首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interaction of Cu with dissolved organic matter (DOM) is an important physicochemical process affecting Cu mobility in soils. The aim of this study was to investigate the effects of DOM from anaerobically digested dewatered sludge and sludge compost on the sorption of Cu on an acidic sandy loam and a calcareous clay loam. In the presence of DOM, Cu sorption capacity decreased markedly for both soils, especially for the calcareous soil. The Cu sorption isotherms could be well described by the Freundlich equation (r2 = 0.99), and the binding intensity parameter of soils in the presence of sludge DOM was lower than compost DOM. An increase in DOM concentration significantly reduced the sorption of Cu by both soils. Within the Cu and DOM concentration range studied, the decrease in Cu sorption caused by sludge DOM was consistently greater than that of compost DOM. This might be attributed to the greater amount of hydrophobic fraction of DOM in the compost. Moreover, the reduction of Cu sorption caused by DOM was more obvious in the soil with higher pH. In addition, the sorption of Cu increased with an increase in pH for both soils without the addition of DOM, while Cu sorption in the presence of DOM was unexpectedly decreased with an increase in pH at a pH >6.8. This implied that DOM produced by sludge or other C-enriched organic wastes heavily applied on calcareous soils might facilitate the leaching loss of Cu because of the formation of soluble DOM-metal complexes.  相似文献   

2.
Use of organic by-products as soil amendments in agricultural production exemplifies a strategy for converting wastes to resources. The overall objective of this research was to evaluate the short- and intermediate-term effects of repeatedly amending sandy soil with paper mill residuals (PMR) and composted PMR in a vegetable rotation in Wisconsin's Central Sands. Specifically, we investigated the effects of PMR and composted PMR on total soil C and related these to changes in water-holding capacity and plant-available water (PAW). Amendment effects on irrigation requirements were estimated with a simple soil water balance model. The experimental design was replicated five times as a randomized complete block with four organic amendments: raw PMR, PMR composted alone (PMRC), PMR composted with bark (PMRB), and peat applied at two rates and a non-amended control. All amended treatments significantly increased total soil C relative to the nonamended control following applications in 1998 and 1999. One year following the second serial amendment, all PMR treatments increased PAW by 5 to 45% relative to the control. There was a significant positive linear relationship between total soil C and PAW. All amended treatments reduced the average amount of irrigation water required for potato production by 4 to 30% and the number of irrigation events by 10 to 90%. There was a clear trend of greater reduction in irrigation requirements with more carbon added. The cumulative effects of repeated additions of PMRB suggest that certain composts might sustain elevated PAW and reduce irrigation requirements beyond one year.  相似文献   

3.
The entry of Cd into the food chain is of concern as it can cause chronic health problems. To investigate the relationship between soil properties and the concentration of Cd in wheat (Triticum aestivum L.) and harley (Hordeum vulgare L.) grain, we analyzed 162 wheat and 215 barley grain samples collected from paired soil and crop surveys in Britain, and wheat and barley samples from two long-term sewage sludge experiments. Cadmium concentrations were much lower in barley grain than in wheat grain under comparable soil conditions. Multiple regression analysis showed that soil total Cd and pH were the significant factors influencing grain Cd concentrations. Significant cultivar differences in Cd uptake were observed for both wheat and barley. Wheat grain Cd concentrations could be predicted reasonably well from soil total Cd and pH using the following model: log(grain Cd) = a + b log(soil Cd) - c(soil pH), with 53% of the variance being accounted for. The coefficients obtained from the data sets of the paired soil and crop surveys and from long-term sewage sludge experiments were similar, suggesting similar controlling factors of Cd bioavailability in sludge-amended or unamended soils. For barley, the model was less satisfactory for predicting grain Cd concentration (22% of variance accounted for). The model can be used to predict the likelihood of wheat grain Cd exceeding the new European Union (EU) foodstuff regulations on the maximum permissible concentration of Cd under different soil conditions, particularly in relation to the existing Directive and the proposed new Directive on land applications of sewage sludge.  相似文献   

