首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Respiration and excretion by the ctenophore Mnepiopsis leidyi   总被引:1,自引:0,他引:1  
Respiration (dissolved oxygen and carbon dioxide) and excretion (dissolved organic carbon, inorganic and organic nitrogen and phosphorus) rates were measured for a variety of sizes of Mnemiopsis leidyi over a temperature range of 10.3° to 24.5°C. Both respiration and excretion rates were a direct linear function of animal weight and very temperature sensitive (Q104). Oxygen uptake ranged from 155 to 489 g at O/(g dry weight) day-1 and carbon dioxide release from 43 to 166 M. Organic carbon made up about 38% of the total carbon released. Inorganic nitrogen excretion, exclusively in the form of ammonium, comprised 54% of the total nitrogen release and ranged from 10 to 36 M NH4/(g dry weight) day-1. Average release of dissolved primary amines (expressed as glycine equivalents) equaled 43% of the organic nitrogen fraction. Inorganic phosphorus release ranged from 2.0 to 4.9 M/(g dry weight) day-1 and made up about 72% of the total phosphorus loss. The turnover of elements in the body was calculated as 5 to 19% per day for carbon and nitrogen, depending on the temperature, and an even higher 20 to 48% per day for phosphorus. These values are comparable to rates observed for small, active zooplankton.  相似文献   

2.
The respiration and excretion rates of Calanus glacialis (Jaschnov) Copepodite Stages III, IV, V, and adult females from the drift-ice area east of Svalbard (Barents Sea) were measured in shipboard experiments during the period from 27 May to 13 June, 1983. The phytoplankton biomass and abundance varied considerably between localities, but these variations were not generally reflected in the respiration and excretion rates of the copepod. The respiration and excretion rates of C. glacialis at the ambient temperature of-1.8°C (average respiration rates of 0.95, 0.73, 0.57, and 0.60 l O2 mg-1 dry wt h-1 for Copepodite Stage III, IV, V, and adult females, respectively) were similar to those previously reported for other large-sized copepods from cold or temperate areas. Average respiration and excretion rates tended to decrease with incubation time or time after capture. Measurements on ten occasions within a period of 27 h after capture revealed excretion rates of ammonium ranging between 2.9 and 16.8 for C III, 3.7 and 21.1 for C IV, 1.3 and 28.4 for C V, and 1.6 and 18.7 for adult females, all expressed as nmol mg-1 dry wt h-1. In all experiments, excretion rates of inorganic phosphate varied between 0.7 and 1.5 (C III), 0.5 and 1.1 (C IV), 0.2 and 0.8 (C V), and 0.3 and 1.0 (adult females) nmol mg-1 dry wt h-1. Ratios of O:N, O:P, and N:P indicated that much of the metabolic energy was derived from catabolism of proteins. Comparison of the turnover rate of carbon and nitrogen showed, however, that nitrogen turnover was between 2.6 and 8.9 times higher than that of carbon. This may indicate that the copepods deaminate ingested protein, with the carbon skeleton of the amino acids subsequently being used in the synthesis of lipid compounds, possibly wax esters.  相似文献   

