首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In arid regions of the developing world, pastoralists and livestock commonly inhabit protected areas, resulting in human–wildlife conflict. Conflict is inextricably linked to the ecological processes shaping relationships between pastoralists and native herbivores and carnivores. To elucidate relationships underpinning human–wildlife conflict, we synthesized 15 years of ecological and ethnographic data from Ikh Nart Nature Reserve in Mongolia's Gobi steppe. The density of argali (Ovis ammon), the world's largest wild sheep, at Ikh Nart was among the highest in Mongolia, yet livestock were >90% of ungulate biomass and dogs >90% of large‐carnivore biomass. For argali, pastoral activities decreased food availability, increased mortality from dog predation, and potentially increased disease risk. Isotope analyses indicated that livestock accounted for >50% of the diet of the majority of gray wolves (Canis lupus) and up to 90% of diet in 25% of sampled wolves (n = 8). Livestock composed at least 96% of ungulate prey in the single wolf pack for which we collected species‐specific prey data. Interviews with pastoralists indicated that wolves annually killed 1–4% of Ikh Nart's livestock, and pastoralists killed wolves in retribution. Pastoralists reduced wolf survival by killing them, but their livestock were an abundant food source for wolves. Consequently, wolf density appeared to be largely decoupled from argali density, and pastoralists had indirect effects on argali that could be negative if pastoralists increased wolf density (apparent competition) or positive if pastoralists decreased wolf predation (apparent facilitation). Ikh Nart's argali population was stable despite these threats, but livestock are increasingly dominant numerically and functionally relative to argali. To support both native wildlife and pastoral livelihoods, we suggest training dogs to not kill argali, community insurance against livestock losses to wolves, reintroducing key native prey species to hotspots of human–wolf conflict, and developing incentives for pastoralists to reduce livestock density.  相似文献   

2.
Abstract:  Successful nonlethal management of livestock predation is important for conserving rare or endangered carnivores. In the northwestern United States, wolves ( Canis lupus ) have been translocated away from livestock to mitigate conflicts while promoting wolf restoration. We assessed predation on livestock, pack establishment, survival, and homing behavior of 88 translocated wolves with radiotelemetry to determine the effectiveness of translocation in our region and consider how it may be improved. More than one-quarter of translocated wolves preyed on livestock after release. Most translocated wolves (67%) never established or joined a pack, although eight new packs resulted from translocations. Translocated wolves had lower annual survival (0.60) than other radio-collared wolves (0.73), with government removal the primary source of mortality. In northwestern Montana, where most wolves have settled in human-populated areas with livestock, survival of translocated wolves was lowest (0.41) and more wolves proportionally failed to establish packs (83%) after release. Annual survival of translocated wolves was highest in central Idaho (0.71) and more wolves proportionally established packs (44%) there than in the other two recovery areas. Translocated wolves showed a strong homing tendency; most of those that failed to home still showed directional movement toward capture sites. Wolves that successfully returned to capture sites were more likely to be adults, hard (immediately) rather than soft (temporarily held in enclosure) released, and translocated shorter distances than other wolves that did not return home. Success of translocations varied and was most affected by the area in which wolves were released. We suggest managers translocating wolves or other large carnivores consider soft releasing individuals (in family groups, if social) when feasible because this may decrease homing behavior and increase release-site fidelity.  相似文献   

3.
Abstract: Populations of wolves were estimated for the states of Gujarat and Rajasthan, India, based on interviews and surveys. The wolf range is continuous. The total number of wolves in Gujarat is between 190 and 270 and in Rajasthan is between 253 and 350. Recommendations for a wolf conservation strategy include: (1) encouraging public support and education, (2) enforcing legal protection, (3) paying compensation for wolf-killed livestock, (4) conducting surveys of wolf populations and research on the dynamics of select populations, (5) protecting breeding habitats, and (6) eradicating feral dogs from wolf conservation areas. It is not too late to save the wolf if such a conservation strategy is implemented immediately.  相似文献   

