首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impact of sulphur dioxide, in two different concentrations (286 microg m(-3) and 571 microg m(-3)) for various exposure periods, on conidial germination of some powdery mildew fungi was investigated in artificial treatment conditions. SO(2) in general was inhibitory for conidial germination of all the studied powdery mildew fungi and the species did not differ much from each other in their sensitivity to SO(2). The per cent conidial germination was increasingly inhibited with an increase in the concentration of SO(2). The concentration of SO(2) and the exposure period were important determinants of the inhibitory effect.  相似文献   

2.
The effects of joint action of SO(2) and HF on three Eucalyptus species were studied by exposing them to combinations of < 13, 122 or 271 microg m(-3) of SO(2) and 0.03, 0.39 or 1.05 microg m(-3) of HF in open top chambers for 120 days. HF and SO(2) reduced the area and weight of immature leaves in all three species, but there were few interactive effects on immature leaves. The response of mature leaves to exposure differed among the species, with the greatest effects on E. calophylla and least effects on E. marginata. The interaction of HF + SO2 had no effect on leaf S concentrations in any of the species, but it reduced leaf F concentrations in E. calophylla and E. gomphocephala. HF increased leaf injury in E. calophylla and E. gomphocephala when simultaneously exposed to 271 microg m(-3) of SO(2), but had no effect at 122 microg m(-3), or on E. marginata. The addition of 271 microg m(-3) of SO(2) increased leaf injury when E. gomphocephala was exposed to 0.39 microg m(-3) of HF and when E. calophylla was exposed to 1.05 microg m(-3) of HF, despite reducing the leaf F concentrations. In some cases the interaction of the pollutants may increase susceptibility to visible injury.  相似文献   

3.
The effects of SO(2) on species exhibiting Crassulacean Acid Metabolism (CAM) were determined with short term-high concentration 'acute' greenhouse exposures (0.6 to 3.0 microl liter(-1) (ppm) SO(2) for 2 and 8 h), and long term-low concentration 'chronic' field exposures (0.35 to 0.90 microl liter(-1) SO(2) for 32 to 79 h periodically over 7 to 13 days). In the acute greenhouse exposures, visible injury was observed on Opuntia basilaris Engelm. & Bigel., exposed to 2.0 microl liter(-1) SO(2), but no injury was observed on Ananas comosus (L.) Merr., Bryophyllum blossfeldiana Poelln., Bryophyllum pinnata (Lam.) Pers., or Bryophyllum tubiflora (Harv.) Hamet, exposed to up to 2.8 microl liter(-1) SO(2) for 8 h. Stomatal conductance during the exposures averaged 0.067+/-0.021mol(-2)s(-1) for Opuntia basilaris, 0.029+/-0.008mol(-2)s(-1) for Ananas comosus, and 0.029+/-0.008mol m(-2)s(-1) for Bryophyllum pinnata. Opuntia basilaris was injured early during the day, but not at night; with the injury appearing as a white necrotic banding across just fully expanded pads. Moderately injured pads would regreen beginning 1 to 2 weeks after exposure. In chronic field exposures, no visible injury from SO(2) was observed on Opuntia basilaris, Dudleya arizonica Rose or Agave deserti Engelm. plants, grown either with supplemental irrigation or natural rainfall. In addition, in the field SO(2) had no effect on CO(2) uptake, total sulfur content, transpiration, or tissue acidity in either the light or the dark, or in irrigated vs natural rainfall plots.  相似文献   

4.
Plants of rice (Oryza sativa) and white bean (Phaseolus vulgaris) were exposed to 524 microg m(-3) SO2, 392 microg m(-3) O3 and a mixture of both gases, i.e. 524 microg m(-3) SO2 and 392 microg m(-3) O3 to determine the visible foliar injury and leaf diffusive resistance. Response of leaf diffusive resistance was measured on upper and lower surfaces of leaves, i.e. the two unifoliate leaves of bean and the first, second and third primary leaves of rice. The difference in the response may be due to sensitive guard cells causing stomatal closure in the presence of O3, whilst a low concentration of SO2 caused the stomata to open. Thus, SO2 alone is known to decrease, and O3 tends to increase leaf diffusive resistance. However, exposure to both gases increases or decreases the resistance, depending on the species response.  相似文献   