3.
Photoadaptation of photosynthesis in Gonyaulax polyedra   总被引:1,自引:0,他引:1  
Gonyaulax polyedra Stein exhibited a combination of photoadaptive strategies of photosynthesis when only a single environmental variable, the light intensity during growth, was altered. Which of several biochemical/physiological adjustments to the light environment were employed depended on the level of growth irradiance. The photoadaptive strategies employed over any small range of light levels appeared to be those best suited for optimizing photosynthetic performance and not photosynthetic capacity. (Photosynthetic performance, P i, is defined as the rate of photosynthesis occurring at the level of growth irradiance.) Among all photosynthetic parameters examined, only photosynthetic performance showed a consistent correspondence to growth rates of G. polyedra. Above 3500 to 4000 W cm-2, where photosynthetic performance was equal to photosynthetic capacity, cells were not considered light-limited in either photosynthesis or growth. At these higher light levels, photosynthetic perfomance, cell volume, growth rates and respiration rates remained maximal; photosynthetic pigment content varied only slightly, while the photosynthetic capacity of the cells declined. At intermediate light levels (3000 to 1500 W cm-2), photosynthesis, not growth, was light-limited, and photoadaptive strategies were induced which enhance absorption capabilities and energy transfer efficiencies of chlorophyll a to the reaction centers of G. polyedra. Photosynthetic capacity remained constant at about 280 mol O2 cm-3 h-1, while photosynthetic performance ranged from 100 to 130 mol O2 cm-3 h-1. Major increases in photosynthetic pigments, especially peridinin-chlorophyll a-proteins and an unidentified chlorophyll c component, accompanied photoadaptation to low irradiances. Maximal growth rates of 0.3 divisions day-1 were maintained, as were respiration rates of about-80 mol O2 cm-3 h-1 and cell volumes of about 5.4×10-8 cm-3 cell-1. Below about 1250 W cm-2, photosynthesis in G. polyedra was so light-limited that photosynthetic performance was unable to support maximal growth rates. Under these conditions, G. polyedra displayed photostress responses rather than photoadaptive strategies. Photostress was manifested as reduced cell volumes, slower growth, and drastic reductions in pigmentation, photosynthetic capacity, and rates of dark respiration.  相似文献   

4.
Sea anemones (Aiptasia pulchella) containing zooxanthellae (Symbiodinium microadriaticum) were maintained in a long-term laboratory culture on a 12 h light (100 E m-2 s-1):12 h dark cycle. Photosynthetic oxygen production was measured for the symbiotic association and for freshlyisolated zooxanthellae. Light utilization efficiencies () were similar for both sets of zooxanthellae, suggesting negligible shading of zooxanthellae by animal tissue in this association. Whereas freshly-isolated zooxanthellae were photoinhibited at high irradiances (800 to 1 800 E m-2 s-1), zooxanthellae in the host continued to function at photosynthetic capacity. Time of day may influence photosynthetic measurements in symbiotic organisms, as it was found that photosynthesis in A. pulchella followed a diel periodicity at both light-saturating (1 200 E m-2 s-1) and subsaturating (150 E m-2 s-1) irradiances. There was a peak period of photosynthesis between 12.00 and 14.00 hrs. Light stimulated dark respiration rates of A. pulchella. Dark respiration of sea anemones increased somewhat towards the end of the light cycle and was always greater after exposure to high irradiances.  相似文献   

5.
Monthly variation in photosynthesis, dark respiration, chlorophyll a content and carbon: nitrogen (C:N) ratios in different lamina sections of adult plants of Ascoseira mirabilis Skottsberg from King George Island, Antarctica, was investigated between September 1993 and February 1994. Light saturated net photosynthesis (P max) showed maximum values in September (12 to 25 mol O2 g-1 fr wt h-1), and decreased towards the summer to values ranging between 2.0 and 5.0 mol O2 g-1. In the distal section, however, a second optimum occurred in December (25 mol O2 g-1 fr wt h-1). Dark respiration rates were also highest in October and November and decreased strongly in December to February (6.0 and 1.0 mol O2 g-1 fr wt h-1, respectively). Gross photosynthesis exhibited high values between September and December. Concomitant with the seasonal decrease of photosynthetic efficiency () from mean values of 1.2 mol O2 g-1 fr wt h-1 (mol photons cm-2 s-1)-1 in September to 0.3 mol O2 g-1 fr wt h-1 (mol photons cm-2 s-1)-1 in January, the initial light saturating point (I k) gradually increased from 19 to 60 mol photons m-2 s-1. Likewise C:N ratios were low in spring (12 to 13) and increased in summer (20). In general, the photosynthetic parameters P max, gross photosynthesis, and Chl a concentrations were significantly higher in the distal section of the thallus. In contrast, C:N ratios were lower in the distal section of the lamina. The results show that photosynthesis obviously strongly supports growth of the alga in late winter to spring, as it does in some morphologically related brown algae from temperate and polar regions. The question whether growth is additionally powered  相似文献   

