首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Phytoremediation has been recognized as a cheap and eco-friendly technology which could be used for the remediation of organic pollutants, such as phenolic compounds. Besides, the extent to which plants react to environmental pollution might depend on rhizosphere processes such as mycorrhizal symbiosis. In the present work, phenol tolerance of transgenic tobacco hairy roots (HR), namely TPX1, colonized with an arbuscular mycorrhizal fungus (AMF) was studied. However, the question is whether AMF symbiosis can moderate adverse effects of phenol to the plant tissues. Thus, the antioxidative response as well as parameters of oxidative damage, like malondialdehyde (MDA) content, were determined. Antioxidative enzymes such as peroxidase, superoxide dismutase, ascorbate peroxidase were higher in TPX1 HR colonized with AMF, compared to wild type HR colonized by AMF, in the presence of increasing concentrations of the pollutant. Besides, MDA levels remained unaltered in TPX1 HR associated with AMF treated with the xenobiotic. These results, suggested that this culture could tolerate phenol and moreover, it has an efficient protective mechanism against phenol-induced oxidative damage, which is of great importance in the selection of species with remediation capacities. Thus, transgenic HR colonized with AMF could be considered as an interesting model system to study different processes which play a key role in the phytoremediation of organic pollutants.  相似文献   

2.
Metabolic responses of weeping willows to selenate and selenite   总被引:2,自引:0,他引:2  
Goal, Scope and Background Selenium (Se) is one of the most widely distributed elements of the earth’s crust at low concentrations. The extensive use of Se-containing chemicals due to anthropogenic activities has increased the ecological risk to environmental compartments. Plants, under unfavorable environmental conditions, often increase the formation of reactive oxygen species (ROS), and consequently plant antioxidant enzymatic systems have been proposed to be important in plant stress tolerance. The goal of this study was to find out the metabolic responses of plants to Se, to provide quantitative information whether exogenous Se has a beneficial role in plants, and to investigate the potential of vegetation management of Se for potential phytoremediation. Material and Methods Pre-rooted plants of weeping willows (Salix babylonica L.) were grown hydroponically in growth chambers and treated with Na2SeO4 or Na2SeO3 at 24.0 ± 1°C for 168 h. Five different treatment concentrations were used, ranging from 0.44 to 8.72 mg Se/L for the treatments exposed to SeO42− and from 0.50 to 10.0 mg Se/L for the treatments exposed to SeO32−, respectively. Transpiration rates, soluble protein contents and antioxidative enzyme activities of the plants were monitored to evaluate toxicity from exogenous Se exposure. At the end of the study, total Se in the hydroponic solution was analyzed by hydride generation-atomic fluorescence spectrometry (HG-AFS). Results Both chemical forms of Se at low concentrations showed growth-promoting effects on plants. A significant decrease of transpiration rates and of soluble protein contents of plants was observed at higher Se concentrations after 168 h of exposure. Measurable change of superoxide dismutases (SOD) activity in leaves was only detected under high Se treatments. Catalase (CAT) activity was significantly affected by the Se application. Slight change of peroxidase (POD) activity was measured in all treatments, whereas significant inhibition of POD activity was detected for the plants exposed to SeO32− of 10.0 mg Se/L. Se-induced stress appeared in all treatments, thus resulting in measurable increase of glutathione peroxidase (GSH-Px) activity of the plants. Although both chemical forms of Se were taken up by weeping willows efficiently, their uptake rates were different. Discussion Of all measured parameters, POD and CAT activities in leaves were noted the most sensitive indicator for the plants exposed to SeO42− and SeO32−, respectively. Deleterious effects on plant physiological functions due to Se application were not observed over 168 h of exposure. This is largely due to the fact that well-established antioxidant enzymatic systems in plants and higher activities of GSH-Px largely reduced the negative effects on plants; SeO32− caused much more severe stress to plants than SeO42− at higher Se application rates. The uptake mechanisms between the two chemical species were quite different. Conclusions Neither visible toxic symptoms nor metabolic lesions were observed at low concentrations of Se, probably due to the effective established enzymatic systems in weeping willows. All selected parameters for toxicity determination were significantly correlated to Se application, but metabolic responses of plants to SeO42− and SeO32− were quite different. GSH-Px in leaves was probably the principle enzyme responsible for stress reduction from Se exposure. Due to their different chemical properties, weeping willows showed a faster uptake rate for SeO42− than for SeO32−. Recommendations Exogenous Se has a beneficial role in plants and vegetation management of Se is a potential remediation strategy in cleaning up Se-contaminated sites. Further investigation on the biochemical mechanism of Se metabolism will provide insight to the specific interactions between Se and plants on the molecular level. Perspectives Weeping willow has a sound potential for phytoremediation of Se-contaminated sediment and groundwater because the tree is not only tolerant to Se but also uptakes chemical species from the environment.  相似文献   

