首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the light of the historical substantial data (covering a 70-year period) collected in the Lower Jingjiang segment and aided by topological grey method, here we attempt to characterize the occurrence and future trend of flood calamities in the study area. Our findings indicate that overall the high-frequent flood disasters with middle to lower damage prevail at present. A series of dramatic flood waves will appear in the years of 2016, 2022, 2030and 2042, particularly a destructive flood will occur between 2041 and 2045 in the Lower Jingjiang reaches. Typical of sensitive response to flood hazards in close association with its special geographical location, the lower Jingjiang segment hereby can reflect the development trend of floods in the middle Yangtze reaches. According to the results, a good fitness was revealed between the prediction and practical values. This actually hints that the topological grey method is an effective mathematical means of resolving problems containing uncertainty and indetermination, thus providing valuable information for the flood prediction in the middle Yangtze catchment.  相似文献   

2.
NEWS     
Abstract

In the light of the historical substantial data (covering a 70-year period) collected in the Lower Jingjiang segment and aided by topological grey method, here we attempt to characterize the occurrence and future trend of flood calamities in the study area. Our findings indicate that overall the high-frequent flood disasters with middle to lower damage prevail at present. A series of dramatic flood waves will appear in the years of 2016, 2022, 2030 and 2042, particularly a destructive flood will occur between 2041 and 2045 in the Lower Jingjiang reaches. Typical of sensitive response to flood hazards in close association with its special geographical location, the lower Jingjiang segment hereby can reflect the development trend of floods in the middle Yangtze reaches. According to the results, a good fitness was revealed between the prediction and practical values. This actually hints that the topological grey method is an effective mathematical means of resolving problems containing uncertainty and indetermination, thus providing valuable information for the flood prediction in the middle Yangtze catchment.  相似文献   

3.
三峡工程对下荆江径流变化影响分析   总被引:1,自引:0,他引:1  
下荆江作为长江最不稳定的江段之一,三峡工程的运行必然会对该江段的水文过程产生深远影响。以监利水文站日均流量数据为基础,研究分析了1983~2012年近30 a来下荆江年径流量、各月月均流量的变化趋势。结合三峡工程的阶段性蓄水,以蓄水前流量的自然波动幅度为基础,定量分析了三峡工程对下荆江径流变化的影响程度。趋势性分析结果显示,近30 a来下荆江年径流量呈波动性变化,无显著趋势。1~3月月均流量有极显著的增加趋势,10月份有极显著的下降趋势。从三峡工程蓄水前后各月份月均流量的绝对变化量来看,10、7和8月的变化量最大,但结合三峡工程蓄水前各月月均流量的自然波动幅度,相对变化率最大的月份为1、2和10月,其相对变化量均超过其自然波动幅度的1.5倍。对于相对变化量较大的月份可能产生的潜在影响亟需进一步的深入研究  相似文献   

4.
为了解长江荆江段浮游生物的群落结构特征以及其与环境因子之间的关系,于2017年3、6、9和12月对荆江7个采样断面的左右岸共14个采样点的浮游生物群落结构及水文、水质参数进行了调查。结果表明:荆江采集到浮游植物7门67属135种(含变种),以硅藻门(51.85%)和绿藻门(25.19%)为主。浮游植物的丰度均值为73.16×10 4 cells./L,生物量均值为0.87 mg/L,上荆江各采样断面间浮游植物丰度和生物量变化不明显,下荆江浮游植物的丰度和生物量表现从上游到下游逐渐增高的趋势。优势种为硅藻门的颗粒沟链藻和梅尼小环藻。Margalef 丰富度指数是0.83,Pielou均匀度指数是0.80和Shannon-Wiener多样性指数是1.90,下荆江的丰富度指数和多样性指数大于上荆江,说明上荆江比下荆江污染严重。典范对应分析溶氧、温度、氨氮是影响浮游植物群落结构的主要因素。浮游动物48属81种,其中轮虫最多(37.04%),其次是原生动物(25.93%)和枝角类(23.46%)。浮游动物丰度均值为6.32 ind./L,生物量均值为88×10-3 mg/L,上荆江浮游动物丰度和生物量低于下荆江。浮游动物优势种为冠砂壳虫、桡足类无节幼体和剑水蚤一种。Margalef 丰富度指数是5.2,Pielou均匀度指数是0.84和Shannon-Wiener多样性指数是1.32,下荆江的丰富度指数、均匀度指数和多样性指数均大于上荆江,说明上荆江比下荆江污染严重。冗余分析显示温度、溶氧和氨氮是影响浮游动物群落结构的主要因素。  相似文献   