6.
Amino acid uptake and respiration by marine heterotrophs   总被引:5,自引:0,他引:5  
The concentration and turnover of dissolved free amino acids were measured in samples from 25 and 100 m on three occasions at a station 6 miles off the California (USA) coast. Individual amino acid concentrations varied from undetectable (<0.05 g/l) to 3 g/l, the total amino acid concentration from 1.8 to 8.5 g/l. The greater concentration of total amino acids was always found at 25 m. The predominant amino acids were serine, lysine, aspartate, glutamate and alanine; reliable analyses could not be made for glycine because of a high blank. For the 10 individual amino acids studied, the rate of heterotrophic turnover ranged from undetectable to 1.2 g/l day-1; serine, aspartate, alanine and glutamate showed the highest rates. In samples from 25 m, the rates were 15 to 20 times higher than those taken from 100 m. The total calculated flux of the amino acids studied varied from 0.015 to 3.2 g/l day-1 and amounted to 1–10% of photosynthetic carbon dioxide fixation.  相似文献   

7.
Measurements of respiration and excretion at 25°C were made for five species of ctenophores collected during five cruises to the Bahamas (1982–1984). The mean element-specific respiration and ammonium excretion rates of freshly collected specimens of all species ranged from 4 to 16% d-1, the mean atomic O:N ratios were 10 to 16, and ammonium averaged 60 to 90% of the total dissolved nitrogen excreted. For adult ctenophores, the carbon content ranged from 0.6% carbon (as percent of dry weight) for Bolinopsis vitrea to 3.7% carbon for Beroë ovata. There was a marked increase in the organic content (% carbon of dry weight) of small Bolinopsis vitrea with tentacles compared to fully lobate adults. B. vitrea had increasingly higher metabolic rates when held at food concentrations up to 100 copepods 1-1 (about 250 g C 1-1). The overall range between starved and well-fed B. vitrea was about two times for respiration and a factor of three for ammonium excretion. B. vitrea decreased from well-fed to a starved metabolic rate in about a day after removal from food. The metabolic rate of Eurhamphaea vexilligera was not measurably affected by short-term starvation or feeding (maximum 25 copepods 1-1). In feeding experiments, E. vexilligera of 20 to 56 mm length fed at rates equivalent to clearance rates of 250 to 1 800 ml h-1.  相似文献   

8.
Photoadaption in marine phytoplankton: Response of the photosynthetic unit   总被引:3,自引:0,他引:3  
Some species of phytoplankton adapt to low light intensities by increasing the size of the photosynthetic unit (PSU), which is the ratio of light-harvesting pigments to P700 (reaction-center chlorophyll of Photosystem I). PSU size was determined for 7 species of marine phytoplankton grown at 2 light intensities: high (300 E m-2 s-1) and low (4 E m-2 s-1); PSU size was also determined for 3 species grown at only high light intensity. PSU size varied among species grown at high light from 380 for Dunaliella euchlora to 915 for Chaetoceros danicus. For most species grown at low light intensity, PSU size increased, while the percentage increase varied among species from 13 to 130%. No change in PSU size was observed for D. euchlora. Photosynthetic efficiency per chlorophyll a (determined from the initial slope of a curve relating photosynthetic rate to light intensity) varied inversely with PSU size. In contrast, photosynthetic efficiency per P700 was enhanced at larger PSU sizes. Therefore, phytoplankton species with intrinsically large PSU sizes probably respond more readily to the rapid fluctuations in light intensity that such organisms experience in the mixed layer.Contribution No. 1180 from the Department of Oceanography, University of Washington, Seattle, Washington, USA  相似文献   