3.
Seedlings of Sonchus oleraceus L. were transplanted to soil supplied with lead acetate at dosages of 0, 800, 1600 and 3200 mg kg(-1) DW. Measures of chlorophyll content, peroxidase (POD) activity, shoot length, biomass and Pb content in the plant tissues were obtained from the experimental plants. With increasing amounts of Pb in the soil, the chlorophyll content, shoot length and biomass decreased, while POD activity and Pb content in the plant tissues increased. At 3200 mg kg(-1) Pb treatment, Pb content in the plant leaf, stem and root were 65.67, 149.82 and 1113.24 mg kg(-1), respectively. Only at 3200 mg kg(-1) Pb treatment did chlorophyll content, shoot length and biomass significantly increase by 18, 15 and 44%, respectively, while POD decreased by 39% over the control. The potential of applying this species in phytoremediation of Pb contaminated roadside soils and thus restoration of the roadside vegetation are discussed.  相似文献   

4.
Zhou ZS  Wang SJ  Yang ZM 《Chemosphere》2008,70(8):1500-1509
Mercury has become one of the major causes of toxic metal pollution in agricultural lands. Accumulation of mercury by plants may disrupt many cellular functions and block growth and development. To assess mercury toxicity, we performed an experiment focusing on the responses of alfalfa (Medicago sativa) to Hg(2+)-induced oxidative stress. Alfalfa plants were treated with 0-40microM HgCl(2) for 7d. The concentrations of Hg(2+) were positively correlated with the generation of O2- and H(2)O(2) in leaves. Treatment with Hg(2+) increased the activities of NADH oxidase and lipoxygenase (LOX) and damaged the biomembrane lipids. To understand biochemical responses under Hg stress, activities of several antioxidant enzymes, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) were assayed. Analysis of SOD activity by non-denaturing polyacrylamide gel electrophoresis revealed five isoforms in leaves, but they showed different patterns. Also, eight isoenzymes of APX and seven of POD in leaves were detected. However, only one isoform of CAT was visualized. The total activities of APX, POD and CAT were generally enhanced. We also measured several antioxidative metabolites such as ascorbate and glutathione (GSH), and found that both differentially accumulated in leaves. These results indicate that the increased levels of O2- and H(2)O(2) under Hg stress were closely linked to the improved capacity of antioxidant enzymes. The data not only provide the important information for better understanding of the toxic and tolerance mechanisms, but as well can be used as a bio-indicator for soil contamination by Hg.  相似文献   