4.
A field study (1993-96) assessed the benefits of applying unusually high rates of coal fly ash as a soil amendment to enhance water retention of soils without adversely affecting growth and marketability of the turf species, centipedegrass [Eremochloa ophiuroides (Munro) Hack.]. A Latin Square plot design was employed that included 0 (control, no ash applied), 280, 560, and 1120 Mg ha-1 application rates of unweathered precipitator fly ash. The fly ash was spread evenly over each plot area, rototilled, and allowed to weather under natural conditions for 8 mo before seeding. High levels of soluble salts, indicated by the electrical conductivity (EC) of soil extracts, in tandem with an apparent phytotoxic effect from boron (B), apparently inhibited initial plant establishment as shown by substantially lower germination counts in treated soil. However, plant height and rooting depth were not adversely affected, as were the dry matter (DM) yields throughout the study period. Ash treatment did not significantly influence water infiltration rate, bulk density, or temperature of the soil, but substantially improved water-holding capacity (WHC) and plant-available water (PAW). Enhanced water retention capacity improved the cohesion and handling property of harvested sod.  相似文献   

5.
Mining, smelting, land applications of sewage sludge, the use of fungicides containing copper (Cu), and other human activities have led to widespread soil enrichment and contamination with Cu and potentially toxic conditions. Biochar (BC) can adsorb several substances, ranging from herbicides to plant-inhibiting allelochemicals. However, the range of potential beneficial effects on early-stage plant growth with regard to heavy metal toxicity is largely unexplored. We investigated the ameliorating properties of a forestry-residue BC under Cu toxicity conditions on early plant growth. Young quinoa plants () were grown in the greenhouse in the presence of 0, 2, and 4% BC application (w/w) added to a sandy soil with 0, 50, or 200 μg g Cu supplied. The plants without BC showed severe stress symptoms and reduced growth shortly after Cu application of 50 μg g and died at 200 μg Cu g. Increasing BC concentrations in the growth medium significantly increased the plant performance without Cu toxicity or under Cu stress. At the 4% BC application rate, the plants with 200 μg g Cu almost reached the same biomass as in the control treatment. In the presence of BC, less Cu entered the plant tissues, which had reduced Cu concentrations in the order roots, shoots, leaves. The amelioration effect also was reflected in the plant-soil system CO gas exchange, which showed clear signs of improvement with BC presence. The most likely ameliorating mechanisms were adsorption of Cu to negatively charged BC surfaces and an improvement of the water supply. Overall, BC seems to be a beneficial amendment with the potential to ameliorate Cu toxicity in sandy soils. Further research with a broad spectrum of different soil types, BCs, and crop plants is required.  相似文献   

6.
There has been widespread interest in using compost to improve the hydrologic functions of degraded soils at construction sites for reducing runoff and increasing infiltration. The objective of this study was to determine the effects of compost amendment rate on saturated hydraulic conductivity (Ks) and water retention in order to identify target compost rates for enhancing soil hydrologic functions. Samples were prepared with three soil textures (sandy loam, silt loam, and sandy clay loam), amended with compost at 0%, 10%, 20%, 30%, 40%, and 50%. All soils were tested at a porosity of 0.5 m3/m3, and the sandy loam was further tested at high (0.55 m3/m3) and low (0.4 m3/m3) porosities. The Ks and water retention data were then used to model infiltration with HYDRUS-1D. With increasing compost amendment rate, Ks and water retention of the mixtures generally increased at the medium porosity level, with more compost needed in heavier soils. As porosity decreased in the sandy loam soil, the amount of compost needed to improve Ks rose from 20% to 50%. Water distribution in pore fractions (gravitational, plant-available, and unavailable water) depended on texture, with only the highest compost rates increasing plant-available water in one soil. Results suggest soil texture should be taken into consideration when choosing a compost rate in order to achieve soil improvement goals. Hydrologic benefits may be limited even at a high rate of compost amendment if soil is compacted.  相似文献   