9.
The Macrocystis pyrifera (L.) C. Ag. frond is here described in terms of chlorophyll a, fucoxanthin, chlorophyll c and photosynthetic rate. Pigment concentrations increased back from the apical meristem reaching a maximum after 2 to 3 m. Pigment concentrations were then generally constant throughout most of the length of the frond, finally decreasing again in the oldest parts of the frond with the exception of the sporophylls. Pigment ratios remained relatively constant throughout. Maximum net photosynthetic rates on a given frond showed a decrease with tissue age on both an area basis (1040 down to 463 nmol O2 cm-2 h-1) and on a chlorophyll a basis, which was shown as half-saturation constants (quantum irradiance) which dropped on an area basis from 85 mol m-2 sec-1 at 4.5 m above the holdfast to 26 mol m-2 sec-1 at 15.5 m. Young sporophytes transplanted from the sea floor to the surface (12 m) tended to decrease pigment content, while those transplanted to the bottom tended to increase all pigments, but especially fucoxanthin. Photosynthetic rates, however, changed little on a unit area basis. The results of these data are considered in the light of recent work on photosynthetic units, tissue age effects and general adaptations of the M. pyrifera frond to its light environment.  相似文献   

10.
G. Schneider 《Marine Biology》1989,100(4):507-514
The population dynamics, ammonia and inorganic phosphate excretion, and nutrient regeneration of the common jellyfish Aurelia aurita was investigated from 1982 to 1984 in the Kiel Bight, western Baltic Sea. During summer 1982, medusae abundance ranged between 14 and 23 individuals 100 m-3, biomass was estimated at about 5 g C 100 m-3 and the mean final diameter of individuals was 22 cm. Abundance, based on numbers, in 1983 and 1984 was an order of magnitude lower; biomass was less than 2 g C 100 m-3 and jellyfish grew to 30 cm. During the summers of 1983 and 1984, A. aurita biomass constituted roughly 40% of that of the total zooplankton>200 m. In 1982, for which zooplankton data were lacking, it was assumed that medusae biomass was greater than that of all other zooplankton groups. Total ammonia excretion ranged between 6.5 and 36 mol h-1 individual-1, whereas inorganic phosphate release was 1.4 to 5.7 mol h-1 individual-1. Allometric equations were calculated and exponents of 0.93 for NH4–N release and 0.87 for PO4–P excretion were determined. Nitrogen and phosphorus turnover rates were 5.4 and 14.6% d-1, respectively. In 1982, the medusae population released 1 100 mol NH4–N m-2 d-1, about 11% of the nitrogen requirements of the phytoplankton. The inorganic phosphate excretion (150 mol m-2 d-1) sustained 23% of the nutrient demands of the primary producers. In the other two years the nutrient cycling of the medusae was much less important, and satisfied only 3 to 6% of the nutrient demands. It is suggested that in some years A. aurita is the second most important source of regenerated nutrients in Kiel Bight, next to sediment.  相似文献   

11.
Colonies of the temperate coral Astrangia danae occur naturally with and without zooxanthellae. Basal nitrogen excretion rates of nonsymbiotic colonies increased with increasing feeding frequency [average excretion rate was 635 ng-at N (mg-at tissue-N)-1 h-1]. Reduced excretion rates of symbiotic colonies were attributed to N uptake by the zooxanthellae. Nitrogen uptake rates of the zooxanthellae averaged 8 ng-at N (106 cells)-1 h-1 in the dark and 21 ng-at N (106 cells)-1 h-1 at 200 Ein m-2 s-1. At these rates the zooxanthellae could provide 54% of the daily basal N requirement of the coral if all of the recycled N was translocated. Basal respiration rates were 172 nmol O2 cm-2 h-1 for starved colonies and 447 nmol O2 cm-2 h-1 for colonies fed three times per week. There were no significant differences between respiration rates of symbiotic and nonsymbiotic colonies. N excretion and respiration rates of fed (symbiotic and nonsymbiotic) colonies increased greatly soon after feeding. N absorption efficiencies decreased with increasing feeding frequency. A N mass balance, constructed for hypothetical situations of nonsymbiotic and symbiotic (3×106 zooxanthellae cm-2) colonies, starved and fed 15 g-at N cm-2wk-1, showed that the presence of symbionts could double the N growth rate of feeding colonies, and reduce the turnover-time of starved ones, but could not provide all of the N requirements of starved colonies. Rates of secondary production, estimated from rates of photosynthesis and respiration were similar to those estimated for reef corals.  相似文献   

