bleaching. In August 2003, partially damaged colonies of the massive Porites lutea and the branching P. cylindrica were collected at depths of 1.0–2.5 m. The species composition of epilithic algal communities on dead skeletal surfaces of the colonies (‘red turfs’, ‘green turfs’, ‘red crusts’) and the endolithic algae (living in coral skeletons) growing close to and away from living coral polyps was determined. Carbon and nitrogen stable isotope values of organic matter (δ13C and δ15N) from all six of these biological entities were determined. There were no significant differences in the isotope composition of coral tissues of the two corals, with P. lutea having δ13C of −15.3 to −9.6‰ and δ15N of 4.7–6.1‰ and P. cylindrica having similar values. Polyps in both species living close to an interface with epilithic algae had similar isotope values to polyps distant from such an interface. Despite differences in the relative abundance of the algal species in red turfs and crusts, their δ13C and δ15N values were not significantly different from each other (−18.2 to −13.9, −20.6 to −16.2, 1.1–4.3, and 3.3 to 4.9‰, respectively). The green algal turf had significantly higher δ13C values (−14.9 to −9.3‰) than that of red turfs and crusts but similar δ15N (1.2–4.1‰) to the red algae. The data do not suggest that adjoining associations of epilithic algae and coral polyps exchange carbon- and nitrogen-containing metabolites to a significant extent. The endolithic algae in the coral skeletons had δ13C values of −14.8 to −12.3‰ and δ15N of 4.0–5.4‰. Thus they did not differ significantly from the coral polyps in their carbon and nitrogen isotope values. The similarity in carbon isotope values between the coral polyps and endolithic algae may be attributed to a common source of CO2 for zooxanthellae and endolithic algae, namely, from respiration by the coral host. While it is difficult to fully interpret similarity in the nitrogen isotope composition of coral tissue and of green endolithic algae and the difference in δ15N between green epilithic and endolithic algae, the data are consistent with nitrogen-containing metabolites from the scleractinian coral serving as a significant source of nitrogen for the endolithic algae.  相似文献   

13.
Stable isotope (SI) ratios of carbon (δ13C) and nitrogen (δ15N) were measured in omnivorous and carnivorous deep-sea copepods of the families Euchaetidae and Aetideidae across the Atlantic sector of the Southern Ocean to establish their trophic positions. Due to high and variable C/N ratios related to differences in lipid content, δ13C was corrected using a lipid-normalisation model. δ15N signals ranged from 3.0–6.9‰ in mesopelagic species to 7.0–9.5‰ in bathypelagic congeners. Among the carnivorous Paraeuchaeta species, the epi- to mesopelagic species Paraeuchaeta antarctica had lower δ15N values than the mesopelagic P. rasa and bathypelagic P. barbata. The same trend was observed among omnivorous Aetideidae, but was not significant. In the most abundant species P. antarctica, individuals from the western Atlantic had higher δ13C and δ15N values than specimens at the eastern stations. These longitudinal changes in δ13C and δ15N values were attributed to regional differences in hydrography and sea surface temperature (SST), in particular related to a northward extension of the Antarctic Polar Front (APF) at the easternmost stations. The results indicate that even in a mesopelagic carnivorous species, the changes in surface stable isotope signatures are pronounced.  相似文献   

14.
Carbon and nitrogen stable isotope ratios of Japanese anchovy (Engraulis japonicus) and their stomach contents were examined and compared among various regions around Japan. Geographical variations in the isotope ratios were found between inshore and Pacific offshore regions. While most of the anchovy samples had isotope ratios around −17.6‰ for δ13C and 10.0‰ for δ15N as median values, higher (more enriched) isotope values were found in the anchovy sampled from inshore regions. On the contrary, lower (more depleted) values were found mostly in the anchovy from the Pacific offshore region including the Kuroshio Extension and Kuroshio-Oyashio transition zones. Higher carbon isotope ratios in the inshore regions may reflect a carbon source from benthic primary producers in addition to phytoplankton possibly through the consumption of the larvae of benthic organisms such as bivalves or decapods, which were found in the stomach contents of the inshore anchovy. Variations in the nitrogen isotope ratio may reflect not only differences in the trophic level of prey species, but also variations in the baseline level of food webs. Stable isotope ratios are potentially a useful tool for understanding the stock/population structure and migration of anchovy. The present findings indicate the potential importance of the “inshore–offshore” variations in the biology of Japanese anchovy populations in the northwestern Pacific waters.  相似文献   