7.
There are numerous Cr(III)-contaminated sites on Department of Defense (DoD) and Department of Energy (DOE) lands that are awaiting possible clean up and closure. Ingestion of contaminated soil by children is the risk driver that generally motivates the likelihood of site remediation. The purpose of this study was to develop a simple statistical model based on common soil properties to estimate the hioaccessibility of Cr(III)-contaminated soil upon ingestion. Thirty-five uncontaminated soils from seven major soil orders, whose properties were similar to numerous U.S. DoD contaminated sites, were treated with Cr(III) and aged. Statistical analysis revealed that Cr(III) sorption (e.g., adsorption and surface precipitation) by the soils was strongly correlated with the clay content, total inorganic C, pH, and the cation exchange capacity of the soils. Soils with higher quantities of clay, inorganic C (i.e., carbonates), higher pH, and higher cation exchange capacity generally sequestered more Cr(III). The amount of Cr(III) bioaccessible from the treated soils was determined with a physiologically based extraction test (PBET) that was designed to simulate the digestive process of the stomach. The bioaccessibility of Cr(III) varied widely as a function of soil type with most soils limiting bioaccessibility to <45 and <30% after I and 100 d soil-Cr aging, respectively. Statistical analysis showed the bioaccessibility of Cr(III) on soil was again related to the clay and total inorganic carbon (TIC) content of the soil. Bioaccessibility decreased as the soil TIC content increased and as the clay content decreased. The model yielded an equation based on common soil properties that could be used to predict the Cr(III) bioaccessibility in soils with a reasonable level of confidence.  相似文献   

8.
Understanding how carbon, nitrogen, and key soil attributes affect gas emissions from soil is crucial for alleviating their undesirable residual effects that can linger for years after termination of manure and compost applications. This study was conducted to evaluate the emission of soil CO2, N2O, and CH4 and soil C and N indicators four years after manure and compost application had stopped. Experimental plots were treated with annual synthetic N fertilizer (FRT), annual and biennial manure (MN1 and MN2, respectively), and compost (CP1 and CP2, respectively) from 1992 to 1995 based on removal of 151 kg N ha(-1) yr(-1) by continuous corn (Zea mays L.). The control (CTL) plots received no input. After 1995, only the FRT plots received N fertilizer in the spring of 1999. In 1999, the emissions of CO2 were similar between control and other treatments. The average annual carbon input in the CTL and FRT plots were similar to soil CO2-C emission (4.4 and 5.1 Mg C ha(-1) yr(-1), respectively). Manure and compost resulted in positive C and N balances in the soil four years after application. Fluxes of CH4-C and N2O-N were nearly zero, which indicated that the residual effects of manure and compost four years after application had no negative influence on soil C and N storage and global warming. Residual effects of compost and manure resulted in 20 to 40% higher soil microbial biomass C, 42 to 74% higher potentially mineralizable N, and 0.5 unit higher pH compared with the FRT treatment. Residual effects of manure and compost on CO2, N20, and CH4 emissions were minimal and their benefits on soil C and N indicators were more favorable than that of N fertilizer.  相似文献   

9.
Soils adjacent to chromated copper arsenate (CCA)-treated fence posts along a fence line transecting different soil series, parent material, drainage classes, and slope were used to determine which soil properties had the most influence on As spatial distribution and speciation. Metal distribution was evaluated at macroscopic (total metal concentration contour maps) and microscopic scales (micro-synchrotron X-ray fluorescence maps), As speciation was determined using extended X-ray absorption fine structure spectroscopy, and redox status and a myriad of other basic soil properties were elucidated. All geochemical parameters measured point to a condition in which the mobilization of As becomes more favorable moving down the topographic gradient, likely resulting through competition (Meh-P, SOM), neutral or slightly basic pH, and redox conditions that are favorable for As mobilization (higher Fe(II) and total-Fe concentrations in water extracts). On the landscape scale, with hundreds of kilometers of fence, the arsenic loading into the soil can be substantial (~8-12 kg km). Although a significant amount of the As is stable, extended use of CCA-treated wood has resulted in elevated As concentrations in the local environment, increasing the risk of exposure and ecosystem perturbation. Therefore, a move toward arsenic-free alternatives in agricultural applications for which it is currently permitted should be considered.  相似文献   