5.
Aseptically grown spruce seedlings were cultivated in a hydroponic system, where the roots were separated from the shoots by a gastight, silicone material. The plants were fumigated with four SO(2) concentrations (93, 190, 270 and 530 microg m(-3)) for nine weeks. Up to 270 microg m(-3) of SO(2), an inhibition of nitrogen metabolism (enzyme activities of nitrate reductase (NR) and glutamine sythetase (GS) and nitrate content) in the shoot was compensated by a stimulation in the root, while nitrogen uptake was unaffected. Only the treatment with 530 microg m(-3) of SO(3) decreased enzyme activities, nitrate content in both roots and shoots as well as nitrate uptake, and inhibited the growth of plants. Increases in the content of thiols and superoxidismutase activity are discussed in terms of SO(2) detoxification.  相似文献   

6.
Saskatoon serviceberry or Saskatoon (Amelanchier alnifolia Nutt. cv. Smoky) seedlings were planted at five study sites within a 35,000 km(2) airshed, that is influenced by a number of isolated stationary sources of sulfur dioxide (SO(2)), oxides of nitrogen and hydrocarbons, among others. The locations of the five sites were based on the results of a meteorological dry deposition model for the oxides of sulfur and nitrogen. Visible foliar injury responses of Saskatoon were used as a biological indicator of SO(2) exposures, through monthly field surveys. During late July 1998, unifacial, interveinal chlorosis was observed on some 12% of the seedlings at one study site. By September, the chlorosis had become more severe (necrosis) on some 70% of the plants at that site. Site specific ambient SO(2) levels were relatively low (maximum 5-min concentration of 52.8 ppb). Similar data were unavailable for all, but one other site. Therefore, foliar total S and SO(4)(2-)-S concentrations were analyzed in September at four of the five study sites. Previously soil SO(4)(2-)-S at these sites had been analyzed. There were spatial variabilities among these parameters. Based on the overall examination of these data, it is concluded that the observed visible injury symptoms were due to chronic SO(2) exposures, exacerbated by the presence of ozone (O(3)). Independent of this literature based speculation, visible foliar injury responses of Saskatoon can be used as a biological indicator for acute or chronic ambient SO(2) exposures, in the presence of other phytotoxic air pollutants.  相似文献   

7.
The effects of a mixture of SO(2) and NO(2) at a concentration of 0.08 to 0.10 ppm (in microg m(-3): 164-205 for NO(2); 229-286 for SO(2)) were tested for four weeks on two old varieties of winter wheat, Little Joss and Holdfast, introduced in 1908 and 1938, respectively, grown in simulated autumn conditions. After two weeks, root dry weights of both varieties were significantly decreased but, although there was some leaf necrosis, shoot dry weights were unaltered. After a further two weeks, the dry weights of the shoots as well as the roots were significantly decreased. These effects, amounting to a combined 40% decrease in total dry weight, were greater than those in identical experiments carried out with the present day variety Avalon, in which the decrease was 20%. The results suggest that the modern cultivar Avalon is more tolerant of SO(2) and NO(2) than Little Joss and Holdfast, which were grown many years ago.  相似文献   

8.
Potted plants of commercial cultivars of rape (Brassica napus L., cv. 'callypso'), summer barley (Hordeum vulgare L., cvs. 'arena' and 'hockey') and bush beans (Phaseolus vulgaris L., cvs. 'rintintin' and 'rosisty') were continuously exposed in open-top chambers to sulphur dioxide (SO(2)) for the whole growing season in order to assess effects of this pollutant on growth and various yield parameters. Treatments consisted of charcoal-filtered air (CF) and CF supplemented with four levels of SO(2), resulting in mean exposure concentrations (microg m(-3)) of approximately 8, 50, 90, 140 and 190. With the exception of the 1000 seeds weight, which was slightly reduced, dry matter production and yield parameters of rape remained unaffected by all SO(2) concentrations or were even stimulated. Compared to CF vegetative growth of both bean cultivars was reduced by 10-26% at all SO(2) levels; however, with significant effects only for cv. 'rintintin'. While all SO(2) additions reduced significantly the yield (dry weight of pods) of the bean cultivar 'rosisty' between 17% and 32%, cv. 'rintintin' showed a significant reduction of up to 42% only at the two highest pollutant concentrations. Dry matter production of the barley cultivars was mainly impaired at SO(2) concentrations > 100 microg m(-3) with a reduction of 30-52%. While nearly all yield parameters of cv. 'hockey' reacted similar to the dry matter production, the yield of cv. 'arena' was reduced already at the low SO(2) levels. At a treatment concentration of 90 microg SO(2) m(-3) a significant yield loss of 30% was recorded. A reduction of the 1000 grains weight mainly contributed to these yield losses observed for both barley cultivars. From these results, it may be assumed that SO(2) concentrations within the range 50-90 microg m(-3) are potentially phytotoxic to some crop species.  相似文献   

