首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
There is an urgent need to develop sustainable solutions to convert solar energy into energy carriers used in the society. In addition to solar cells generating electricity, there are several options to generate solar fuels. This paper outlines and discusses the design and engineering of photosynthetic microbial systems for the generation of renewable solar fuels, with a focus on cyanobacteria. Cyanobacteria are prokaryotic microorganisms with the same type of photosynthesis as higher plants. Native and engineered cyanobacteria have been used by us and others as model systems to examine, demonstrate, and develop photobiological H2 production. More recently, the production of carbon-containing solar fuels like ethanol, butanol, and isoprene have been demonstrated. We are using a synthetic biology approach to develop efficient photosynthetic microbial cell factories for direct generation of biofuels from solar energy. Present progress and advances in the design, engineering, and construction of such cyanobacterial cells for the generation of a portfolio of solar fuels, e.g., hydrogen, alcohols, and isoprene, are presented and discussed. Possibilities and challenges when introducing and using synthetic biology are highlighted.  相似文献   

2.
Eva-Mari Aro 《Ambio》2016,45(1):24-31
Roadmaps towards sustainable bioeconomy, including the production of biofuels, in many EU countries mostly rely on biomass use. However, although biomass is renewable, the efficiency of biomass production is too low to be able to fully replace the fossil fuels. The use of land for fuel production also introduces ethical problems in increasing the food price. Harvesting solar energy by the photosynthetic machinery of plants and autotrophic microorganisms is the basis for all biomass production. This paper describes current challenges and possibilities to sustainably increase the biomass production and highlights future technologies to further enhance biofuel production directly from sunlight. The biggest scientific breakthroughs are expected to rely on a new technology called “synthetic biology”, which makes engineering of biological systems possible. It will enable direct conversion of solar energy to a fuel from inexhaustible raw materials: sun light, water and CO2. In the future, such solar biofuels are expected to be produced in engineered photosynthetic microorganisms or in completely synthetic living factories.  相似文献   

3.
To mitigate global warming caused by burning fossil fuels, a renewable energy source available in large quantity is urgently required. We are proposing large-scale photobiological H(2) production by mariculture-raised cyanobacteria where the microbes capture part of the huge amount of solar energy received on earth's surface and use water as the source of electrons to reduce protons. The H(2) production system is based on photosynthetic and nitrogenase activities of cyanobacteria, using uptake hydrogenase mutants that can accumulate H(2) for extended periods even in the presence of evolved O(2). This review summarizes our efforts to improve the rate of photobiological H(2) production through genetic engineering. The challenges yet to be overcome to further increase the conversion efficiency of solar energy to H(2) also are discussed.  相似文献   

4.
To mitigate global warming caused by burning fossil fuels, a renewable energy source available in large quantity is urgently required. We are proposing large-scale photobiological H2 production by mariculture-raised cyanobacteria where the microbes capture part of the huge amount of solar energy received on earth’s surface and use water as the source of electrons to reduce protons. The H2 production system is based on photosynthetic and nitrogenase activities of cyanobacteria, using uptake hydrogenase mutants that can accumulate H2 for extended periods even in the presence of evolved O2. This review summarizes our efforts to improve the rate of photobiological H2 production through genetic engineering. The challenges yet to be overcome to further increase the conversion efficiency of solar energy to H2 also are discussed.  相似文献   

5.
Solar energy conversion into electricity by photovoltaic modules is now a mature technology. We discuss the need for materials and device developments using conventional silicon and other materials, pointing to the need to use scalable materials and to reduce the energy payback time. Storage of solar energy can be achieved using the energy of light to produce a fuel. We discuss how this can be achieved in a direct process mimicking the photosynthetic processes, using synthetic organic, inorganic, or hybrid materials for light collection and catalysis. We also briefly discuss challenges and needs for large-scale implementation of direct solar fuel technologies.  相似文献   

6.

The present paper proposes a methodology based on the implementation and assessment of autoregressive (AR) solar radiation models for generating synthetic series and providing guidance on bidding strategies for power purchase agreements. The work considered conventional and periodic AR models with different lag orders, assessing the models against real solar radiation measurements. The synthetic series generation process developed 1000 1-year monthly solar radiation scenarios that were later employed for simulating electric energy production and power purchase agreement models. This application allowed one to evaluate the risk associated with the energy supply security, supporting bidding strategies in energy auctions. A real study case is also illustrated in detail, referring to a spot in the Brazilian best irradiance area.