10.
We investigated the effect of 4 yr of aging of a noncalcareous soil contaminated with filter dust from a brass foundry (80% w/w ZnO, 15% w/w Cu0.6Zn0.4) on the chemical extractability of Zn and Cu and their uptake by barley (Hordeum vulgare L.), pea (Pisum sativum L.), and sunflower (Helianthus annus L.). Pot experiments were conducted with the freshly contaminated soil (2250 mg kg-1 Zn; 503 mg kg-1 Cu), with the contaminated soil aged for 4 yr in the field (1811 mg kg-1 Zn; 385 mg kg-1 Cu), and with the uncontaminated control soil (136 mg kg-1 Zn; 32 mg kg-1 Cu). In comparison with the uncontaminated soil, the growth of barley and pea was clearly reduced in both contaminated soils, while toxicity symptoms did not systematically vary from the freshly contaminated to the 4 yr aged soil. The sunflower did not grow in the contaminated soils. The slow oxidative dissolution of the brass platelets led to an increase in the solubility and the plant uptake of Cu from the freshly contaminated to the 4 yr aged soil. In an earlier study, we found that the fine-grained ZnO dissolved in the field soil within 9 mo and that about half of the released Zn was incorporated into a layered double hydroxide phase and about half was adsorbed to the soil matrix. These changes in Zn speciation did not lead to a reduction of the Zn contents in the shoots and roots of barley and pea grown in the aged soil as compared with the freshly contaminated soil.  相似文献   

11.
Metals in soils amended with sewage sludge are typically less available compared with those in soils spiked with soluble metal salts. However, it is unclear if this difference remains in the long term. A survey of copper (Cu) availability was made in soils amended with sewage sludge, manure, and compost, collectively named organic amendments. Paired sets of amended and control soils were collected from 22 field trials where the organic amendments had aged up to 112 yr. Amended soils had higher total Cu concentrations (range, 2-220 mg Cu kg; median, 15 mg Cu kg) and organic C (range, 1-16 g kg; median, 4 g kg) than control soils. All samples were freshly spiked with CuCl, and the toxicity of added Cu to barley was compared between amended and control soils. The toxicity of added Cu was significantly lower in amended soils than in control soil in 15 sets by, on average, a factor of 1.4, suggesting that aged amendments do not largely increase Cu binding sites. The fraction of added Cu that is isotopic exchangeable Cu (labile Cu) was compared between control soils freshly spiked with CuCl and amended soils with both soils at identical total Cu concentrations. Copper derived from amendments was significantly less labile (on average 5.9-fold) than freshly added Cu in 18 sets of soils. This study shows that Cu availability after long-term applications of organic amendments is lower than that of freshly added Cu salts, mainly because of its lower availability in the original matrix and ageing reactions than because of increased metal binding sites in soil.  相似文献   

12.
Bacterial extracellular polymers (BEP) affect the translocation and fate of organic and inorganic pollutants in terrestrial and aquatic ecosystems. In this study, BEP from activated sludge was compared with sludge dissolved organic matter (DOM) in terms of behavior and effects on the mobilization and bioavailability of Cu in a well-aged Cu-contaminated orchard sandy loam. Addition of sludge BEP (10-200 mg dissolved organic carbon [DOC] L(-1)) to the soil resulted in 1.6- to 12.8-fold-higher soil soluble Cu concentration over the control and 1.3- to 2.2-fold over sludge DOM of the same concentration. Consequently, the Cu uptake by the ryegrass (Lolium perenne L., cv. Target) grown in the soil was increased by 31% due to interval watering of 100 mg DOC L(-1) of sludge BEP solution in a 35-d period. The influence of sludge BEP on mobilizing soil Cu could be maintained as long as 60 d or more, depending on BEP biodegradation status. The findings that sludge BEP promoted Cu mobilization and bioavailability could be attributed to less adsorption of BEP by soil, slow degradation, and higher affinity with Cu. For example, after 3 wk of aerobic incubation, the soluble Cu present in the sludge DOM-treated soil was reduced to about the level of the control, while the concentration of soluble Cu in BEP-treated soil was 6.2 times higher than that in the control. Therefore, sludge BEP could act as a facilitated-transport carrier of Cu. The environmental risk of Cu should receive much attention if BEP is incorporated into soils.  相似文献   