9.
Four non-filtered and four charcoal-filtered open-top chambers were employed to determine the effects of ambient levels of gaseous air pollutants at Braunschweig, FRG, on growth and yield of potted plants of winter and spring barley. During the exposure period (November 1985-August 1986) monthly mean values of gaseous air pollutants (microg m(-3)) ranged between 34 and 127 for SO(2), 34 and 52 for NO(2) and 12 and 33 for O(3) in winter (November-March), and 16 to 26 for SO(2), 20 to 33 for NO(2) and 42 to 53 for O(3) in spring-summer (April-August). Monthly 2% percentile values for these gases reached (microg m (-3)) 561 for SO(2), 140 for NO(2) and 170 for O(3). The filtering efficiencies of the charcoal filters used averaged 60% for SO(2), 50% for NO(2) and 70% for O(3). All plants of winter barley from the unchambered plot were killed by severe frost periods in winter, 1986. Little frost damage occurred on plants grown in the chambers. Air filtration resulted in higher numbers of plants of winter barley per pot, i.e. a higher number of individuals per area, and a higher dry weight of whole plants and ears compared to the non-filtered atmosphere. In the experiments with spring barley, fresh and dry weight of whole plants were lower and dry weight of leaves were higher in the filtered open-top chambers. These effects could not be observed at all harvests which were carried out during the growing season. Grain yield and sulphur content of the leaves of both barley cultivars were not affected by the air filtration. Production of biomass of spring barley grown in ambient air was higher than of that grown in open-top chambers.  相似文献   

10.
This paper introduces a series of publications referring to a single 14-month laboratory study testing the hypothesis that the recent decline of Norway spruce (Picea abies (L.) Karst.) at higher elevations of the Bavarian Forest and comparable forests in medium-range mountains and in the calcareous Alps is caused by an interaction of elevated ozone concentrations, acid mist and site-specific soil (nutritional) characteristics. The effect of climatic extremes, a further important factor, was not included as an experimental variable but was considered by testing of the frost resistance of the experimental plants. Results of these individual studies are presented and discussed in the following 14 papers. Plants from six pre-selected clones of 3-year-old Norway spruce (Picea abies (L.) Karst.) were planted in April 1985 in an acidic soil from the Bavarian Forest, or a calcareous soil from the Bavarian Alps. After a transition period, plants were transferred, in July 1986, into four large environmental chambers and exposed for 14 months to an artificial climate and air pollutant regime based on long-term monitoring in the Inner Bavarian Forest. The climatic exposure protocol followed realistic seasonal and diurnal cycles (summer maximum temperature, 26 degrees C; total mean temperature, 9.8 degrees C; winter minimum, -14 degrees C; mean relative humidity, 70%; maximum irradiance, 500 W m(-2); daylength summer maximum, 17 h; winter minimum, 8 h). Plants were fumigated with ozone, generated from pure oxygen (control: annual mean of 50 microg m(-3); pollution treatment: annual mean of 100 microg m(-3) with 68 episodes of 130-360 microg m(-3) lasting 4-24 h), and background concentrations of SO(2) (22 microg m(-3)) and NO(2) (20 microg m(-3)); windspeed was set at a constant 0.6 m s(-1). Plants were additionally exposed to prolonged episodes of misting at pH 5.6 (control) and pH 3.0 (treatment). Simulation of the target climatic and fumigation conditions was highly reliable and reproducible (temperature +/-0.5 degrees C; rh+/-10%; ozone+/-10 microg m(-3);SO(2) and NO(2)+/-15 microg m(-3)).  相似文献   