5.
One-month old horsegram (Macrotyloma uniflorum (Lam.) Verdc. cv VZM1) and bengalgram (Cicer arietinum L. cv Annogiri) were exposed to different regimes of lead stress as Pb(NO3)2 at 0, 200, 500 and 800 ppm concentrations. The extent of oxidative damage as the rate of lipid peroxidation, antioxidative response and the accumulation of lead in roots and shoots of both plants were evaluated after 12 days of lead stress. Lead (Pb) treated plants showed increased levels of lipid peroxidation as evidenced from the increased malondialdehyde content coupled with the increase in the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione reductase (GR), glutathione S-transferase (GST) compared to control (untreated) plants. Lead stress caused significant changes in the activity of antioxidative enzymes. The effect of lead was found to be concentration dependent. Higher concentration of lead (800 ppm) resulted 2- to 3-fold increase in SOD, catalase and peroxidase activities, 3- to 5-fold increase in GR activity and 3- to 4-fold increase in GST activity in roots and leaves of both horsegram and bengalgram plants. Lead stress caused a significant increase in the rate of peroxidation as showed in the levels of malondialdehyde content in roots and leaves of both plant species. Horsegram registered lower Pb accumulation than bengalgram, however localization of Pb was greater in roots than leaves in both plants. In general, lipid peroxide levels and antioxidative enzyme activities were higher in horsegram than bengalgram and also more in roots than leaves which best concordance with the lead contents of both the plants and organs. These results suggest that Pb toxicity causes oxidative stress in plants and the antioxidative enzymes SOD, CAT, POD, GR, GST could play a pivotal role against oxidative injury.  相似文献   

6.
Sinha S  Saxena R 《Chemosphere》2006,62(8):1340-1350
The effect of Fe was investigated in medicinally important plant, Bacopa monnieri L. and the response on malondialdehyde (MDA) content, superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX) was found different in roots and leaves of the metal treated plants. Iron induced stress was observed as indicated by high level of lipid peroxidation, being more steep increase in leaves than roots. In roots, SOD activity was found to increase in metal treated plants except 80 and 160 microM at 72 h, whereas, it decreased in leaves except 10 and 40 microM after 48 h as compared to their respective controls. Among H2O2 eliminating enzymes, POD activity increased in roots, however, it decreased in leaves except at 10 and 40 microM Fe after 48 h as compared to control. At 24 and 48 h, APX activity and ascorbic acid content followed the similar trend and were found to increase in both parts of the metal treated plants as compared to their respective controls. The level of cysteine content in the roots increased at initial period of exposure; however, no marked change in its content was noticed in leaves. In both roots and leaves, non-protein thiol content was found to increase except at higher metal concentrations at 72 h. The data of proline content have shown significant (p<0.01) increase at 40 microM onwards in both part of the plants after 48 and 72 h. Correlation coefficient was evaluated between metal accumulations with various parameters and also between different antioxidant parameters with MDA. Since the level of bacoside-A (active constituent) content in metal treated plants increases, therefore, it is advisable to assess the biological activity of the plants before using for medicinal purposes, particularly in developing countries.  相似文献   

7.
Phenolic compounds are contaminants frequently found in water and soils. In the last years, some technologies such as phytoremediation have emerged to remediate contaminated sites. Plants alone are unable to completely degrade some pollutants; therefore, their association with rhizospheric bacteria has been proposed to increase phytoremediation potential, an approach called rhizoremediation. In this work, the ability of two rhizobacteria, Burkholderia kururiensis KP 23 and Agrobacterium rhizogenes LBA 9402, to tolerate and degrade phenolic compounds was evaluated. Both microorganisms were capable of tolerating high concentrations of phenol, 2,4-dichlorophenol (2,4-DCP), guaiacol, or pentachlorophenol (PCP), and degrading different concentrations of phenol and 2,4-DCP. Association of these bacterial strains with B. napus hairy roots, as model plant system, showed that the presence of both rhizospheric microorganisms, along with B. napus hairy roots, enhanced phenol degradation compared to B. napus hairy roots alone. These findings are interesting for future applications of these strains in phenol rhizoremediation processes, with whole plants, providing an efficient, economic, and sustainable remediation technology.  相似文献   