13.
Improper pesticide management can lead to environmental problems such as water quality degradation and ecological stress. Recent research in our laboratory has focused on development of constructed wetlands to assimilate pesticide-contaminated water. For improved aesthetics, these wetlands have been established with ornamental plant species. The effectiveness of a plant species for phytoremediation depends in part on its tolerance for the contaminant. Plant tolerance for pesticides may vary depending on plant age and size. This study examined the influence of plant age and size on the uptake, distribution, and toxicity of the herbicide simazine [2-chloro-4,6-bis(ethylamino)-1,3,5-triazine] in two ornamental wetland plants: parrot feather [Myriophyllum aquaticum (Vell.) Verdc.] and canna (Canna x hybrida L. 'Yellow King Humbert'). Plants of different ages and sizes were exposed to simazine in 10% Hoagland's nutrient solution. Toxicity was characterized using plant growth, water uptake, and photosynthetic yield during exposure and postexposure periods. In addition, other plants were exposed to [14C] simazine in nutrient medium to characterize pesticide uptake and translocation. Four-week-old parrot feather and canna were more tolerant of simazine than two-week-old plants. The two-week-old plant tissues of both species had higher tissue burdens of simazine than four-week-old plants. Simazine was primarily accumulated in the leaves of both parrot feather and canna. These results suggest that plants in a constructed wetland designed for simazine assimilation would be more vulnerable to simazine toxicity shortly after emergence.  相似文献   

14.
One method for recovering degraded soils in semiarid regions is to add organic matter to improve soil characteristics, thereby enhancing biogeochemical nutrient cycling. In this paper, we studied the changes in soil biological properties as a result of adding a crushed cotton gin compost (CCGC) and a poultry manure (PM) for 4 yr to restore a Xerollic Calciorthid located near Seville (Guadalquivir Valley, Andalusia, Spain). Organic wastes were applied at rates of 5, 7.5, and 10 Mg organic matter ha(-1). One year after the assay began, spontaneous vegetation had appeared in the treated plots, particularly in that receiving a high PM and CCGC dose. After 4 yr, the plant cover in these treated plots was around 88 and 79%, respectively, compared with 5% for the control. The effects on soil microbial biomass and six soil enzymatic activities (dehydrogenase, urease, BBA-protease, beta-glucosidase, arylsulfatase, and alkaline phosphatase activities) were ascertained. Both added organic wastes had a positive effect on the biological properties of the soil, although at the end of the experimental period and at high dosage, soil microbial biomass and soil enzyme activities were generally higher in the PM-amended soils compared to the CCGC-amended soils. Enzyme activity from the PM-amended soil was 5, 15, 13, 19, 22, 30, and 6% greater than CCGC-amended soil for soil microbial biomass, urease, BBA-protease, beta-glucosidase, alkaline phosphatase, arylsulfatase, and dehydrogenase activities, respectively. After 4 yr, the percentage of plant cover was > 48% in all treated plots and 5% in the control.  相似文献   

15.
Copper sulfate (CuSO4) is applied periodically to commercial channel catfish (Ictalurus panctatus) ponds as an algicide or parasiticide. Current understanding of the chemistry of copper in soil-water systems suggests that copper may accumulate in pond sediments, although the forms and potential bioavailability of copper in catfish pond sediments are not known. This study investigated the accumulation and distribution of copper in the sediment of catfish ponds receiving periodic additions of CuSO4.5H2O. All ponds were constructed in Sharkey (very-fine, smectitic, thermic Chromic Epiaquert) soil. Nine 0.40-ha ponds received 59 applications of 2.27 kg CuSO4.5H2O per application per pond over 3 yr; no CuSO4.5H2O applications were made to nine additional ponds. Total Cu concentration in the sediments of CuSO4.5H2O-amended catfish ponds (172.5 mg kg(-1)) was four to five times higher than that in the sediments of nonamended ponds (36.1 mg kg(-1)). Copper accumulated in catfish pond sediments at a rate of 41 microg kg(-1) dry sediment for each 1 kg ha(-1) of CuSO4. 5H2O applied to ponds. Copper in the sediments of amended ponds was mainly in the organic matter-bound (30.7%), carbonate-bound (31.8%), and amorphous iron oxide-bound (22.1%) fractions with a considerable fraction (3.4%; 3 to 8 mg kg(-1)) in soluble and exchangeable fractions. This indicates that Cu accumulates differentially in various fractions, with proportionally greater initial accumulation in potentially bioavailable forms. However, toxicity bioassays with amphipods (Hyallela azteca) and common cattail (Typha latifolia L.) indicated that the effect of exposure to amended or nonamended pond sediments was not different.  相似文献   