11.
During three consecutive seasons (1987-1989), the effects of low-levels of O3, SO2 and NO2 singly and in all possible combinations (NO2 in 1988 and 1989 only) on growth and yield of potted plants of spring rape (Brassica napus L. var. napus, 'callypso') were investigated by means of factorial fumigation experiments in open-top chambers. Plants were exposed from the early vegetative stage of development until seed harvest, to charcoal-filtered air (CF; control) and CF which was supplemented for 8-h per day (8.00-16.00) with O3, for 16-h per day with NO2 (16.00-8.00) and continuously with SO2. Including the controls, the 24-h daily mean concentrations [microg m(-3)] ranged between 6-44 (O3), 9-88 (SO2) and 10-43 (NO2). The corresponding daily mean concentrations during the time of fumigation were 10-121 and 11-60 microg m(-3) for O3 and NO2, respectively. Single effects of O3 on growth and yield parameters were mostly negative and the magnitude of this effect was dependent on the season. O3 reduced plant dry weight by 11.3-18.6% and yield of seeds by 11.4-26.9%. While medium levels of SO2 stimulated the weight of pods up to 33%, higher concentrations (88 microg m(-3)) caused a decline of yield of 12.3%. From the significant interactive effects which were observed, it could be established that SO2 and NO2 alone mostly acted positively, but that their interaction with each other and especially with O3 was antagonistic, as some of the detrimental effects of O3 were mitigated by these pollutants. An important antagonistic effect between SO2 and O3 or NO2 was observed on yield. While 56 microg m(-3) SO2 increased yield by 9.9% compared to the control treatment, it aggravated the yield loss caused by O3 from -16.18% to -21.4%, and it reduced the yield stimulation caused by NO2 from +11.8% to +4.2%. Leaf area was the only parameter which was negatively affected by all pollutants, their joint action being synergistic.  相似文献   

12.
A three-dimensional chemical transport model (PMCAMx) was used to investigate changes in fine particle (PM2.5) concentrations in response to changes in sulfur dioxide (SO2) and ammonia (NH3) emissions during July 2001 and January 2002 in the eastern United States. A uniform 50% reduction in SO2 emissions was predicted to produce an average decrease of PM2.5 concentrations by 26% during July but only 6% during January. A 50% reduction of NH3 emissions leads to an average 4 and 9% decrease in PM2.5 in July and January, respectively. During the summer, the highest concentration of sulfate is in South Indiana (12.8 microg x m(-3)), and the 50% reduction of SO2 emissions results in a 5.7 microg x m(-3) (44%) sulfate decrease over this area. During winter, the SO2 emissions reduction results in a 1.5 microg x m(-3) (29%) decrease of the peak sulfate levels (5.2 microg x m(-3)) over Southeast Georgia. The maximum nitrate and ammonium concentrations are predicted to be over the Midwest (1.9 (-3)g x m(-3) in Ohio and 5.3 microg x m(-3) in South Indiana, respectively) in the summer whereas in the winter these concentrations are higher over the Northeast (3 microg x m(-3) of nitrate in Connecticut and 2.7 microg x m(-3) of ammonium in New York). The 50% NH3 emissions reduction is more effective for controlling nitrate, compared with SO2 reductions, producing a 1.1 microg x m(-3) nitrate decrease over Ohio in July and a 1.2 microg x m(-3) decrease over Connecticut in January. Ammonium decreases significantly when either SO2 or NH3 emissions are decreased. However, the SO2 control strategy has better results in July when ammonium decreases, up to 2 microg x m(-3) (37%), are predicted in South Indiana. The NH3 control strategy has better results in January (ammonium decreases up to 0.4 microg x m(-3) in New York). The spatial and temporal characteristics of the effectiveness of these emission control strategies during the summer and winter seasons are discussed.  相似文献   