8.
Pang J  Chan GS  Zhang J  Liang J  Wong MH 《Chemosphere》2003,52(9):1559-1570
Physiological aspects of why vetiver grass (Vetiveria zizanioides L.) can be tolerant to heavy metals and be used as an alternative method for rehabilitation of abandoned metalliferous mine wastelands have been investigated. The results showed that high proportions of lead and zinc (Pb/Zn) tailing greatly inhibited the leaf growth, dry matter accumulation, and photosynthesis of leaves, but stimulated the accumulation of proline and abscisic acid (ABA), and enhanced the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), implying that different mechanisms to detoxify active oxygen species (AOS) existed in different parts of plants. Physiological responses to heavy metal treatments differed greatly between roots and shoots. Nitrogen fertilizer application could greatly alleviate the adverse effects of high proportions of Pb/Zn tailing on vetiver grass growth.  相似文献   

9.
The concentrations of lead, zinc, copper and cadmium accumulated by 12 emergent-rooted wetland plant species including different populations of Leersia hexandra, Juncus effusus and Equisetum ramosisti were investigated in field conditions of China. The results showed that metal accumulation by wetland plants differed among species, populations and tissues. Populations grown in substrata with elevated metals contained significantly higher metals in plants. Metals accumulated by wetland plants were mostly distributed in root tissues, suggesting that an exclusion strategy for metal tolerance widely exists in them. That some species/populations could accumulate relatively high metal concentrations (far above the toxic concentration to plants) in their shoots indicates that internal detoxification metal tolerance mechanism(s) are also included. The factors affecting metal accumulation by wetland plants include metal concentrations, pH, and nutrient status in substrata. Mostly concentrations of Pb and Cu in both aboveground and underground tissues of the plants were significantly positively related to their total and/or DTPA-extractable fractions in substrata while negatively to soil N and P, respectively. The potential use of these wetland plants in phytoremediation is also discussed.  相似文献   

10.
研究铯对水生植物的生物效应,筛选对铯富集能力强的水生植物,能够为水体铯污染的修复治理提供方法依据。设计铯污染浓度为0、0.5、2.5和10 mg/L,9种水生植物,3次重复,研究铯对不同水生植物生物效应(BE)和不同水生植物对铯的吸收和富集情况。结果表明,不同植物对水体铯污染有不同的反应。就增加鲜重而言,绿萍、水花生、轮叶狐狸藻、水蓼、水葱增加鲜重大于对照;眼子菜、水葫芦、水稻增加鲜重小于对照;不同植物的铯含量不同。平均铯含量依次为水花生 >水蓼 >水稻 >水葫芦 >水葱 >眼子菜 >轮叶狐狸藻 >绿萍,其中水花生为935.12 mg/kg DW,水蓼为825.93 mg/kg DW,水稻为723.38 mg/kg DW;不同植物清除水体铯污染的能力不同。收获时水体铯浓度降低最多至最少的依次是水蓼、水花生、水稻、轮叶狐狸藻、水葱、水葫芦、绿萍和眼子菜。根据生物效应、植物铯含量、水体铯减少情况,水花生、水蓼、水葫芦和水稻可以作为铯污染水体修复植物。  相似文献   

11.
In this work, the phytoremediation potential of metalaxyl, a commonly used persistent, mobile and leachy fungicide, by Solanum nigrum L. plants was studied. The study revealed that this plant species can be used as an excellent metalaxyl phytoremediation tool, thus providing a cost effective and environmentally friendly clean technology for the decontamination of sites and effluents. As it can be sowed directly in the remediation site, is able to complete its life cycle without suffering major stress. Because it accumulates high amounts of the fungicide in the aboveground tissues, enables its concentration and proper disposal by cutting off the corresponding plant part. The study also suggests that the tolerance to metalaxyl is due to a suitable antioxidant response comprising proline accumulation and guaiacol peroxidase and glutathione-S-transferase enhanced activities, that reduce oxidative damage to the plant organs.  相似文献   