16.
Four soil profiles located near a copper smelter in Poland were investigated for the distribution and chemical fractions of Cu, Pb, and Zn and their mobility in relation to soil properties. Contamination with heavy metals was primarily restricted to surface horizons and the extent of contamination was 7- to 115-fold for Cu, 30-fold for Pb, and 6-fold for Zn as compared with subsurface horizons. In the less-contaminated fine-textured soil, the metals were distributed in the order: residual > Fe-Mn oxides occluded > organically complexed > exchangeable and specifically adsorbed, while the order for sandy soils was: residual > organically complexed > Fe-Mn oxides occluded > exchangeable and specifically adsorbed. The contaminated surface horizons of these profiles showed no consistent pattern of metal distribution. However, the common features of highly contaminated soils were very low percentage of residual fraction and the dominance of the NH4OAc extractable fraction. The sum of mobile metal fractions was generally < 10% in subsurface horizons, while in the contaminated surface horizons these fractions made up 50% of the total metal contents. Soil properties contributed more to the relative distribution of the metal fractions in the studied profiles than did the distance and direction to the source of pollution. The amounts of metal extracted by 0.01 M CaCl2 accounted for only a small part of the same metals extracted by NH4OAc. The mobility indexes of metals correlated positively and significantly with the total content of metals and negatively with the clay content.  相似文献   

17.
Environmental risk assessment of heavy metals in soil frequently involves testing of freshly spiked soils kept under stable humidity conditions, but it has been questioned whether these assessments are representative of the field situation. Furthermore, the poor correspondence that is often found between total metal content and metal toxicity calls for integrated chemical and biological analysis. The aim of this work was to determine time- and moisture-dependent changes in total water-extractable Cu as well as bioavailable Cu in soil water extracts. Measurements of total water-extractable copper ([Cu]tot) were performed using furnace atomic absorption spectrometry. An in vitro assay employing a Cu-specific Pseudomonas fluorescens reporter strain was used to estimate Cu that was biologically available to the reporter strain. We refer to this copper fraction as "bioavailable," [Cu]bio. We found a time-dependent decrease in [Cu]tot and [Cu]bio during incubation for up to 220 d at field capacity. Hence the [Cu]bio was reduced to between 32 and 40% of the initial values. Furthermore, the [Cu]bio to [Cu]tot ratio correlated positively with the amount of added Cu and tended to increase with time. The moisture content of the soil was important for Cu retention. Dry soil had higher [Cu]tot concentrations than humid soil, but the [Cu]bio to [Cu]tot, ratio was lower in the dry soil. Alternating drying and wetting did not lead to a more rapid Cu retention than observed under constant humid conditions. Our observations underline the need for considering both time and moisture effects when interpreting short-term toxicity studies and when making predictions concerning possible long-term effects of Cu in the soil environment.  相似文献   