15.
From 1998 to 2001 a total of 200 Ommastrephes bartramii (27 paralarvae) and 170 Sthenoteuthis oualaniensis (14 paralarvae) were sampled from the Central North Pacific. One group of non-paralarval O. bartramii (n = 30) was sampled from farther northwest in 1996. The δ15N of mantle muscle of non-paralarval O. bartramii ( = 12.4‰) was significantly greater than that of non-parlarval S. oualaniensis ( = 8.1‰) (P < 0.001). The δ15N of whole paralarvae of O. bartramii ( = 6.4‰) was not significantly different than parlarvalae of S. oualaniensis ( = 6.1‰) (P = 0.528). There was no significant difference between the mantle muscle δ15N values of male (n = 95, = 13.3‰) and female (n = 18, = 12.9 ‰) O. bartramii greater than 300 mm mantle length (ML) (P = 0.15). There was also no significant difference between the mantle muscle δ15N values of male (n = 15, = 7.2‰) and female (n = 26, = 7.3 ‰) S. oualaniensis in the same size range (P = 0.41). Overall there was a distinct logistic increase in δ15N with mantle length for O. bartramii, whereas S. oualaniensis showed an exponential increase in δ15N with mantle length that was stronger within individual years than with all samples combined. In general, adult O. bartramii are more than a trophic level above S. oualaniensis (4.3‰, 1.3 TLs). Because of the nature of the sampling protocol, this study could not separate spatial and temporal effects on the δ15N signals from each squid species. This study demonstrates the ability of stable isotope analyses to differentiate trophic levels between squid species as well as track trophic changes across size ranges from paralarvae to adults. Additional research is needed to validate these trophic changes across size within individuals.  相似文献   

16.
Analysis of the isotope composition of calcareous structures of marine organisms has proved useful in providing biological data. The present study constitutes the first detailed work undertaken on the isotope composition of coleoid cephalopods. We analysed the carbon- and oxygen-isotope composition [δ13C (CO2− 3) and δ18O (CO2− 3), respectively] of the cuttlebone aragonite of wild and cultivated specimens of Sepia officinalis Linnaeus, 1758. δ13C (CO2− 3) ranged from −2.94 to 1.00‰, δ18O (CO2− 3) from −0.18 to 2.08‰. The carbon-isotope composition is not in equilibrium with the carbon species of the ambient seawater, and does not reflect the deposition of CaCO3 in seawater. The potential influence of environmental factors and biological processes on the carbon-isotope composition of the cuttlebone is discussed. In contrast to δ13C, the oxygen-isotope composition of cuttlebone aragonite appears to be in isotopic equilibrium with the ambient seawater. Seasonal changes in isotopic temperature revealed by our analyses agreed with changes in the temperature of the ambient seawater. CaCO3 was deposited all year round. A maximum life span of 2 yr, a year-round spawning season, and variable growth rates among and within individuals have been inferred from the isotopic temperatures. Received: 14 April 1998 / Accepted: 26 November 1998  相似文献   

17.
The feeding ecology of the green tiger shrimp Penaeus semisulcatus was studied in inshore fishing grounds off Doha, Qatar, using a combination of stable isotope (δ13C and δ15N) analysis and gut contents examination. Samples of post-larvae, juvenile and adult shrimp and other organisms were collected from intertidal and subtidal zones during the spawning season (January–June). Shrimp collected from shallow water seagrass beds were mostly post-larvae and juveniles and were significantly smaller than the older juveniles and adults caught in deeper macroalgal beds. Gut content examination indicated that post-larvae and juvenile shrimp in seagrass beds fed mainly on benthos such as Foraminifera, polychaetes, benthic diatoms and small benthic crustaceans (amphipods, isopods and ostracoda), whereas larger shrimp in the macroalgal beds fed mainly on bivalve molluscs and to a lesser extent polychaetes. In shrimp from both seagrass and algal beds, unidentifiable detritus was also present in the gut (18, 32%). δ13C values for shrimp muscle tissue ranged from −9.5 ± 0.26 to −12.7 ± 0.05‰, and δ15N values increased with increasing shrimp size, ranging from 4.1 ± 0.03 to 7.7 ± 0.11‰. Both δ15N values and δ13C values for shrimp tissue were consistent with the dietary sources indicated by gut contents and the δ13C and δ15N values for primary producers and prey species. The combination of gut content and stable isotope data demonstrates that seagrass beds are important habitats for post-larvae and juvenile P. semisulcatus, while the transition to deeper water habitats in older shrimp involves a change in diet and source of carbon and nitrogen that is reflected in shrimp tissue stable isotope ratios. The results of the study confirm the linkage between sensitive shallow water habitats and the key life stages of an important commercially-exploited species and indicate the need for suitable assessment of the potential indirect impacts of coastal developments involving dredging and land reclamation.  相似文献   