4.
The widespread claim that wolf populations can withstand 25–50% or greater annual reductions without major biological consequences is based primarily on the observation that populations often maintain their size from year to year as harvest or control continues or recover within a few years afterward. This emphasis on numerical status overlooks the likelihood of major, lingering impacts on the size, number, stability, and persistence of family-group social units, on reproductive, hunting, and territorial behavior, on the role of learning and related traditions, on within- and between-group patterns of genetic variation, and on overall mortality rates. The tendency of biologists and agencies in northern North America to promote wolf harvests that are four to eight times greater than ungulate harvests, in accord with the wolf versus ungulate difference in reproductive rates but contradictory to a broad array of differences in social organization and related behavior, is reason enough to question the logic of this prevailing management view. True sustained-yield management requires more emphasis on qualitative biological features to determine the extent to which wolves and other species with evolutionary histories as predators rather than as prey should be harvested. Most recent government-sponsored wolf control programs and proposals, including sterilization, relocation, and "redirected" killing, have been based on questionable claims about ungulate or livestock problems and have not adequately considered potential biological costs (especially to the target wolf populations), benefits, or management alternatives. The high sentience of wolves justifies overlapping biological-ethical concerns about such programs and especially about the heavy, indiscriminate, deceptively reported public hunting and trapping of wolves that is currently permitted throughout most of Alaska (U.S.A.)—including in national parks—and elsewhere.  相似文献   

5.
Abstract:   As wolf ( Canis lupus ) populations recover in Wisconsin (U.S.A.), their depredations on livestock, pets, and hunting dogs have increased. We used a mail-back survey to assess the tolerance of 535 rural citizens of wolves and their preferences regarding the management of "problem" wolves. Specifically, we tested whether people who had lost domestic animals to wolves or other predators were less tolerant of wolves than neighboring residents who had not and whether compensation payments improved tolerance of wolves. We assessed tolerance via proxy measures related to an individual's preferred wolf population size for Wisconsin and the likelihood she or he would shoot a wolf. We also measured individuals' approval of lethal control and other wolf-management tactics under five conflict scenarios. Multivariate analysis revealed that the strongest predictor of tolerance was social group. Bear ( Ursus americanus ) hunters were concerned about losing valuable hounds to wolves and were more likely to approve of lethal control and reducing the wolf population than were livestock producers, who were more concerned than general residents. To a lesser degree, education level, experience of loss, and gender were also significant. Livestock producers and bear hunters who had been compensated for their losses to wolves were not more tolerant than their counterparts who alleged a loss but received no compensation. Yet all respondents approved of compensation payments as a management strategy. Our results indicate that deep-rooted social identity and occupation are more powerful predictors of tolerance of wolves than individual encounters with these large carnivores.  相似文献   

6.
Gray wolf (Canis lupus) recovery in the Rocky Mountains of the U.S. is proceeding by both natural recolonization and managed reintroduction. We used DNA microsatellite analysis of wolves transplanted from Canada to two reintroduction sites in the U.S. to study population structure in native and reintroduced wolf populations. Gene flow due to migration between regions in Canada is substantial, and all three recovery populations in the U.S. had high genetic variation. The reintroduced founders were moderately genetically divergent from the naturally colonizing U.S. population. These findings corroborate that the reintroduction more than meets generally accepted genetic guidelines. Maintaining this variation, however, will depend on ample reproduction in the first few generations. In the long term genetic variation will best be retained if migration occurs among the recolonizing and the two transplanted populations. Evidence from field observation and genetic studies shows extensive dispersal by wolves, and we conclude that exchange among these groups due to natural dispersal is likely if public tolerance and legal protection are adequate outside lands designated for wolf recovery.  相似文献   