5.
万里长江,险在荆江。其高堤防高洪水位(高出堤内地面大于13 m)危险态势的形成,是由于一方面在地质构造控制下堤内地面沉降,另一方面大堤不断加高,荆江洲滩不断淤积抬高和洞庭湖出流顶托,造成同流量水位不断升高,结果是洪水位与堤内地面势差不断加大,形成恶性循环。三峡水库建成后,具有调蓄长江上游洪水的巨大空间和能力,但没有改变形成荆江高洪水位的地质作用及过程。在高堤防高洪水位形势下,加上大堤管涌、岸崩、地震等致灾地质因素的作用,荆江有向北溃决,自然分流的趋势,其中尤以沙市湾迎流顶冲的盐卡段更具有危险性。为避免发生区域性重大地质环境灾害,协调人、地、水关系,给水沙以出路和洪水资源化已迫切地摆在人们面前。  相似文献   

6.
长江流域径流趋势变化及突变分析   总被引:45,自引:0,他引:45  
选取长江流域重要控制站宜昌、汉口和大通站,分别应用1882~2000年、1870~2000年和1950~2000年的月平均流量资料,对年代际、月径流、季节性径流的变化以及径流的变化趋势及突变进行了分析研究,并使用非参数Mann Kendall法来检验径流的趋势变化。趋势分析表明,20世纪90年代长江流域径流呈微弱增加趋势,但不显著且地区分布不均,中上游减少,下游增加;而季节性夏季和冬季径流增加趋势明显,尤其是7月和1月径流增加最突出;更重要的是90年代汛期径流也呈现出增加趋势,汛期径流的增加在一定程度上加大了洪灾发生的可能性,这可能是导致洪灾频繁的原因之一。突变分析指出,宜昌和汉口站从1926年开始径流经历了一个明显减少的变化,这与20世纪20年代初,北半球突然变暖,长江上游地区呈现降温、降水减少趋势一致。  相似文献   

7.
本文采用长江流域内分布较均匀、无缺测站点的1960~2010年逐日降水资料,借助趋势和突变分析、R/S分析和水文频率分析等方法,研究该流域极端降水的时空演变特征和未来趋势。结果表明:(1)长江流域区域平均气候平均降水量(PAV)、简单日降水强度(PINT)、强降水贡献率(PQ95)、强降水阈值(PF95)、最大1日-10日降水量(PX1D-PX10D)基本均呈上升趋势,中下游各极端降水指数均大于上游,同时,中下游的各指数年际变化比上游更剧烈。(2)PAV与PF95的空间分布类似,但前者在流域中部地区下降、两侧上升,而后者为中部上升、两侧下降;PINT与PQ95的空间分布相似,均为大部分地区呈上升趋势,仅西北部下降。PX1D-PX10D总体上以上升为主,但随着持续时间的增长,下降的区域有明显的扩大,而上升的区域有明显的缩小。(3)未来长江流域极端降水将以现有趋势继续发展,并将以上升趋势为主,流域洪涝灾害风险加大。(4)遂宁站PX1D、安化站PX10D极端降水的频率分析表明,直接采用整体数据计算设计降水量会使结果偏于不安全,对于较长重现期的设计降水表现更显著,因此对于极端降水量发生显著变化的情况需要深入研究,探讨更好的设计降水估计方法。  相似文献   

8.
长江中下游洪水灾害成因及洪水特征模拟分析   总被引:14,自引:9,他引:5  
长江中下游地区洪水灾害的发生是自然地理条件及人类活动共同作用的结果。流域水系构造和地理特征决定了其洪水多发性,气候变化和土地利用/地表覆盖变化导致该地区水循环过程发生较大改变,而大量水库、堤防的建设以及城市化的发展使得洪水过程发生显著变化,因此在各种因素的综合作用下,长江中下游地区近年来洪水灾害频繁发生。综述了气候变化对长江中下游降水的影响,探讨了长江中下游水系特征与洪水灾害的关系,分析了人类活动对洪水灾害的影响规律,在此基础上,开展了气候和下垫面特征变化条件下的暴雨洪水模拟研究,以长江下游太湖东苕溪流域的南苕溪为研究区,进行了流域降雨径流过程的动态模拟验证和特征分析,并取得了较满意的成果,从而为长江中下游地区防洪减灾研究打下了基础。  相似文献   

