首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We investigated the possibility of re-using remediated soils for new bioremediation projects by spiking these soils with waste oil sludge in laboratory based microcosms. The level of Total Petroleum Hydrocarbon (TPH) reduction was high (>80%) in naturally attenuated microcosms and was not significantly improved by biostimulation, bioaugmentation and the combined treatment of bioaugmentation and biostimulation by week 12. This indicated that the observed TPH reduction might have been related to the soil's inherent hydrocarbon-degrading potential. Microbial community analysis (16S rDNA and ITS-based Denaturing Gradient Gel Electrophoresis fingerprints) confirmed the dominance of hydrocarbon degrading genera such as Alcanivorax and Scedosporium. Cluster and Shannon diversity analysis revealed similar but stable bacterial and fungal communities in naturally attenuated and amended microcosms indicating that rapid reduction in TPH may not always be accompanied by changes in soil microbial communities. This study has therefore shown that soils previously used for bioremediation can have an improved hydrocarbon degrading potential which was successfully re-harnessed for new projects. This ability to re-harness this potential is attractive because it substantially reduces operational costs as no additional bioremediation treatments are needed. It can also extend a landfill's lifespan as soils can be re-used again before landfill disposal.  相似文献   

2.
植物及微生物联合修复石油-重金属复合污染土壤具有很大的潜力。但重金属以不同形态存在关系到石油-重金属复合污染土壤生物修复过程中,植物、微生物的修复效率以及是否需要增加辅助工程解决重金属污染等问题,因此石油-重金属复合污染土壤修复过程中就必须考虑重金属有效态及形态的变化特征。  相似文献   

3.
石油是一种具有生物毒性的复杂有机物,土壤中石油烃的过量积累会给生态环境和人类健康造成严重威胁。微生物联合修复技术因处理成本低、环境影响小、无二次污染等优点,且较微生物修复或植物修复效率更高,耗时更短,成为当前的研究热点。文章介绍了植物-微生物联合修复、电动-微生物联合修复、氧化-微生物联合修复和表面活性剂强化微生物修复四种联合修复技术,简要阐述了修复机理、适用范围和工艺参数,为生物修复技术的选择提供了参考,并对以后生物修复的研究重点进行了展望。  相似文献   

4.
Summary Bioremediation has become an important method for the treatment of terrestrial oil spills and is often favoured over strictly physical-chemical methods. In this study, enzymatic analyses and signature lipid biomarkers were employed to evaluate the efficacy of selected bioremediation products on control and oil contaminated soil plots. It is envisioned that these biological indicators may be used as possible adjuncts to the strictly physical-chemical criteria most commonly employed. The application of the enzymatic and signature biomarker methods for product evaluation proved successful. The enzymatic assays provided a valuable insight into shifts in the functional diversity of the soil microbial communities resultant from the various treatments. Stimulation or inhibition of the microbial communities as a result of the various treatments was also demonstrated, particularly with regards to dehydrogenase activity. Phospholipid fatty acid profiles proved sufficiently sensitive to allow differentiation between products and resultant microbial communities that corresponded to satisfactory and unsatisfactory petroleum hydrocarbon removal.  相似文献   

5.
This exploratory laboratory study was undertaken to develop and test an in situ bioremediation system intended to point the way toward a possible field application. The proposed method uses a water table management (WTM) system to deliver nutrients or other amendments to subsoil microorganisms for biostimulation and subsequent biodegradation of pollutants in the saturated and unsaturated zones of the soil. The study was carried out on packed soil columns and bioremediation of residual fertilizer nitrate was attempted. Different levels of organic carbon supplement (glucose C) were introduced into these columns via subirrigation in order to supplement the readily available organic carbon levels in the soil. The study was carried out in two experimental setups. The first setup investigated (i) the effect of addition of a high (970 mg L(-1)) and a low (120 mg L(-1)) glucose C level and (ii) the efficacy of using the subirrigation system as a method for nutrient delivery in bioremediation of leached nitrate. This setup was monitored with time, depth, and with reference to the nitrate residue in the soil solution. Leached nitrate was denitrified to less than 10 mg L(-1) nitrate N at both glucose levels. The second setup investigated the effect of a range of low levels of glucose C on nitrate decontamination, soil pH, and total microbial count in order to find out an optimal glucose C level that reduced the most nitrate and maintained the pH homeostasis of soil.  相似文献   