7.
Abstract:  Many carnivore populations escaped extinction during the twentieth century as a result of legal protections, habitat restoration, and changes in public attitudes. However, encounters between carnivores, livestock, and humans are increasing in some areas, raising concerns about the costs of carnivore conservation. We present a method to predict sites of human-carnivore conflicts regionally, using as an example the mixed forest-agriculture landscapes of Wisconsin and Minnesota (U.S.A.). We used a matched-pair analysis of 17 landscape variables in a geographic information system to discriminate affected areas from unaffected areas at two spatial scales (townships and farms). Wolves ( Canis lupus ) selectively preyed on livestock in townships with high proportions of pasture and high densities of deer ( Odocoileus virginianus ) combined with low proportions of crop lands, coniferous forest, herbaceous wetlands, and open water. These variables plus road density and farm size also appeared to predict risk for individual farms when we considered Minnesota alone. In Wisconsin only, farm size, crop lands, and road density were associated with the risk of wolf attack on livestock. At the level of townships, we generated two state-wide maps to predict the extent and location of future predation on livestock. Our approach can be applied wherever spatial data are available on sites of conflict between wildlife and humans.  相似文献   

8.
Hotspots of Epiphytic Lichen Diversity in Two Young Managed Forests   总被引:4,自引:0,他引:4  
Understanding within-stand variation in diversity of epiphytes will provide an improved basis for producing timber while conserving biological diversity. Two 80-ha, 50–year–old managed stands of conifers were surveyed to locate 0.4 ha putative "diversity" plots, the areas appearing most diverse in lichen epiphytes. These plots were generally located in areas made heterogeneous by canopy gaps, wolf trees (trees with large-diameter lower branches), and old-growth remnant trees. "Matrix" plots, in contrast, were chosen at random from the remaining, more homogenous forest. Diversity plots hosted from 25% to 40% more epiphytic lichen species than matrix plots in both stands. The strongest within-stand gradients in species composition were correlated with percentage of plot occupied by gaps and wolf trees. Percentage of the plot in gaps was correlated with species richness (r = 0.79). In the more structurally diverse stand, diversity and abundance of nitrogen-fixing "cyanolichens" were correlated with percentage of the plot occupied by gaps (0.5 < r < 0.9), and alectorioid lichens were correlated with percentage of the plot occupied by old-growth remnant trees (0.5 < r < 0.6). In the stand with more homogenous structure, percentage of the plot under gaps was correlated with regionally common species that were otherwise absent or sparse in the matrix. Protecting gaps, hardwoods, wolf trees, and old-growth remnant trees during thinning or other partial cutting is likely to promote the majority of epiphytic macrolichens in young conifer forests. Because these features are easily recognized on aerial photos and on the ground by land managers, it is practical to manage for forest structures that would promote lichen diversity.  相似文献   

9.
Ecological reasons for philopatry and cooperation are frequently invoked when kin selection is an insufficient explanation. The Ethiopian wolf (Canis simensis) is a specialised rodent hunter that forms family groups with cooperative breeding but also lives as monogamous pairs in suboptimal areas. Given the apparent absence of fitness gains to helpers from cooperative breeding, we set out to explore the benefits accrued by communal territorial defence measured as the acquisition and retention of habitats with more and most preferred rodent prey. Pairs defended relatively large territories to encompass critical amounts of key habitats within a matrix poor in rodents. Groups in optimal areas had relatively small territories and were expansionist, such that wolves in larger packs benefited per capita from increased good-quality foraging habitat. The fitness benefits of philopatry became evident after a rabies epizootic, when philopatry and expansionism prevailed in under-saturated conditions, until large groups split or provided dispersers that established locally. This study shows that high concentrations of prey can shift the balance of costs and benefits towards group living and cooperation in long-lived territorial carnivores, in so far as this dictates immediate rewards accrued from a given increment in territory size, namely greater foraging area per animal, leading to group enlargement and eventual inheritance of breeding space.  相似文献   