12.
To assess the potential of the native plant species for phytoremediation, plant and soil samples were collected from two areas in Thailand that have histories of arsenic pollution from mine tailings. The areas were the Ron Phibun District (Nakorn Si Thammarat province) and Bannang Sata District (Yala province), and samples were taken in 1998 and 1999 and analysed for total arsenic by atomic absorption spectrophotometry. Arsenic concentrations in soil ranged from 21 to 14,000 microg g(-1) in Ron Phibun, and from 540 to 16,000 microg g(-1) in Bannang Sata. The criteria used for selecting plants for phytoremediation were: high As tolerance, high bioaccumulation factor, short life cycle, high propagation rate, wide distribution and large shoot biomass. Of 36 plant species, only two species of ferns (Pityrogramma calomelanos and Pteris vittata), a herb (Mimosa pudica), and a shrub (Melastoma malabrathricum), seemed suitable for phytoremediation. The ferns were by far the most proficient plants at accumulating arsenic from soil, attaining concentrations of up to 8350 microg g(-1) (dry mass) in the frond.  相似文献   

13.
张杏锋  田超  高波 《环境工程学报》2017,11(5):3204-3213
重金属污染及生态修复是环境和生态领域研究的热点和难点。皇草是重要的纤维素生物燃料和电力植物。选用皇草作为重金属污染土壤的修复植物,探讨皇草对重金属的耐性机理和对重金属污染土壤的修复效果。结果表明:皇草的株高和干重在Ni、As、Zn、Pb处理中显著高于对照处理或者与对照处理没有显著差异,但在Cr处理中显著低于对照处理。皇草在Ni、As、Zn、Pb和低浓度Cr污染土壤均能生产大量的生物质,每季产25.55~28.51 t·hm-2鲜草和8.23~9.12 t·hm-2干草。皇草叶片中MDA和POD的含量随着Cr、Ni、As和Pb浓度的升高有所增加,但CAT和SOD的活性表现出相反的趋势。在Zn的2个浓度梯度下,皇草叶片中的CAT、POD和SOD的活性均随着Zn浓度升高而下降。从重金属在皇草各器官分布来看,Cr、As和Pb的浓度为根 > 叶 > 茎;Ni和Zn为根 > 茎 > 叶。从重金属在植物叶片中的形态来看,Cr、Ni、Zn和Pb的盐酸提取态的含量较高。从重金属在亚细胞分布来看,Cr、As和Pb在皇草叶片亚细胞组分分布为细胞质 > 细胞壁 > 细胞器,Ni和Zn在皇草叶片亚细胞组分分布为细胞器 > 细胞质 > 细胞壁。皇草对重金属的富集系数和转运系数均小于1,对重金属的提取量较低,但其耐性强、生物量大,适合应用于土壤重金属污染的植物稳定技术。  相似文献   

14.
BACKGROUND: Methyl tertiary butyl ether (MTBE) is the second most highly produced industrial chemical in the US and a frequent groundwater pollutant. At the same time, MTBE is quite persistent to biotic and abiotic decomposition. The goal of this study was to find plant species that could degrade MTBE and might be used in phytoremediation. METHODS: Excised roots and leaves (0.3 g) from more than 24 Danish plant species out of 15 families were kept in glass vessels with 25 ml spiked aqueous solution for 2 to 4 days. MTBE concentrations were 1 to 5 mg/L. Samples were taken directly from the solution with a needle and injected to a purge and trap unit. MTBE and the main metabolite, TBA, were measured by GC/FID. RESULTS AND DISCUSSION: Solutions with roots of poplar (Populus robusta) and a willow hybrid (Salix viminalis x schwerinii) produced TBA in trace amounts, probably stemming from bacteria. Significant MTBE reduction (> 10%) was not observed in any of the tests. Leaves from none of the species (trees, grasses and herbs) reduced the concentration of MTBE in the solution and no TBA, nor any other known metabolite of MTBE, was detected. CONCLUSION: It was not possible to find plants capable of efficiently degrading MTBE. This gives rise to the conclusion that plants probably cannot degrade MTBE at all, or only very slowly. RECOMMENDATIONS AND OUTLOOK: For phytoremediation projects, this has, as consequence, that the volatilization by plants (except with genetically engineered plants) is the only relevant removal process for MTBE. For risk assessment of MTBE, degradation by the plant empire is not a relevant sink process.  相似文献   