12.
A continuously recording, flow-through oxygen electrode system for the measurement of oxygen exchange is described and applied to an investigation of photosynthetic rates in the marine algae Fucus vesiculosus L. and Laminaria digitata (Huds.) Lam. The photosynthetic rate (mg O2.g dry weight-1.h-1) at 15°C and 21.5 mW.cm-2 (usually just saturating) ranges in F. vesiculosus from 1.20 in basal portions of the thallus to 9.27 at the apices and in L. digitata from 1.19 mg O2 at the thallus base to 3.97 mg O2 at distances of several centimetres behind the upper thallus margin. This variation is reduced when the photosynthetic rate is expressed in terms of fresh weight or surface area.This research was carried out while one of us (R.J.K.) was an Alexander von Humboldt fellow at the University of Kiel, and is part of the programme Sonderforschungsbereich 95, Wechselwirkung Meer-Meeresboden, Universität Kiel.  相似文献   

13.
Nitrogen regeneration by two surf zone mysids,Mesopodopsis slabberi andGastrosaccus psammodytes, was determined under laboratory conditions. The mysids were collected from the lower Sundays River estuary, South Africa, from early spring 1984 to late summer 1985. The forms of nitrogen excreted and the effects of mass, temperature and feeding on excretion rate were determined for each species at three experimental temperatures. Comparison of the forms of nitrogen excreted revealed only slight differences between species, with ammonia the major form and urea and amino acids the secondary excretory products in both cases. Mass significantly influenced the rate of ammonia excretion at all experimental temperatures, with no significant difference in slope (common b=0.602) detected between species. During the day sediment deprivation resulted in a 15% and 20% increase in mean ammonia excretion rates of juvenile and adultG. psammodytes respectively, whereas no significant differences were found at night. The mean ammonia excretion rates of fedM. slabberi andG. psammodytes were 2 and 2.5 times higher than starved excretion rates, respectively.G. psammodytes andM. slabberi recycle 139 to 150 g N per running meter of surf zone per year and 1 007 to 1 208 g N m-1 yr-1, respectively. Togehter this constitutes 10% of total phytoplankton nitrogen requirements in the surf zone.  相似文献   

14.
The estuarine macroalga Enteromorpha prolifera was collected from Coos Bay, Oregon, USA during 1981, and its release of photosynthate as dissolved organic carbon (DOC) was studied using 14C as a tracer. During photosynthesis in 30 S sea water, with a fixation rate averaging 7.37 mg C g-1 dry wt h-1, release ranged from 0.13 to 0.57 mg C g-1 dry wt h-1 and from 1.65 to 6.23% of total fixed carbon. Release of DOC appears to be linear with time over 3 h. As exposed algae become increasingly desiccated, their photosynthetic rates decline dramatically, but upon reimmersion the highly desiccated algae lose a larger fraction of their fixed carbon than the slightly desiccated algae. This loss comes in a pulse release of DOC over the initial 15 min, followed by declining release rates. The pulse loss due to rainfall is 5 times greater than that due to tidal resubmergence, and may briefly exceed the prior photosynthetic rate. Although lowering the salinity from 30 to 5 does not substantially alter photosynthetic rates, it does increase the DOC release range up to 1.02 mg C g-1 dry wt h-1 and 16.10% of fixed carbon. Heterotrophic microbes from the algal habitat readily use the available DOC at about 15% h-1.  相似文献   