  相似文献   

7.
Styring S 《Ambio》2012,41(Z2):156-162
The world needs new, environmentally friendly and renewable fuels to allow an exchange from fossil fuels. The fuel must be made from cheap and 'endless' resources that are available everywhere. The new research area on solar fuels, which are made from solar energy and water, aims to meet this demand. The paper discusses why we need a solar fuel and why electricity is not enough; it proposes solar energy as the major renewable energy source to feed from. The present research strategies, involving direct, semi-direct and indirect approaches to produce solar fuels, are overviewed.  相似文献   

8.
Stenbjörn Styring 《Ambio》2012,41(2):156-162
The world needs new, environmentally friendly and renewable fuels to allow an exchange from fossil fuels. The fuel must be made from cheap and ‘endless’ resources that are available everywhere. The new research area on solar fuels, which are made from solar energy and water, aims to meet this demand. The paper discusses why we need a solar fuel and why electricity is not enough; it proposes solar energy as the major renewable energy source to feed from. The present research strategies, involving direct, semi-direct and indirect approaches to produce solar fuels, are overviewed.  相似文献   

9.
The economy of an industrialized country is greatly dependent on fossil fuels. However, these nonrenewable sources of energy are nearing the brink of extinction. Moreover, the reliance on these fuels has led to increased levels of pollution which have caused serious adverse impacts on the environment. Hydrogen has emerged as a promising alternative since it does not produce CO2 during combustion and also has the highest calorific value. The biohythane process comprises of biohydrogen production followed by biomethanation. Biological H2 production has an edge over its chemical counterpart mainly because it is environmentally benign. Maximization of gaseous energy recovery could be achieved by integrating dark fermentative hydrogen production followed by biomethanation. Intensive research work has already been carried out on the advancement of biohydrogen production processes, such as the development of suitable microbial consortium (mesophiles or thermophiles), genetically modified microorganism, improvement of the reactor designs, use of different solid matrices for the immobilization of whole cells, and development of two-stage process for higher rate of H2 production. Scale-up studies of the dark fermentation process was successfully carried out in 20- and 800-L reactors. However, the total gaseous energy recovery for two stage process was found to be 53.6 %. From single-stage H2 production, gaseous energy recovery was only 28 %. Thus, two-stage systems not only help in improving gaseous energy recovery but also can make biohythane (mixture of H2 and CH4) concept commercially feasible.  相似文献   

10.
Environmental Science and Pollution Research - The conversion of CO2 into useful raw materials for fuels and chemicals by solar energy is described using a plasmonic photocatalyst comprised of Ag...  相似文献   

11.
Nakano Y 《Ambio》2012,41(Z2):125-131
The primary targets of our project are to drastically improve the photovoltaic conversion efficiency and to develop new energy storage and delivery technologies. Our approach to obtain an efficiency over 40% starts from the improvement of III-V multi-junction solar cells by introducing a novel material for each cell realizing an ideal combination of bandgaps and lattice-matching. Further improvement incorporates quantum structures such as stacked quantum wells and quantum dots, which allow higher degree of freedom in the design of the bandgap and the lattice strain. Highly controlled arrangement of either quantum dots or quantum wells permits the coupling of the wavefunctions, and thus forms intermediate bands in the bandgap of a host material, which allows multiple photon absorption theoretically leading to a conversion efficiency exceeding 50%. In addition to such improvements, microfabrication technology for the integrated high-efficiency cells and the development of novel material systems that realizes high efficiency and low cost at the same time are investigated.  相似文献   