15.
Nugget marigold, a triploid hybrid between American (Tagetes erecta L.) and French (Tagetes patula) marigolds, is a marketed flowering plant with a good ability in arsenic phytoremediation. During field trial in an arsenic-polluted area in Thailand, arsenic was found mostly in leaves (46.2%) while flowers contained the lowest arsenic content (5.8%). Arsenic species in aqueous extracts of nugget marigolds were determined by HPLC-UV-HG-QF-AAS. Inorganic arsenics, arsenite and arsenate, were the main arsenic chemical species found in roots, stems, and leaves of marigolds with accumulated arsenic. Nugget marigolds from experimental plots not only accumulated high levels of arsenic but also grew well in arsenic-contaminated areas. Phosphate fertilizer enhanced arsenic uptake when the plants were in the flowering stage. Arsenic remediation using nugget marigolds could also provide economic benefits to the remediators through marketing flowers. Therefore, marigolds should be considered as a potential economic crop for phytoremediation.  相似文献   

16.
Song NH  Yin XL  Chen GF  Yang H 《Chemosphere》2007,68(9):1779-1787
Chlorotoluron is a phenylurea herbicide that is widely used for controlling grass weeds in the land of cereal, cotton and fruit production. However, extensive use of this herbicide may lead to its accumulation in ecosystems, thus inducing the toxicity to crops and vegetables. To assess chlorotoluron-induced toxicity in plants, we performed the experiment focusing on the metabolic adaptation of wheat plants (Triticum aestivum) to the chlorotoluron-induced oxidative stress. The wheat plants were cultured in the soils with chlorotoluron at concentrations of 0-25mg/kg. Chlorotoluron accumulation in plants was positively correlated with the external chlorotoluron concentrations, but negatively with the plant growth. Treatment with chlorotoluron induced the accumulation of O(2)(-) and H(2)O(2) in leaves and resulted in the peroxidation of plasma membrane lipids in the plant. We measured the endogenous proline level and found that it accumulated significantly in chlorotoluron-exposed roots and leaves. To understand the biochemical responses to the herbicide, activities of the antioxidant enzymes, such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were assayed. Analysis of SOD activity by non-denaturing polyacrylamide gel electrophoresis (PAGE) revealed that there were three isoforms in the roots and leaves, but the isoforms in the tissues showed different patterns. Also, using the native PAGE, 6 isoforms of root POD and 10 in leaves were detected. The total activity of POD in roots was significantly enhanced. Activities of APX in roots and leaves showed a similar pattern. The CAT activities were generally suppressed under the chlorotoluron exposure.  相似文献   

17.
Copper contaminated areas pose environmental health risk to living organisms. Remediation processes are thus required for both crop production and industrial activities. This study employed bioaugmentation with copper resistant bacteria to improve phytoremediation of vineyard soils and copper mining waste contaminated with high copper concentrations. Oatmeal plant (Avena sativa L.) was used for copper phytoextraction. Three copper resistant bacterial isolates from oatmeal rhizosphere (Pseudomonas putida A1; Stenotrophomonas maltophilia A2 and Acinetobacter calcoaceticus A6) were used for the stimulation of copper phytoextraction. Two long-term copper contaminated vineyard soils (Mollisol and Inceptisol) and copper mining waste from Southern Brazil were evaluated. Oatmeal plants substantially extracted copper from vineyard soils and copper mining waste. As much as 1549 mg of Cu kg?1 dry mass was extracted from plants grown in Inceptisol soil. The vineyard Mollisol copper uptake (55 mg Cu kg?1 of dry mass) in the shoots was significantly improved upon inoculation of oatmeal plants with isolate A2 (128 mg of Cu kg?1 of shoot dry mass). Overall oatmeal plant biomass displayed higher potential of copper phytoextraction with inoculation of rhizosphere bacteria in vineyard soil to the extent that 404 and 327 g ha?1 of copper removal were respectively observed in vineyard Mollisol bioaugmented with isolate A2 (S. maltophilia) and isolate A6 (A. calcoaceticus). Results suggest potential application of bacterial stimulation of phytoaccumulation of copper for biological removal of copper from contaminated areas.  相似文献   