9.
长江中下游流域旱涝急转时空演变特征分析   总被引:6,自引:0,他引:6  
基于长江中下游流域75个雨量站1960~2012年的日降水资料,通过定义长、短周期旱涝急转指数,全面地分析了长江中下游流域旱涝急转的趋势变化和时空分布特征。研究结果表明:(1)长周期旱涝急转表现为以涝转旱事件为主,且存在由旱涝急转事件向全旱或全涝事件过渡的趋势,短周期的旱涝急转发生频率较高的也是涝转旱事件;(2)长江中下游北岸多发生旱转涝事件,南岸则多发生涝转旱事件;(3)1998年和2011年6~7月短周期高强度旱转涝事件发生在长江北岸,涝转旱事件发生在南岸地区;5~6月与7~8月旱涝急转事件强度分布则呈相反状态;(4)总体来说,长、短周期涝转旱频次呈现不断减小的趋势,旱转涝有轻微增加的趋势。7~8月则较为特殊,湘江流域涝转旱有增加的趋势,洞庭湖地区涝转旱显著增加,此研究结果可以为长江中下游流域防洪抗旱工作提供一定的依据。  相似文献   

10.
长江中下游地区汛期暴雨频次的时空分布特征   总被引:2,自引:0,他引:2  
利用长江中下游地区六省一市1960~2003年81个台站汛期(5~9月)逐日降水资料,统计出了不同台站近44年逐年汛期暴雨事件的发生频次,并进行了时空分布特征分析。结果表明:汛期暴雨事件最频发的区域在皖南到赣北一带,而北部的鄂北和皖北是最少发的区域;一致性异常特征是长江中下游地区汛期暴雨事件发生频次的最主要空间模态;汛期暴雨事件发生频次可分为以下5个主要的空间分型:两湖平原型、北方型、长江沿江型、南方型、沿海型;从长期变化趋势来看,两湖平原型、长江沿江型和沿海型暴雨事件发生频次表现为较明显的增加趋势,南方型基本没有长期变化趋势,但有先降后升的特点,而北方型表现为弱的减少趋势;近44年来暴雨事件发生频次各分区的周期振荡不太一致。  相似文献   

11.
近52a长江中下游地区极端降水的时空变化特征   总被引:3,自引:0,他引:3  
长江中下游地区是我国主要农业区,同时也是降水异常,洪涝灾害频繁发生的地区之一,对长江中下游地区极端降水变化的研究,可以为该区农业生产及防洪减灾提供参考依据。利用1961~2012年间的长江中下游地区84个站点的逐日降水观测资料,基于年最大日降水(AM)序列与超门限峰值降水(POT)序列,通过滑动平均、Mann-Kendall检验法、线性倾向估计等方法,分析了该地区极端降水事件的时空变化特征。结果表明:(1)长江中下游地区近52a来极端降水量呈现为较明显的增加趋势,且极端降水量速率为9.3mm/10a,存在较为明显的年代际波动变化特征,1990年以后进入极端降水量偏多的时期;(2)AM与POT序列多年平均值大值主要分布在江西省大部、湖北东南部以及安徽南部;AM与POT序列多年标准差大值主要分布江西东南部与北部,湖北东南部以及湖南西北部;AM序列多年平均值与标准差均高于POT序列,AM序列年际间振幅要明显强于POT序列,极端降水年际变化幅度大于年内变化;(3)长江中下游沿岸地区年最大日降水量主要表现为增加趋势,长江以北的西部地区则主要表现为减少趋势;长江沿岸地区以及中东部地区的极端降水量主要表现为增加趋势,西部地区则主要表现为减少趋势。  相似文献   

12.
从地学规律和可持续发展看长江分蓄洪区建设   总被引:6,自引:1,他引:5  
分蓄洪区是平原防洪的一种重要措施。20世纪50年代,我国在长江中游地区共规划分蓄洪区14处,其中荆江分洪区、洪湖分蓄洪区和杜家台分洪区为国家确定的重点蓄滞洪区。随着长江上游三峡等一系列大型电站的兴建,中游堤防加固工程的实施,长江中游仍需要200×10\+8m\+3分蓄洪区。基于地学规律和长江中游目前的 防洪形势,从有效的防洪功能和可持续发展相结合考虑,建议取消荆江分洪区和其它一般分蓄洪区,仅保留洪湖分蓄洪区和杜家台分洪区,重点建设洪湖分蓄洪区。建议按照“梯级化”和 “垦殖和养殖区”进行洪湖分蓄洪区规划和建设。  相似文献   