13.
An annular denuder system, which consisted of a cyclone separator; two diffusion denuders coated with sodium carbonate and citric acid, respectively; and a filter pack consisting of Teflon and nylon filters in series, was used to measure acid gases, ammonia (NH3), and fine particles in the atmosphere from April 1998 to March 1999 in eastern North Carolina (i.e., an NH3-rich environment). The sodium carbonate denuders yielded average acid gas concentrations of 0.23 microg/m3 hydrochloric acid (standard deviation [SD] +/- 0.2 microg/m3); 1.14 microg/m3 nitric acid (SD +/- 0.81 microg/m3), and 1.61 microg/m3 sulfuric acid (SD +/- 1.58 microg/m3). The citric acid denuders yielded an average concentration of 17.89 microg/m3 NH3 (SD +/- 15.03 microg/m3). The filters yielded average fine aerosol concentrations of 1.64 microg/m3 ammonium (NH4+; SD +/- 1.26 microg/m3); 0.26 microg/m3 chloride (SD +/- 0.69 microg/m3), 1.92 microg/m3 nitrate (SD +/- 1.09 microg/m3), and 3.18 microg/m3 sulfate (SO4(2-); SD +/- 3.12 microg/m3). From seasonal variation, the measured particulates (NH4+, SO4(2-), and nitrate) showed larger peak concentrations during summer, suggesting that the gas-to-particle conversion was efficient during summer. The aerosol fraction in this study area indicated the domination of ammonium sulfate particles because of the local abundance of NH3, and the long-range transport of SO4(2-) based on back trajectory analysis. Relative humidity effects on gas-to-particle conversion processes were analyzed by particulate NH4+ concentration originally formed from the neutralization processes with the secondary pollutants in the atmosphere.  相似文献   

14.
Solanum tuberosum L. cv Norchip plants were grown in open-top chambers in the summer of 1986. Plants were treated with charcoal-filtered air, nonfiltered air, or nonfiltered air supplemented with 33, 66, or 99% of the ambient ozone (O3) concentrations from 1000 to 2000 h eastern daylight time daily. In addition, plants received charcoal-filtered air plus 0, 0.15 (393 microg m(-3)), 0.34 (891 microg m(-3)), or 0.61 (1598 microg m(-3)) ppm sulfur dioxide (SO2) from 0900 to 1200 h once every 14 d for a total of four treatments. Ozone induced a linear reduction in number and weight of Grade One (> 6.35-cm diameter) potato tubers and in total weight of tubers. Ozone also induced linear reductions in the percentage of dry matter of tubers and linear decreases in glucose and fructose content of Grade One tubers. Sulfur dioxide induced a stimulation and then decline of the number, percentage of dry matter, and sucrose content of Grade One tubers. The SO2 response best fit a quadratic curve. No O3 x SO2 interactions were detected for any of the yield or quality functions measured.  相似文献   

15.
A chemical analysis of suspended particulate matter (SPM) collected near the world famous Taj Mahal monument at Agra has been carried out. SPM samples collected on glass fibre filters were analysed for water-soluble sulphate, nitrate, chloride and ammonium ions. The data were derived from over 200 samples (each of 24 h), collected continuously during the winter periods (October through to March) of 1984-1985 and 1985-1986. The SO(4)(2-) and NO(3)(-) components are acidic in nature causing corrosion and effects on visibility, and so were studied in more detail. Mean values for SO(4)(2-) and NO(3)(-) derived from two-year data are 7.2 microg m(-3) and 8.2 microg m(-3), respectively. The SO(4)(2-)/SO(2) and NO(3)(-)/NO(2) ratiosobserved indicate faster conversion of SO(2) to SO(4)(2-) than NO(2) to NO(3)(-), the maximum levels being in January. Thus, both SO(4)(2-) and NO(3)(-) results appear to offer more promising indices of air quality than do SPM data alone.  相似文献   

16.
Studies of the growth and water relations of the grass Phleum pratense L. (Timothy) were made after simultaneous exposure to SO(2) and NO(2) at concentrations ranging from 80 + 57.4 microg m(-3) to 240 + 172.2 microg m(-3) (SO(2) + NO(2)). Decreased partitioning to the roots was evident during exposure to the pollutants, but when the plants were returned to clean air restrictions in root growth did not persist. Shoot to root partitioning was, however, complicated by the additional factor of changes in the nutritional status of the soil after additional columns of fresh soil were attached to the original tubes. The rate of use of soil water was nevertheless substantially increased by the pollution treatment and after a period of 23 days in which water was withheld, a clear pollution x water stress interaction was seen. The ability of polluted leaves to conserve water under severe water stress was tested by excising the leaves and measuring their water loss over time. The results from this second experiment showed that conservation of water by the leaves was appreciably affected after exposure to 80 + 57.4 microg m(-3) or 133.3 + 95.6 microg m(-3) SO(2) + NO(2). It seems likely that damage to the cells in the epidermal layer, leading to malfunctioning of stomata, is mainly responsible for the reduced ability to conserve water under conditions of extreme stress.  相似文献   