6.
石油污染生物修复技术研究   总被引:2,自引:0,他引:2  
谢丹平 《四川环境》2006,25(4):109-112
本文概述了影响石油污染物生物降解修复处理的多种因素,对石油污染生物处理技术的发展进行了展望。其中主要影响因素包括:菌种的影响,菌种在不同的环境中和对不同碳链长度的碳氢化合物表现出不同的降解效率;石油物质本身物理化学特性的影响,如石油物质在水体或土壤中的浓度以及石油的粘度、沸点、折射率等特性;生存环境条件的影响,在接种入高效率的降解菌或利用土著微生物进行降解时,降解率受到生存环境中各种条件的影响,如表面活性剂、光照条件、吸附剂的利用、营养盐、共代谢底物、氧气、温度、盐度等。  相似文献   

7.
This paper communicates the effect of bioremediation on the performance of Okro plant (Abelmoshus esculentus) in a typical Niger Delta soil that has received 5% crude oil pollution level. Biodegrading bacteria such as Pseudomonas fluorescen, Acinetobacteria iwofii, Bacillus subtilus, Arthrobacter globiformis that was isolated from previously polluted soils was introduced into the samples. The treatment combinations are as follows (A) = control without crude oil; B = soil + crude oil, (C) = soil + crude oil + microbes, (D) = soil + crude oil + microbes, (E) = soil + crude oil + microbes + fertilizer (F) soil + microbes and (G) = soil + fertilizer. The treatment (E) gave the highest number of leaves, % crop emergence, plant biomass, microbial population and degradation of petroleum hydrocarbon compared to any of the treatments that had received crude oil. This suggested that fertilizer application does not only stimulate microbial growth but it provides the plant with more available nutrients required for plant growth.  相似文献   

8.
Reclamation of trace element polluted soils often requires the improvement of the soil quality by using appropriate organic amendments. Low quality compost from municipal solid waste has been tested for reclamation of soils, but these materials can provide high amounts of heavy metals. Therefore, a high-quality compost, with low levels of heavy metals, produced from the main by-product of the Spanish olive oil extraction industry ("alperujo") was evaluated for remediation of soils affected by a pyritic mine sludge. Two contaminated soils were selected from the same area: they were characterised by differing pH values (4.6 and 7.3) and total metal concentrations, which greatly affected the fractionation of the metals. Compost was applied to soil at two rates (equivalent to 48 and 72 Tm ha(-1)) and compared with an inorganic fertiliser treatment. Compost acted as an available nutrient source (C, N and P) and showed a low mineralisation rate, suggesting a slow release of nutrients and thus favouring long term soil fertility. In addition, the liming effect of the compost led to a significant reduction of toxicity for soil microorganisms in the acidic soil and immobilisation of soil heavy metals (especially Mn and Zn), resulting in a clear increase in both soil microbial biomass and nitrification. Such positive effects were clearly greater than those provoked by the mineral fertiliser even at the lowest compost application rate, which indicates that this type of compost can be very useful for bioremediation programmes (reclamation and revegetation of polluted soils) based on phytostabilisation strategies.  相似文献   

9.
Remediation technologies for heavy metal contaminated groundwater   总被引:9,自引:0,他引:9  
The contamination of groundwater by heavy metal, originating either from natural soil sources or from anthropogenic sources is a matter of utmost concern to the public health. Remediation of contaminated groundwater is of highest priority since billions of people all over the world use it for drinking purpose. In this paper, thirty five approaches for groundwater treatment have been reviewed and classified under three large categories viz chemical, biochemical/biological/biosorption and physico-chemical treatment processes. Comparison tables have been provided at the end of each process for a better understanding of each category. Selection of a suitable technology for contamination remediation at a particular site is one of the most challenging job due to extremely complex soil chemistry and aquifer characteristics and no thumb-rule can be suggested regarding this issue. In the past decade, iron based technologies, microbial remediation, biological sulphate reduction and various adsorbents played versatile and efficient remediation roles. Keeping the sustainability issues and environmental ethics in mind, the technologies encompassing natural chemistry, bioremediation and biosorption are recommended to be adopted in appropriate cases. In many places, two or more techniques can work synergistically for better results. Processes such as chelate extraction and chemical soil washings are advisable only for recovery of valuable metals in highly contaminated industrial sites depending on economical feasibility.  相似文献   

10.
微生物强化修复盐渍化石油污染土壤研究*   总被引:2,自引:0,他引:2  
采集东营地区石油污染土壤,进行微生物修复实验研究。考察投加复合菌株CM-13是否能够加速生物修复进程以及土壤中石油污染物质降解的影响因素。石油污染土壤经过90 d的处理,在含水量一定的前提下,复合菌株CM-13对于石油污染物质的加速降解作用显著,当复合菌株CM-13接种量为土壤质量的10%时修复效果较好。微生物的生长与营养盐的量存在最佳匹配值,土壤中氮的最佳含量为0.20%,磷的最佳含量为0.05%。实验中随着麦糠投加量的增大,石油类的降解率逐渐增大,当麦糠量为土壤体积分数的25%时,对土壤的修复效果最好。  相似文献   