13.
基于长江流域138个气象站1961~2016年的逐月降水观测资料,应用集合经验模态分解(EEMD)方法,分别对各站点的月降水序列进行EEMD分解,然后,运用时滞相关分析和逐步变量选择的方法,以识别长江流域月降水周期振荡和长期趋势的显著影响因子,并构建多元线性回归模型对长江流域月降水进行预测。结果表明:(1)近50多年来,长江流域各站点的月降水呈现出显著的季节、年际和年代际尺度振荡特征。(2)流域内各站点月降水的长期变化趋势存在着较大的空间差异性,表现为金沙江、雅砻江、大渡河以及鄱阳湖流域是月降水长期趋势显著增加的集中区,而岷江中游以及洞庭湖流域的南部是月降水长期趋势显著减少的集中区。(3)厄尔尼诺1+2区的平均海表温度(NINO1+2)的过去模式是影响长江流域月降水周期振荡的主要气候因子,而全球平均气温距平(GlobalT)是影响长江流域月降水长期趋势的主要气候因子。(4)基于已识别的影响因子构建的月降水量预测模型在旱季的预报性能高于雨季,并在长江上游地区的预报性能高于其中下游地区。  相似文献   

14.
长江中下游岸线利用对防洪累积影响初步研究   总被引:4,自引:0,他引:4  
在分析长江中下游岸线开发利用现状及存在问题基础上,分别选取武汉河段和扬中河段作为代表性河段,针对桥梁群和码头群两类主要岸线开发利用形式,开展了涉河工程群对河道洪水位及流场累积影响的数学模型计算分析。计算结果表明,群体工程共同作用后将引起河道洪水位和流场的叠加影响,其影响值及影响范围远大于单个工程,当群体工程的影响积累到一定程度,可能对河道的行洪与河势稳定带来不利影响。建议桥梁群应保持合理的密度,码头群应合理控制港区规模,上下游港区间应保持合理的距离,在岸线开发过程中应制定岸线利用规划,规范涉河工程设计,以尽可能减小对防洪的累积影响  相似文献   

15.
长江流域土壤保持能力时空特征   总被引:1,自引:0,他引:1  
利用MODIS-NDVI数据、地面气象站数据等,采用通用土壤流失方程计算了长江流域2000~2010年土壤保持量,并基于GIS平台与GeoDa软件,辅以Morans I指数以及一元线性回归系数等方法分析了长江流域土壤保持能力的时空分布特征。结果表明:(1)长江源区以及中下游沿岸至长江入海口地区的土壤保持量最低(≤560t/hm2),土壤保持量高值区(≥2 400t/hm2)主要分布于上游四川盆地周围以及中下游长江以南地区;(2)长江流域土壤保持量在市域单元上存在明显的空间聚集现象,"低—低"聚集区分布在长江源区、武汉西部以及流域入海口,"高—高"聚集区主体分布在流域上游与江西南部;(3)土壤保持量年际变化呈增加趋势的区域占62%,其中呈快速增加趋势(b5)的地区分布在陕西南部、湖南西北部、江西东部以及四川东部,呈减少趋势的区域占38%,主要分布于流域上游以及中下游长江以南部分地区。  相似文献   

16.
近50年长江流域降水日数的演变趋势   总被引:2,自引:0,他引:2  
通过分析不同强度降水量(大于75百分位和大于95百分位降水,下同)对应降水日数,研究了长江流域1951~2000年逐年和年代际降水日数变化趋势。大于75百分位的降水日数在上游以及中游的北岸增加趋势最显著,四川盆地是唯一显示减少趋势的地区。同样,大于95百分位的降水日数在中游和下游也表现出十分明显的增加趋势,呈现减少趋势的仍然是四川盆地,并略向其北方延伸。详细分析每10年的平均降水日数的距平发现,大于75百分位降水日数最大的正距平集中在中游的1980s、1990s和下游的1980s。最大的负距平也是在中游地区,发生在1950~1979年。因此,中游的降水日数增加的幅度最大。对于大于95百分位降水日数,长江流域中游和下游的变化趋势也是一致的,在1960s 和1970s的负距平后,都出现较大的正距平。上游降水日数的年际变化要小于中下游。比较不同百分位降水日数的变化趋势,可将长江流域1950~2000年降水日数的变化趋势分为3种类型:(1)在大于75百分位降水日数增加的同时,大于95百分位降水日数却有所减少;(2)大于75和大于95百分位降水日数同时呈减少的趋势;(3)大于75和大于95百分位降水日数同时呈增加趋势。  相似文献   