15.
Patterns of phytoplankton carbon (C) metabolism were examined in å combined laboratory and field study to assess the influence of light conditions on 14C assimilation into photosynthetic end-products. Laboratory studies with three species representing distinct size classes and taxonomic groups tested the influence of low light on patterns of C flow. Prorocentrum mariae-lebouriae (dinoflagellate) and Ditylum brightwellii (diatom) showed decreased movement of photoassimilated 14C into protein following a shift to low light 14C assimilation into lipids and photosynthetic pigments increased in low light and was paralleled by increased chl a per cell. The proportion of 14C fixed into protein returned to the pre-shift level upon return to initial light conditions. Monochrysis lutheri (chrysophyte) did not show this pattern of reduced % 14C protein. Incubations of 12 and 24 h demonstrated significant rearrangements in labeling patterns at night, wherein 14C flow into protein in darkness was favored. % 14C protein at night was lower for M. lutheri than for the other species, suggesting some interspecific differences in the low light response. Measurements of 14C assimilation in phytoplankton assemblages from Chesapeake Bay demonstrated movement of a higher proportion of photo-assimilated C into protein in samples collected in the surface mixed layer than in those below the pycnocline. In comparison, phytoplankton collected below the pycnocline fixed a higher proportion of 14C into lipids, photosynthetic pigments, and low molecular weight metabolites, as was observed in low light laboratory cultures. A comparison of 12- and 24-h incubations for measuring patterns of C flow into photosynthetic end-products confirmed the inadequacy of short-term measurements, as significant changes in 14C allocation occurred in the dark phase of the photocycle. Together, these results suggest that 14C assimilation into photosynthetic end-products can be a useful measure of adaptive state in changing light conditions, but point out some difficulties in applying this approach in situ.  相似文献   

16.
The resting rate of ammonia excretion for the sediment living bivalve Nucula tenuis (Montagu) was found to be 38.8 gN mg-1 dw h-1×10-4 in August and November 1985 in the Oslofjord. The excretion rate of experimental individuals was 37% higher when placed in artificial glass bead sediment. The regression between dry weight and excretion was logN excretion=1.338+1.192 log x, where excretion is gN individual-1 h-1×10-4 and log x=mg dry weight.  相似文献   

17.
The pattern of growth (biomass accumulation) in Ecklonia radiata throughout the year and across a depth profile was investigated using the traditional hole-punch method, and the information presented in context with concurrently measured in situ net productivity rates. The rate of net daily productivity showed a lack of consistent seasonal variability, remaining constant throughout the year at two of the four depths measured (3 m and 12 m), and becoming higher during winter at another (5 m). Throughout the year, rates of net daily productivity differed significantly across the depth profile. Net daily productivity rates averaged 0.017 g C g–1 dwt day–1 and 0.005 g C g–1 dwt day–1 at a depth of 3 m (1,394 mol O2 g–1 dwt day–1) and 10 m (382 mol O2 g–1 dwt day–1) respectively. In contrast, the biomass accumulation rate of E. radiata was highly seasonal, with low rates of growth occurring in autumn (0.002 g dwt g–1 dwt day–1 at both 3 and 10 m) and summer (0.007 and 0.004 g dwt g–1 dwt day–1 at 3 and 10 m respectively) and higher rates in spring (0.016 and 0.007 g dwt g–1 dwt day–1 at 3 and 10 m respectively) and winter (0.015 and 0.008 g dwt g–1 dwt day–1 at 3 and 10 m respectively). The proportion of assimilated carbon used for biomass accumulation varied throughout the year, between 5% and 41% at 3 m and between 28% and 128% at 10 m. The rates of biomass accumulation at all depths represented only a small proportion of the amount of carbon assimilated annually.Communicated by P.W. Sammarco, Chauvin  相似文献   