12.
Yoshiaki Nakano 《Ambio》2012,41(2):125-131
The primary targets of our project are to drastically improve the photovoltaic conversion efficiency and to develop new energy storage and delivery technologies. Our approach to obtain an efficiency over 40% starts from the improvement of III–V multi-junction solar cells by introducing a novel material for each cell realizing an ideal combination of bandgaps and lattice-matching. Further improvement incorporates quantum structures such as stacked quantum wells and quantum dots, which allow higher degree of freedom in the design of the bandgap and the lattice strain. Highly controlled arrangement of either quantum dots or quantum wells permits the coupling of the wavefunctions, and thus forms intermediate bands in the bandgap of a host material, which allows multiple photon absorption theoretically leading to a conversion efficiency exceeding 50%. In addition to such improvements, microfabrication technology for the integrated high-efficiency cells and the development of novel material systems that realizes high efficiency and low cost at the same time are investigated.  相似文献   

13.
Leif Hammarström 《Ambio》2012,41(2):103-107
Solar energy has potential to provide a major part of our energy for our future, as heat, electricity, and fuels. Most solar technologies are still at the research and development stage, however. There is therefore a need for bold and enduring efforts in research, development and commercialization, including strategic legislative measures and infrastructure investments. This overview article serves as an introduction to the present Special Report, briefly outlining the potential, principles and possibilities as well as some of the challenges of solar energy conversion.  相似文献   

14.
Hammarström L 《Ambio》2012,41(Z2):103-107
Solar energy has potential to provide a major part of our energy for our future, as heat, electricity, and fuels. Most solar technologies are still at the research and development stage, however. There is therefore a need for bold and enduring efforts in research, development and commercialization, including strategic legislative measures and infrastructure investments. This overview article serves as an introduction to the present Special Report, briefly outlining the potential, principles and possibilities as well as some of the challenges of solar energy conversion.  相似文献   

15.
Lu CM  Chau CW  Zhang JH 《Chemosphere》2000,41(1-2):191-196
Measurement of chlorophyll fluorescence has been shown to be a rapid, non-invasive, and reliable method to assess photosynthetic performance in a changing environment. In this study, acute toxicity of excess Hg on the photosynthetic performance of the cyanobacterium S. platensis, was investigated by use of chlorophyll fluorescence analysis after cells were exposed to excess Hg (up to 20 microM) for 2 h. The results determined from the fast fluorescence kinetics showed that Hg induced a significant increase in the proportion of the Q(B)-non-reducing PSII reaction centers. The fluorescence parameters measured under the steady state of photosynthesis demonstrated that the increase of Hg concentration led to a decrease in the maximal efficiency of PSII photochemistry, the efficiency of excitation energy capture by the open PSII reaction centers, and the quantum yield of PSII electron transport. Mercury also resulted in a decrease in the coefficients of photochemical and non-photochemical quenching. Mercury may have an acute toxicity on cyanobacteria by inhibiting the quantum yield of photosynthesis sensitively and rapidly. Such changes occurred before any other visible damages that may be evaluated by other conventional measurements. Our results also demonstrated that chlorophyll fluorescence analysis can be used as a useful physiological tool to assess early stages of change in photosynthetic performance of algae in response to heavy metal pollution.  相似文献   

16.

Background and purpose

Regeneration of spent activated carbon assumes paramount importance in view of its economic reuse during adsorptive removal of organic contaminants. Classical thermal, chemical, or electrochemical regeneration methods are constrained with several limitations. Microbial regeneration of spent activated carbon provides a synergic combination of adsorption and biodegradation.

Methods

Microorganisms regenerate the surface of activated carbon using sorbed organic substrate as a source of food and energy. Aromatic hydrocarbons, particularly phenols, including their chlorinated derivatives and industrial waste water containing synthetic organic compounds and explosives-contaminated ground water are the major removal targets in adsorption?Cbioregeneration process. Popular mechanisms of bioregeneration include exoenzymatic hypothesis and biodegradation following desorption. Efficiency of bioregeneration can be quantified using direct determination of the substrate content on the adsorbent, the indirect measurement of substrate consumption by measuring the carbon dioxide production and the measurement of oxygen uptake. Modeling of bioregeneration involves the kinetics of adsorption/desorption and microbial growth followed by solute degradation. Some modeling aspects based on various simplifying assumptions for mass transport resistance, microbial kinetics and biofilm thickness, are briefly exposed.

Results

Kinetic parameters from various representative bioregeneration models and their solution procedure are briefly summarized. The models would be useful in predicting the mass transfer driving forces, microbial growth, substrate degradation as well as the extent of bioregeneration.