10.
Kendall WL  Conn PB  Hines JE 《Ecology》2006,87(1):169-177
Matrix population models that allow an animal to occupy more than one state over time are important tools for population and evolutionary ecologists. Definition of state can vary, including location for metapopulation models and breeding state for life history models. For populations whose members can be marked and subsequently reencountered, multistate mark-recapture models are available to estimate the survival and transition probabilities needed to construct population models. Multistate models have proved extremely useful in this context, but they often require a substantial amount of data and restrict estimation of transition probabilities to those areas or states subjected to formal sampling effort. At the same time, for many species, there are considerable tag recovery data provided by the public that could be modeled in order to increase precision and to extend inference to a greater number of areas or states. Here we present a statistical model for combining multistate capture-recapture data (e.g., from a breeding ground study) with multistate tag recovery data (e.g., from wintering grounds). We use this method to analyze data from a study of Canada Geese (Branta canadensis) in the Atlantic Flyway of North America. Our analysis produced marginal improvement in precision, due to relatively few recoveries, but we demonstrate how precision could be further improved with increases in the probability that a retrieved tag is reported.  相似文献   

11.
Restoring connectivity between fragmented populations is an important tool for alleviating genetic threats to endangered species. Yet recovery plans typically lack quantitative criteria for ensuring such population connectivity. We demonstrate how models that integrate habitat, genetic, and demographic data can be used to develop connectivity criteria for the endangered Mexican wolf (Canis lupus baileyi), which is currently being restored to the wild from a captive population descended from 7 founders. We used population viability analysis that incorporated pedigree data to evaluate the relation between connectivity and persistence for a restored Mexican wolf metapopulation of 3 populations of equal size. Decreasing dispersal rates greatly increased extinction risk for small populations (<150–200), especially as dispersal rates dropped below 0.5 genetically effective migrants per generation. We compared observed migration rates in the Northern Rocky Mountains (NRM) wolf metapopulation to 2 habitat‐based effective distance metrics, least‐cost and resistance distance. We then used effective distance between potential primary core populations in a restored Mexican wolf metapopulation to evaluate potential dispersal rates. Although potential connectivity was lower in the Mexican wolf versus the NRM wolf metapopulation, a connectivity rate of >0.5 genetically effective migrants per generation may be achievable via natural dispersal under current landscape conditions. When sufficient data are available, these methods allow planners to move beyond general aspirational connectivity goals or rules of thumb to develop objective and measurable connectivity criteria that more effectively support species recovery. The shift from simple connectivity rules of thumb to species‐specific analyses parallels the previous shift from general minimum‐viable‐population thresholds to detailed viability modeling in endangered species recovery planning. Desarrollo de Criterios de Conectividad Metapoblacional a Partir de Datos Genéticos y de Hábitat para Recuperar al Lobo Mexicano en Peligro de Extinción  相似文献   

12.
Recent publications have reaffirmed that the red wolf ( Canis rufus ) is a hybrid of the coyote and the gray wolf. Besides the implications these results will likely have for future conservation efforts and allotment of resources through the Endangered Species Act for recovery of the red wolf, it is likely that broader consequences will be felt throughout the conservation community as species come under the scrutiny of a more powerful means of taxonomic identification. As molecular technology is refined in its ability to resolve taxonomic histories and uncertainties, it is likely that hybridization event(s) will be recognized in more species. This may be of particular importance for large carnivores, whose small population sizes make them susceptible to hybridization episodes with closely related, sympatric species. Because of negative perceptions, powerful antipredator advocates, conservation and resource constraints, and an enigmatic hybrid policy within the Endangered Species Act, how red-wolf taxonomy is decided by the U.S. Fish and Wildlife Service may affect the future of large carnivores in general.  相似文献   