18.
Rates of oxygen consumption, ammonia excretion and phosphate excretion were measured on a hydromedusae (Aglantha digitale), pteropods (Limacia helicina, Clione limacina), copepods (Calanus finmarchicus, C. glacialis, C. hyperboreus, Metridia longa), an amphipod (Parathemisto libellula), a euphausiid (Thysanoessa inermis) and a chaetognath (Sagitta elegans), all of which were dominant species in the Barents Sea during early summer 1987. Water and ash contents and elemental composition (C and N) were also analysed on the specimens used in these metabolic experiments. Between species variations were 67.8% to 94.7% of wet weight in water content, 6.4% to 56.5% of dry weight in ash content, 16.7% to 61.0% of dry weight in carbon content, and 4.3% to 11.2% of dry weight in nitrogen content. Oxygen consumption rates ranged from 0.33 to 13.8 l O2 individual-1 h-1, ammonia excretion rates, from 0.0072 to 0.885 gN individual-1 h-1 and phosphate excretion rates, from 0.0036 to 0.33 g P individual-1 h-1. In general, higher rates were associated with larger species, but considerable differences were also seen between species. The ratios between the rates (O : N, N : P, O : P) exhibited a wide species-specific variation, indicating differences in dominant metabolic substrates. Typical protein oriented metabolism was identified only in S. elegans. From the results of metabolic rate measurements and elemental analyses, daily losses of body carbon and nitrogen were estimated to be 0.50 to 4.15% and 0.084 to 1.87%, respectively, showing faster turnover rates of carbon than that of nitrogen. Comparison of daily loss of body carbon of the Barents Sea zooplankton with that of the Antarctic zooplankton indicated reduced rates of the former (63% on average).  相似文献   

19.
Harland  A. D.  Davies  P. S. 《Marine Biology》1995,123(4):715-722
Dark respiration of the symbiotic sea anemone Anemonia viridis (Forskäl) was observed to increase by 34% when anemones were exposed to hyperoxic sea water (150% oxygen saturation) overnight, and by 39% after exposure to 6 h in the light at a saturating irradiance of 300 E m-2 s-1 at normoxia (100% oxygen saturation). No increase due to light stimulation was observed in aposymbiotic control anemones. In darkness, the oxygen concentration of the coelenteric fluid was hypoxic. However, within 10 min of anemones being illuminated, coelenteric fluid was hyperoxic, and it remained elevated throughout a 12 h light period. When measured over a 24 h period (12 h light: 12 h dark), the dark respiration rate increased gradually over the first 6 h of the light period until it was 35% above the dark night-time resting rate. It remained elevated throughout the remaining light period and for 2 h into the following dark period, after which it fell back to the resting rate. Gross photosynthesis (P gross) increased significantly when anemones were exposed to either hyperoxia (150% oxygen saturation) or 300 E m-2 s-1 at normoxia. This increase was not observed when symbiotic anemones were illuminated at a low-light intensity of 100 E m-2 s-1. The results of this study suggest that respiration in the dark is limited by oxygen diffusion and that normal respiration is restored in the daytime by utilisation of the oxygen released by photosynthesis. Furthermore, it appears that the increased respiration following exposure to high-light intensities provides a CO2-rich intracellular environment which further enhances the photosynthetic rate of the zooxanthellae.  相似文献   

20.
Individuals of the midwater ctenophore Bathocyroe fosteri (0.01 to 1.6 g dry weight, DW) were collected from Bahamian waters by the submersible Johnson-Sea-Link during May and September/October 1983 and October/November 1984 from 530 to 700 m depth. Metabolic rates were measured and showed oxygen consumption to be in the range of 0.01 to 0.18 mg O2 g-1 DW h-1 at temperatures ranging from 9° to 12°C. Ammonium excretion (0.01 to 0.14 g-at N g-1 DW h-1) was typically low. Energy expenditures estimated from respiration data (ca. 7% body C d-1) indicated that one to three midwater crustacean prey (ca. 150 g C d-1) could provide the daily maintenance ration required by a 40 mm ctenophore. These metabolic characteristics complemented in situ observations of poor locomotor ability and passive feeding behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号