18.
Papermill biosolids (PB) can provide multiple benefits to the soil system. The purpose of this study was to quantify the effects of a high C/N ratio (C/N = 100) de-inked PB on soil physical and chemical properties, including soil bulk density, infiltration rates, wet aggregate stability, total soil carbon, and heavy metal concentrations. Four rates of PB (0, 50, 100, and 150 Mg ha(-1)) were applied annually, for up to 3 yr, on four agricultural soils in Ontario, Canada. Decreases in soil bulk density between 0.27 and 0.35 g cm(-3), relative to the nonamended treatment, were observed in soils receiving PB treatments over 3 yr. Total soil carbon increased within 1 yr on PB-amended soils planted to soybeans but not on soils planted to corn. Hydraulic conductivities (K fs) were greater in all soils receiving PB amendments relative to the nonamended treatment throughout the study. Other properties measured, such as pH and electrical conductivity, were relatively unchanged after 2 yr of PB applications. While some increases in heavy metal accumulation occurred, there were no clear trends observed at any of the sites related to PB rates. The results of this study provide support to the idea that annual applications of PB can add significantly to the stability of soil structure.  相似文献   

19.
Organic wastes are considered to be a source for the potentially pathogenic microorganisms found in surface and sub-surface water resources. Following their release from the organic waste matrix, bacteria often infiltrate into soil and may be transported to significant depths contaminating aquifers. We investigated the influence of soil texture and structure and most importantly the organic waste properties on the transport and filtration coefficients of Escherichia coli and total bacteria in undisturbed soil columns. Intact soil columns (diameter 16 cm and height 25 cm) were collected from two soils: sandy clay loam (SCL) and loamy sand (LS) in Hamadan, western Iran. The cores were amended with cow manure, poultry manure and sewage sludge at a rate of 10 Mg ha(-1) (dry basis). The amended soil cores were leached at a steady-state flux of 4.8 cm h(-1) (i.e. 0.12 of saturated hydraulic conductivity of the SCL) to a total volume of up to 4 times the pore volume of the columns. The influent (C(0)) and effluent (C) were sampled at similar time intervals during the experiments and bacterial concentrations were measured by the plate count method. Cumulative numbers of the leached bacteria, filtration coefficient (lambda(f)), and relative adsorption index (S(R)) were calculated. The preferential pathways and stable structure of the SCL facilitated the rapid transport and early appearance of the bacteria in the effluent. The LS filtered more bacteria when compared with the SCL. The effluent contamination of poultry manure-treated columns was greater than the cow manure- and sewage sludge-treated ones. The difference between cow manure and sewage sludge was negligible. The lambda(f) and S(R) values for E. coli and total bacteria were greater in the LS than in the SCL. This indicates a predominant role for the physical pore-obstruction filtration mechanisms as present in the poorly structured LS vs. the retention at adsorptive sites (chemical filtration) more likely in the better structured SCL. While the results confirmed the significant role of soil structure and preferential (macroporous) pathways, manure type was proven to have a major role in determining the maximum penetration risk of bacteria by governing filtration of bacteria. Thus while the numbers of bacteria in waste may be of significance for shallow aquifers, the type of waste may determine the risk for microbial contamination of deep aquifers.  相似文献   

20.
We investigated the effects of recent moisture history on the relative production of N2O and N2 during denitrification in soil from cropped and successional ecosystems. The soils were pedogenically identical but had been managed differently for the past decade. Sieved soils were amended with nitrate, glucose, and water. Long-wet and short-wet incubations received 80 and 0%, respectively, of prescribed water 2 d before incubation and the rest just before incubation. The N2O and N2 production and N2O mole fraction (N2O/[N2O + N2]) were measured using acetylene inhibition. The N2 production and soil 15N enrichment were measured by 15N-gas evolution. The response of N2O mole fraction to moisture history differed by ecosystem. Mean N2O mole fraction in the successional system was about the same for long-wet and short-wet treatments (0.34 and 0.33, respectively). For the cropped system, however, the N2O mole fraction was 0.36 for the long-wet and 0.90 for the short-wet treatment. Thus, in the cropped system a much smaller proportion of end product was N2O if soil had been wet for 2 d. For N2 fluxes, the isotope method gave the same pattern (r = 0.92) but only about one-third the magnitude, suggesting that N2 derived from two distinct pools. Differences in response of N2O mole fraction for successional and cropped soils may be due to differences in microbial communities. Further knowledge of ecosystem differences with respect to N2O mole fraction and recent moisture history may improve modeled estimates of local and global N2O fluxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号