18.
Phytoextraction of excess soil phosphorus   总被引:1,自引:0,他引:1  
In the search for a suitable plant to be used in P phytoremediation, several species belonging to legume, vegetable and herb crops were grown in P-enriched soils, and screened for P accumulation potentials. A large variation in P concentrations of different plant species was observed. Some vegetable species such as cucumber (Cucumis sativus) and yellow squash (Cucurbita pepo var. melopepo) were identified as potential P accumulators with >1% (dry weight) P in their shoots. These plants also displayed a satisfactory biomass accumulation while growing on a high concentration of soil P. The elevated activities of phosphomonoesterase and phytase were observed when plants were grown in P-enriched soils, this possibly contributing to high P acquisition in these species. Sunflower plants also demonstrated an increased shoot P accumulation. This study shows that the phytoextraction of phosphorus can be effective using appropriate plant species.  相似文献   

19.
The behaviour of the organochlorine pesticide hexachlorocyclohexane (HCH) is investigated. The concentrations of alpha-, beta-, gamma-, and delta-HCH isomers were measured in soils, rhizosphere and vegetation in a contaminated area in Galicia (NW Spain). The total concentration of HCH in soils reached values close to 20,000 mgkg(-1). The plants analysed (Avena sativa L., Chenopodium spp., Solanum nigrum L., Cytisus striatus (Hill) Roth, and Vicia sativa L.) accumulated HCH, especially the beta-HCH isomer, in their tissues. The most likely mechanisms of HCH accumulation in plants were sorption of soil HCH on roots and sorption of volatilized HCH on aerial plant tissues. The concentrations of HCH obtained from the bulk and rhizosphere soils of selected plant species suggest that roots tend to reduce levels of the HCH isomers in the rhizosphere. The results reflect the importance of vegetation in the distribution of organochlorine compounds in the soil-plant system.  相似文献   

20.

With the boom in industrialization, there is an increase in the level of heavy metals in the soil which drastically affect the growth and development of plants. Nickel is an essential micronutrient for plant growth and development, but elevated level of Ni causes stunted growth, chlorosis, nutrient imbalance, and alterations in the defense mechanism of plants in terms of accumulation of osmolytes or change in enzyme activities like guiacol peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD). Ni-induced toxic response was studied in seedlings of finger millet, pearl millet, and oats in terms of seedling growth, lipid peroxidation, total chlorophyll, proline content, and enzymatic activities. On the basis of germination and growth parameters of the seedling, finger millet was found to be the most tolerant. Nickel accumulation was markedly lower in the shoots as compared to the roots, which was the highest in finger millet and the lowest in shoots of oats. Plants treated with a high concentration of Ni showed significant reduction in chlorophyll and increase in proline content. Considerable difference in level of malondialdehyde (MDA) content and activity of antioxidative enzymes indicates generation of redox imbalance in plants due to Ni-induced stress. Elevated activities of POD and SOD were observed with high concentrations of Ni while CAT activity was found to be reduced. It was observed that finger millet has higher capability to maintain homeostasis by keeping the balance between accumulation and ROS scavenging system than pearl millet and oats. The data provide insight into the physiological and biochemical changes in plants adapted to survive in Ni-rich environment. This study will help in selecting the more suitable crop species to be grown on Ni-rich soils.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号