Conclusions

Intraparticle mass transfer resistance, incomplete regeneration, and microbial fouling are some of the problems needed to be addressed adequately. A detailed techno-economic evaluation is also required to assess the commercial aspects of bioregeneration.  相似文献   

17.
ABSTRACT

In this study, we examined the role of corn-feedstock ethanol in reducing greenhouse gas (GHG) emissions, given present and near-future technology and practice for corn farming and ethanol production. We analyzed the full-fuel-cycle GHG effects of corn-based ethanol using updated information on corn operations in the upper Midwest and existing ethanol production technologies. Information was obtained from representatives of the U.S. Department of Agriculture, faculty of midwestern universities with expertise in corn production and animal feed, and acknowledged authorities in the field of ethanol plant engineering, design, and operations. Cases examined included use of E85 (85% ethanol and 15% gasoline by volume) and E10 (10% ethanol and 90% gasoline). Among key findings is that Midwest-produced ethanol outperforms conventional (current) and reformulated (future) gasoline with respect to energy use and GHG emissions (on a mass emission per travel mile basis). The superiority of the energy and GHG results is well outside the range of model "noise." An important facet of this work has been conducting sensitivity analyses. These analyses let us rank the factors in the corn-to-ethanol cycle that are most important for limiting GHG generation. These rankings could help ensure that efforts to reduce that generation are targeted more effectively.  相似文献   

18.
Edoff M 《Ambio》2012,41(Z2):112-118
Electricity generation by photovoltaic conversion of sunlight is a technology in strong growth. The thin film technology is taking market share from the dominant silicon wafer technology. In this article, the market for photovoltaics is reviewed, the concept of photovoltaic solar energy conversion is discussed and more details are given about the present technological limitations of thin film solar cell technology. Special emphasis is given for solar cells which employ Cu(In,Ga)Se(2) and Cu(2)ZnSn(S,Se)(4) as the sunlight-absorbing layer.  相似文献   

19.
The years 2012 and beyond seem likely to record major changes in energy use and power generation. The Japanese tsunami has resulted in large countries either scaling back or abolishing the future use of nuclear energy. The discovery of what seems like vast amounts of economically deliverable natural gas has many forecasting a rapid switch from coal- to gas-fired generating plants. On the other hand, environmentalists have strong objections to the production of natural gas and of petroleum by hydraulic fracturing from shale, or by extraction of heavy oil. They believe that global warming from the use of fossil fuels is now established beyond question. There has been rapid progress in the development of alternative energy supplies, particularly from on-shore and off-shore wind. Progress toward a viable future energy mix has been slowed by a U.S. energy policy that seems to many to be driven by politics. The author will review the history of power and energy to put all of the above in context and will look at possible future developments. He will propose what he believes to be an idealized energy policy that could result in an optimum system that would be arrived at democratically.  相似文献   

20.
Volatile organic compounds (VOCs) are important precursors of tropospheric ozone formation. Isoprene contributions to ozone formation by using ambient mixing ratios are generally underestimated because of rapid chemical losses. In this study, ambient mixing ratios of major VOC species were continuously measured at Peking university (PKU) and YUFA, urban and sub-urban sites in Beijing, the city that will host 2008 Olympic Games. The observed mixing ratios of methyl vinyl ketone (MVK), methacrolein (MACR) and isoprene were used to derive the mixing ratios of initial isoprene, which means the ambient isoprene level before it undergoes any photochemical reaction with OH radicals. The average mixing ratios of initial isoprene were 3.3±1.6 and 2.9±1.5 ppbv at PKU and YUFA sites, respectively. The percentages of initial isoprene in total initial VOCs were 10.8% at PKU site and 11.4% at YUFA site, in reasonable agreement with the isoprene contribution in total VOC emissions as derived from source inventories. Maximum increment reactivity (MIR) was used to evaluate the ozone formation potential (OFP) for major VOC species. The OFP for initial isoprene accounted for 23% of the total OFPs for all measured species, compared to 11% using ambient mixing ratios of isoprene at PKU site. Similarly, at YUFA site, the ambient measured isoprene and initial isoprene contributed 10% and 22%, respectively, to the OFPs for total measured VOCs. It seems that isoprene has similar contribution to ozone formation at both sites in Beijing city.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号