13.
The gray wolf is a large, highly mobile predator whose original geographic range included most of the Northern Hemisphere. High rates of genetic exchange probably characterized even distantly-separated populations in the past, but recent population declines and habitat fragmentation have isolated previously contiguous populations, especially in the Old World. We examine mitochondrial DNA (mtDNA) variability among twenty-six populations of wolves from throughout their geographic range. We find eighteen mtDNA genotypes in gray wolves, seven of these are derived from hybridization with coyotes, four are confined to the New World, six are confined to the Old World and one is shared by both areas. Genetic differentiation among wolf populations is significant but small in magnitude. In the Old World, most localities have a single unique genotype, whereas in the New World several genotypes occur at most localities and three of the five genotypes are nearly ubiquitous. The pattern of genetic differentiation in the gray wolf contrasts with that of another large, highly vagile canid, the coyote, in which genetic differentiation among populations is not significant even among widely separated localities. We suggest that the difference between these two species reflects the rapid, recent increase in coyote numbers and expansion of their geographic range, and the coincident decline in gray wolf populations. Apparent genetic differences among extant wolf populations may be a recent phenomenon reflecting population declines and habitat fragmentation rather than a long history of genetic isolation.  相似文献   

14.
Conservation of species at risk of extinction is complex and multifaceted. However, mitigation strategies are typically narrow in scope, an artifact of conservation research that is often limited to a single species or stressor. Knowledge of an entire community of strongly interacting species would greatly enhance the comprehensiveness and effectiveness of conservation decisions. We investigated how camera trapping and spatial count models, an extension of spatial-recapture models for unmarked populations, can accomplish this through a case study of threatened boreal woodland caribou (Rangifer tarandus caribou). Population declines in caribou are precipitous and well documented, but recovery strategies focus heavily on control of wolves (Canis lupus) and pay less attention to other known predators and apparent competitors. Obtaining necessary data on multispecies densities has been difficult. We used spatial count models to concurrently estimate densities of caribou, their predators (wolf, black bear [Ursus americanus], and coyote [Canis latrans]), and alternative prey (moose [Alces alces] and white-tailed deer [Odocoileus virginianus]) from a camera-trap array in a highly disturbed landscape within northern Alberta's Oil Sands Region. Median densities were 0.22 caribous (95% Bayesian credible interval [BCI] = 0.08–0.65), 0.77 wolves (95% BCI = 0.26–2.67), 2.39 moose (95% BCI = 0.56–7.00), 2.64 coyotes (95% BCI = 0.45–6.68), and 3.63 black bears (95% BCI = 1.25–8.52) per 100 km2. (The white-tailed deer model did not converge.) Although wolf densities were higher than densities recommended for caribou conservation, we suggest the markedly higher black bear and coyote densities may be of greater concern, especially if government wolf control further releases these species. Caribou conservation with a singular focus on wolf control may leave caribou vulnerable to other predators. We recommend a broader focus on the interacting species within a community when conserving species.  相似文献   

15.
The compelling need to harness the potentials of the numerous agro-industrial by-products and the so-called “wastes” as part replacement for the more expensive conventional feed ingredients have been seriously expressed. This need has arisen mainly from the increasing demand and supply deficit of conventional feed resources with a concomitant sharp rise in their cost prices. The net effect of increased unit cost of the conventional feed resources is increased cost of the compounded rations, which by extension gives rise to increased cost of meat and animal products. It then becomes highly imperative that other sources for rapid livestock output to meet the growing human demands for animal protein foods are sourced. Such other sources should be cheap and nutritionally adequate for feeding animals with the aim of lowering the cost of producing meat. One of such measure is the recycling of poultry litter as part replacement for soya bean in livestock nutrition. Poultry litter is the by-product of poultry production, which should be managed in an environmentally friendly manner. As observed in this study, poultry litter contains 20% crude protein, 621.41 ME kcal kg?1, and substantial amounts of minerals that could be exploited in feeding livestock. This study has explored the possibility of including poultry litter in diets in view of its contents.  相似文献   