17.
Air quality impacts of power plant emissions in Beijing   总被引:8,自引:0,他引:8  
The CALMET/CALPUFF modeling system was applied to estimate the air quality impacts of power plants in 2000 and 2008 in Beijing, and the intake fractions (IF) were calculated to see the public health risks posed. Results show that in 2000 the high emission contribution induced a relatively small contribution to average ambient concentration and a significant impact on the urban area (9.52 microg/m(3) of SO(2) and 5.29 microg/m(3) of NO(x)). The IF of SO(2), NO(x) and PM(10) are 7.4 x 10(-6), 7.4 x 10(-6) and 8.7 x 10(-5), respectively. Control measures such as fuel substitution, flue gas desulfurization, dust control improvement and flue gas denitration planned before 2008 will greatly mitigate the SO(2) and PM(10) pollution, especially alleviating the pressure on the urban area to reach the National Ambient Air Quality Standard (NAAQS). NO(x) pollution will be mitigated with 34% decrease in concentration but further controls are still needed.  相似文献   

18.
Exposure to moderate concentrations (90-500 microg SO(2) m(-3)) of SO(2) for 5-30 days caused a decrease in the photosynthetic rate. Only the lowest concentration (30 microg SO(2) m(-3)) increased photosynthesis. There was hardly any recovery in photosynthesis after the exposure. All exposure concentrations increased dark respiration. However, the lowest concentration had the smallest effect. Exposure to high concentration (2320 microg SO(2) m(-3)) of SO(2) for 5 h caused a strong decrease in the photosynthetic rate but there was a complete recovery within 2 weeks.  相似文献   

19.
A field survey was performed in eastern Finland, where measured ambient SO2 concentrations were 1.4-3.8 microg m(-3) a(-1) and bulk S deposition 0.17-0.32 g m(-2) a(-1) in 1991-1993. The accumulation of sulphur (S) in needles of Scots pine (Pinus sylvestris L.) was studied with XRF, IC and FESEM analyses and the needle damage examined under a light microscope and by SEM. Foliar N concentrations were also measured. Foliar total S concentrations were observed to be above the normal S level (500-700 microg g(-1)) over almost the whole area. Slight chlorosis and/or necrosis of the needle tips and stomatal areas, changes in the needle surface waxes and localization of S into needle tips and mesophyll cells around the stomata suggested the impact of S deposition, as did the calculations of St/Nt, and 'predicted' and 'excess' S. A concentration of about 900 microg g(-1) may be considered a critical level for foliar St in areas with low N supply.  相似文献   

20.
This paper analyzes the air quality impacts of coal-fired power plants in the northern passageway of the West-East Power Transmission Project in China. A three-layer Lagrangian model called ATMOS, was used to simulate the spatial distribution of incremental sulfur dioxide (SO2) and coarse particulate matter (PM10) concentrations under different emission control scenarios. In the year 2005, the emissions from planned power plants mainly affected the air quality of Shanxi, Shaanxi, the common boundary of Inner Mongolia and Shanxi, and the area around the boundary between Inner Mongolia and Ningxia. In these areas, the annually averaged incremental SO2 and PM10 concentrations exceed 2 and 2.5 microg/m3, respectively. The maximum increases of the annually averaged SO2 and PM10 concentrations are 8.3 and 7.2 microg/m3, respectively, which occur around Hancheng city, near the boundary of the Shaanxi and Shanxi provinces. After integrated control measures are considered, the maximum increases of annually averaged SO2 and PM10 concentrations fall to 4.9 and 4 microg/m3, respectively. In the year 2010, the areas affected by planned power plants are mainly North Shaanxi, North Ningxia, and Northwest Shanxi. The maximum increases of the annually averaged SO2 and PM10, concentrations are, respectively, 6.3 and 5.6 microg/m3, occurring in Northwest Shanxi, which decline to 4.4 and 4.1 microg/m3 after the control measures are implemented. The results showed that the proposed power plants mainly affect the air quality of the region where the power plants are built, with little impact on East China where the electricity will be used. The influences of planned power plants on air quality will be decreased greatly by implementing integrated control measures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号