18.
The alvinocaridid shrimp Rimicaris exoculata is an abundant component of the biota of Mid-Atlantic Ridge hydrothermal vents. To determine the nutritional strategy of this organism, we analysed the molecular abundance and carbon isotopic composition of its phospholipid fatty acids. High abundances of n-7 fatty acids (>40% total fatty acids) were observed in R. exoculata muscle tissues, in bacterial epibionts scraped from its gill bailers, and from the bacterially infested metal sulphides that the shrimp ingest. The phospholipid fatty acid abundance data indicates that the bacteria in the sulphides are closely related to the bacterial epibiota inhabiting the shrimp gill bailers, carapace and other body parts. Compound specific δ13C analyses of the phospholipid fatty acids gave average values of −12‰ for the epibiont bacteria and −21‰ for the sulphide bacteria. This difference may be largely due to the expression of different forms of RuBisCO (Forms I and II) which fractionate against 13C to different extents. Carbon limitation within the shrimp epibiont population may be an additional factor. The δ13C values (mean = −13‰) of the saturated and monounsaturated fatty acids isolated from the muscle tissues of R. exoculata were very close to those of the epibionts, indicating that the predominant source of dietary carbon for the shrimp is their epibionts, with a lesser contribution from free-living bacteria. The δ13C values (−26‰) of shrimp cholesterol were much more negative than those of the fatty acids, and this cholesterol is likely to have derived from the oceanic photic zone. Received: 26 June 1997 / Accepted: 6 November 1998  相似文献   

19.
In an intertidal Zostera noltii Hornem seagrass bed, food sources used by sediment meiofauna were determined seasonally by comparing stable isotope signatures (δ13C, δ15N) of sources with those of nematodes and copepods. Proportions of different carbon sources used by consumers were estimated using the SIAR mixing model on δ13C values. Contrary to δ15N values, food source mean δ13C values encompassed a large range, from −22.1 ‰ (suspended particulate organic matter) to −10.0 ‰ (Z. noltii roots). δ13C values of copepods (from −22.3 to −12.3 ‰) showed that they use many food sources (benthic and phytoplanktonic microalgae, Z. noltii matter). Nematode δ13C values ranged from −14.6 to −11.4 ‰, indicating a strong role of microphytobenthos and/or Z. noltii matter as carbon sources. The difference of food source uses between copepods and nematodes is discussed in light of source accessibility and availability.  相似文献   

20.
Microbial oxidation of organic compounds (including methane), in freshwater sediments, may result in precipitation of carbonates, which may become an important geochemical archive of paleoenvironmental variations. Most probably low δ13C value in calcite in eutrophic systems results from an advanced oxidation of organic compounds in turbulent or/and sulphate-rich conditions. Likewise, high δ13C value in calcite from organic-rich sediments may evidence low redox potential of the freshwater system. Oxidation of methane and organic matter results in significant isotope effects in sulphates dissolved in water. Therefore, to better understand the origin of carbon isotope signal in carbonates, concentration and stable isotope measurements in dissolved sulphate (water column), bubble methane and calcite (freshwater sediments) have been carried out in 24 lakes, 2 ponds and 4 rivers in Poland. The highest concentration of sulphate has been detected in rivers (85.47 SO4 2− mg/l) and an artificial lake (70.30 SO4 2− mg/l) located in the extremely SO4 2−-polluted region called the “Black Triangle”. The lowest concentration of sulphate is found in dystrophic and mountain lakes (from 0.5 SO4 2− to about 3 mg/l). The lowest δ34S(SO4 2−) and δ18O(SO4 2−) values occur in unpolluted lakes in eastern Poland (−0.94 and 1.38‰, respectively). The highest S and O isotopic ratios are found in a polluted lake in western Poland (δ14S(SO4 2)=12.95‰) and in a dystrophic lake in eastern Poland (δ18O(SO4 2) = 16.15‰) respectively. It is proposed that δ34SO4 2− and (18O(SO4 2−) values in lakes represent a good tool to assess and quantify anthropogenic impact by acid precipitation and to monitor variations in the trophic state and redox processes controlled by biodegradation of organic compounds in sediments and water column. In general, increasing depth (up to 12 m) of the water column is associated with decreasing trend the δ13C(CH4) value from about –35 to about –78‰. However, δ13C value in sedimentary calcite (δ13C vary from –10 to 0.5‰) shows opposite trends as compared to the corresponding methane. This is probably due to redox processes and distribution of heavy isotopes between methane and calcite. Likewise, turbulent water (river) show high δ13C value in methane and low δ13C value in calcite—this is probably due to an enhanced oxidation of methane producing 13C-depleted CO2. In contrast to clean lakes, it is observed that an increase of the δ13C(CH4) value occurs with increasing depth of the water column in a strongly SO4 2−-contaminated lake. This is probably due to a loss of biological buffering potential of the lake accompanied by an active oxidation of methane precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号