16.
Natural resource and wildlife managers must balance the disparate priorities of a diversity of stakeholders. To manage these priorities, a firm understanding of topics salient to the public is needed. The media often report on issues of importance to the public; therefore, these reports may be a useful measure of public interest. However, efficient methods for distinguishing diverse topics related to a wildlife management issue reported in the media and changes in the salience of those topics have been lacking. We used latent Dirichlet allocation, a Bayesian mixture model, to quantitatively assess the salience of topics surrounding the gray wolf (Canis lupus), which was reintroduced to Idaho (U.S.A.) in 1995. We analyzed articles published from 1960 to 2015 in an Idaho newspaper. We identified 6 distinct topics associated with gray wolves: policy, hunting, biological status, implementation of management, recovery, and human-wolf conflict. The salience of topics pre- and postreintroduction of wolves (1995) and pre- and postdelisting of wolves from the U.S. Endangered Species Act (2009) differed significantly, underscoring that these events were turning points in how issues were being publicly discussed and framed. Articles written by the local reporters were more likely to report on topics regarding conflict between humans and wolves, whereas articles sourced from a national outlet reported more on topics pertaining to wolf policy and biological status. In the context of managing a contentious, far-ranging, and long-lived wildlife species, our methods can help guide the location and timing of a suite of management strategies (e.g., media relation plans and stakeholder engagement) that promote human-wildlife coexistence across different landscapes.  相似文献   

17.
Given the growing popularity of indicators among policy-makers to measure progress toward conservation and sustainability goals, there is an urgent need to develop indicators that can be used accurately by both specialists and nonspecialists, drawing from the knowledge possessed by each group. This paper uses a case study from the Kalahari, Botswana to show how participatory and ecological methods can be combined to develop robust indicators that are accessible to a range of users to monitor and enhance the sustainability of land management. First, potential environmental sustainability indicators were elicited from pastoralists in three study sites. This knowledge was then evaluated by pastoralists, before being tested empirically using ecological and soil-based techniques. Despite the wealth of local knowledge about indicators, this knowledge was thinly spread. The knowledge was more holistic than published indicator lists for monitoring rangelands, encompassing vegetation, soil, livestock, wild animal, and socioeconomic indicators. Pastoralist preferences for vegetation and livestock indicators match recent shifts in ecological theory suggesting that livestock populations reach equilibrium with key forage resources in semiarid environments. Although most indicators suggested by pastoralists were validated through empirical work (e.g., decreased grass cover and soil organic matter content, and increased abundance of Acacia mellifera and thatching grass), they were not always sufficiently accurate or reliable for objective degradation assessment, showing that local knowledge cannot be accepted unquestioningly. We suggest that, by combining participatory and ecological approaches, it is possible to derive more accurate and relevant indicators than either approach could achieve alone.  相似文献   

18.
Abstract: The Italian wolf ( Canis lupus ) population has declined continuously over the last few centuries and become isolated as a result of the extermination of other populations in central Europe and the Alps during the nineteenth century. In the 1970s, approximately 100 wolves survived in 10 isolated areas in the central and southern Italian Apennines. Loss of genetic variability, as suggested by preliminary studies of mitochondrial DNA (mtDNA) sequences, hybridization with feral dogs, and the illegal release of captive, non-native wolves are considered potential threats to the viability of the Italian wolf population. We sequenced 546 base pairs of the mtDNA control region in a comprehensive set of Italian wolves and compared them to those of dogs and other wolf populations from Europe and the Near East. Our data confirm the absence of mtDNA variability in Italian wolves: all 101 individuals sampled across their distribution in Italy had the same, unique haplotype, whereas seven haplotypes were found in only 26 wolves from an outbred population in Bulgaria. Most haplotypes were specific either to wolves or dogs, but some east European wolves shared haplotypes with dogs, indicative of hybridization. In contrast, neither hybridization with dogs nor introgression of non-native wolves was detected in the Italian population. These findings exclude the introgression of dog genes via matings between male wolves and female dogs, the most likely direction of hybridization. The observed mtDNA monomorphism is the possible outcome of random drift in the declining and isolated Italian wolf population, which probably existed at low effective population size during the last 100–150 years. Low effective population size and the continued loss of genetic variability might be a major threat to the long-term viability of Italian wolves. A controlled demographic increase, leading to recolonization of the historical wolf range in Italy, should be enforced.  相似文献   