17.
长江中下游河道与岸线演变特点   总被引:1,自引:1,他引:1  
分析了长江中下游河道岸线变化的主要因素,它们分别是河岸崩塌,泥沙淤积及人类活动等,其中河岸崩塌是河道岸线演变的最主要原因。总的来说长江中下游干流河势是稳定的,但五个河段有各自演变特点和规律,其中宜昌-枝城段河道与河床比较稳定,岸线顺直,但葛洲坝和三峡水利枢纽建成后对河床的冲刷作用较大;荆江段是长江著名的河曲段,其冲淤变化较大;城陵矶至湖口段为节点和分汊河床组成,一般来说节点较为稳定,而分汊河床不太稳定,湖口至江阴河段岸线一般较为稳定,但弯道河床变化较大;河口段不但受江流作用影响,还受潮流与波浪等共同影响,所以河口河床演变迅速,主要表现为汊道主泓迁移摆动。  相似文献   

18.
三峡水库防洪调度运行对洞庭湖区防洪减灾的贡献   总被引:1,自引:0,他引:1  
位于长江中游的洞庭湖区为中国洪涝灾害频发地区之一。2010年的洪水是长江1998年大水后,也是三峡水库蓄水运用以来所遇到的首次较大洪水,在5次洪水过程中,三峡水库实施了5次防洪调度,较大程度地减轻了长江中下游地区的洪水压力。长江中游荆江既是连接三峡水库和长江中下游河道的纽带,又是沟通洞庭湖的水流通道。基于三峡水库出库流量与荆江三口、洞庭湖城陵矶的水文对应关系,以实测水情、灾情资料为依据,运用对比分析方法,揭示2010年汛期三峡水库防洪调度对减轻洞庭湖区的洪水压力及减少洪涝灾害损失的贡献率。结果表明:6~8月份三口入湖洪量减少约24261×108 m3,湖口城陵矶洪水位降低082 m;湖区减少洪涝灾害直接经济损失约19983×108元,间接经济损失约0638×108元  相似文献   

19.
基于长江中下游流域5个梅雨监测站1961~2012年的日数据,利用集合经验模态分解(EEMD)方法,对研究期内梅雨时间序列进行多尺度的分析,探讨其在不同时间尺度上的振荡模态结构特征。结果表明:近50多年来,长江中下游梅雨变化呈现出显著的年际和年代际尺度振荡特征,在年际尺度上表现出准3 a和6 a的周期变化,而在年代际尺度上显示准13 a和24 a的周期变化;各分量方差〖JP2〗贡献率显示,年际振荡在梅雨长期变化中占据主导地位;自1961年以来,EEMD分解的梅雨长期变化趋势表现出先增加后减少的倒“U”型特征,其中1961~1985年呈上升趋势,1985~2012年呈下降趋势,尤其是在2000年之后的下降趋势最为明显。由此可以看出,EEMD能够有效地揭示梅雨长期序列在不同时间尺度上的变化规律,可用于诊断非线性、非平稳性信号变化的复杂性特征  相似文献   

20.
长江中下游地区连阴雨变化特征分析   总被引:1,自引:0,他引:1  
利用长江中下游地区86站1961~2011年逐日降水量资料,采用线性倾向估计法和M-K突变检验法,分析该地区年连阴雨日数、过程次数、总降水量及降水强度的时空变化特征。结果显示:长江中下游地区大部连阴雨日数有70~130 d/a、连阴雨过程次数有7~12次/a、连阴雨总雨量为500~1 300 mm/a、年均连阴雨强度为8~10 mm/d,连阴雨过程持续时间多在8~11 d/次左右。其中连阴雨日数和频次总体呈现出南多北少、连阴雨总雨量呈东南多西北少、雨强呈东强西弱的分布态势;近50 a来,长江中下游地区平均年连阴雨日数、连阴雨过程频次、连阴雨总雨量均呈减少趋势,减少速率分别为3.8 d/10 a、0.3次/10 a、18.5 mm/10 a,其中连阴雨日数、频次减少趋势显著;降水强度呈显著增加趋势,增加速率为0.2 mm/(d·10 a)。空间上,西部连阴雨日数、过程次数均呈显著减少趋势,东部呈微弱的减少趋势;大部地区连阴雨总量均呈显著减少趋势,其中西部尤为突出。突变分析发现,长江中下游连阴雨存在突变年份,各统计因子突变主要集中在1991~2011年,连阴雨日数减少突变发生在2003年,2006年起减少趋势超过显著性水平;连阴雨频次突变发生在2004年,2010年起减少趋势超过显著性水平;连阴雨总雨量突变发生在2006年,但这种突变不显著;连阴雨降水强度于1992~1994年发生突变,2010年起增加趋势超过显著性水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号