19.
This paper describes the conceptualization and implementation of an agent-based model to investigate how varying levels of human presence could affect elements of wolf behavior, including highway crossings; use of areas in proximity to roads and trails; size of home ranges; activities, such as hunting, patrolling, resting, and feeding pups; and survival of individuals in Banff and Kootenay National Parks, Canada. The model consists of a wolf module as the primary component with five packs represented as cognitive agents, and grizzly bear, elk, and human modules that represent dynamic components of the environment. A set of environmental data layers was used to develop a friction model that serves as a base map representing the landscape over which wolves moved. A decision model was built to simulate the sequence of wolf activities. The model was implemented in a Java Programming Language using RePast, an agent-based modeling library. Six months of wolf activities were simulated from April 16 to October 15 (i.e., a season coherent with regard to known wolf behaviors), and calibrated with GPS data from wolf radiocollars (n = 15) deployed from 2002 to 2004. Results showed that the simulated trajectories of wolf movements were correlated with the observed trajectories (Spearman's rho 0.566, P < 0.001); other critical behaviors, such as time spent at the den and not traveling were also correlated. The simulations revealed that wolf movements and behaviors were noticeably affected by the intensity of human presence. The packs’ home ranges shrank and wolves crossed highways less frequently with increased human presence. In an extreme example, a wolf pack whose home range is traversed by a high-traffic-volume highway was extirpated due to inability to hunt successfully under a scenario wherein human presence levels were increased 10-fold. The modeling prototype developed in this study may serve as a tool to test hypotheses about human effects on wolves and on other mammals, and guide decision-makers in designing management strategies that minimize impacts on wolves and on other species functionally related to wolves in the ecosystem.  相似文献   

20.
Centrality metrics evaluate paths between all possible pairwise combinations of sites on a landscape to rank the contribution of each site to facilitating ecological flows across the network of sites. Computational advances now allow application of centrality metrics to landscapes represented as continuous gradients of habitat quality. This avoids the binary classification of landscapes into patch and matrix required by patch-based graph analyses of connectivity. It also avoids the focus on delineating paths between individual pairs of core areas characteristic of most corridor- or linkage-mapping methods of connectivity analysis. Conservation of regional habitat connectivity has the potential to facilitate recovery of the gray wolf (Canis lupus), a species currently recolonizing portions of its historic range in the western United States. We applied 3 contrasting linkage-mapping methods (shortest path, current flow, and minimum-cost-maximum-flow) to spatial data representing wolf habitat to analyze connectivity between wolf populations in central Idaho and Yellowstone National Park (Wyoming). We then applied 3 analogous betweenness centrality metrics to analyze connectivity of wolf habitat throughout the northwestern United States and southwestern Canada to determine where it might be possible to facilitate range expansion and interpopulation dispersal. We developed software to facilitate application of centrality metrics. Shortest-path betweenness centrality identified a minimal network of linkages analogous to those identified by least-cost-path corridor mapping. Current flow and minimum-cost-maximum-flow betweenness centrality identified diffuse networks that included alternative linkages, which will allow greater flexibility in planning. Minimum-cost-maximum-flow betweenness centrality, by integrating both land cost and habitat capacity, allows connectivity to be considered within planning processes that seek to maximize species protection at minimum cost. Centrality analysis is relevant to conservation and landscape genetics at a range of spatial extents, but it may be most broadly applicable within single- and multispecies planning efforts to conserve regional habitat connectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号