11.
ABSTRACT: Dense nonaqueous phase liquid (DNAPL) contaminated ground water has proven to be exceptionally difficult to remediate for both physical and chemical reasons. Since DNAPL's are denser than water, their movement is not governed by the direction of ground water flow as is generally the case for other ground water contaminants. Additionally, DNAPLs' interactions with aquifer solids through processes such as sorption tend to make the pollution linger or sometimes apparently disappear, only to return later. Unfortunately, pump-and-treat systems, the traditional way ground water contamination is addressed, have not been effective in cleaning DNAPL contaminated water. Other remediation technologies continue to be developed to address these problems. Policy changes will also be necessary to effectively address the difficulties associated with ground water remediation.  相似文献   

12.
In recent years, the adsorption of heavy metal cations onto bacterial surfaces has been studied extensively. This paper reports the findings of a study conducted on the heavy metal ions found in mine effluents from a mining plant where Co2+ and Ni2+ bearing minerals are processed. Heavy metal ions are reported to be occasionally present in these mine effluents, and the proposed microbial sorption technique offers an acceptable solution for the removal of these heavy metals. The sorption affinity of microorganisms for metal ions can be used to select a suitable microbial sorbent for any particular bioremediation process. Interactions of heavy metal ions (Co2+ and Ni2+) and light metal ions (Mg2+ and Ca2+) with indigenous microbial cells (Brevundimonas spp., Bacillaceae bacteria and Pseudomonas aeruginosa) were investigated using the Langmuir adsorption isotherm, pseudo second-order reaction kinetics model and a binary-metal system. Equilibrium constants and adsorption capacities derived from these models allowed delineation of the effect of binding affinity and metal concentration ratios on the overall adsorption behaviour of microbial sorbents, as well as prediction of performance in bioremediation systems. Although microbial sorbents used in this study preferentially bind to heavy metal ions, it was observed that higher concentrations (>90 mg/?) of light metal ions in multi-metal solutions inhibit the adsorption of heavy metal ions to the bacterial cell wall. However, the microbial sorbents reduced Ni2+ levels in the mine-water used (93–100% Ni2+ removal) to below the maximum acceptable limit of 350 μg/?, established by the South African Bureau of Standards. Competition among metal ions for binding sites on the biomaterial surface can occur during the bioremediation process, but microbial sorption affinity for heavy metal ions can enhance their remediation in dilute (<5 mg/? heavy metal) wastewaters.  相似文献   

13.
Heap leaching is an effective and widely used method of recovering metals from low-grade ores. However, the heap leaching technique has not yet been used in other biotechnological processes such as bioremediation. This work describes biostimulation of the native microbial consortium as a novel application of the heap leaching technique to bioremediate mining soils contaminated with hydrocarbons. Microorganisms present in the polluted soil were isolated in a liquid mineral solution using diesel fuel as the sole energy and carbon source. Biodegradation activity was evaluated and two genera, Flavobacterium and Aspergillus, were identified as the primary microorganisms that degraded hydrocarbons in the polluted soil. In order to simulate the heap leaching process on a laboratory scale, using both columns and piles, the contaminated soil was mixed with different sand concentrations and was agglomerated before it was used. Three flow rates, of the mineral solution, were evaluated. Of the rates tested, biodegradation was most efficient at a flow rate of 200 ml h(-1). The heap leaching technique demonstrated good efficiency in the column and pile, with a 2% soil-sand mixture lowering the TPH concentration from 61,000 to 1800 mg kg(-1) (98.5%) in 15 d.  相似文献   

14.
This study was conducted to improve the pentachlorophenol (PCP) bioremediation ability of white-rot fungi in highly contaminated field soils by manipulating bioaugmentation variables. These were the dry weight percentage of fungal inoculum addition (31-175 g kg(-1)), PCP concentration (100-2137 mg kg(-1) PCP), fungal inoculum formulation, and time (1-7 wk). Five fungal isolates were used: the New Zealand isolates Trametes versicolor (L.: Fr.) HR131 and Trametes sp. HR577; the North American isolates Phanerochaete chrysosporium Burds. (two isolates) and Phanerochaete sordida (Karst.) Erikss. & Ryv. Pentachlorophenol removal, manganese peroxidase, and laccase activity, and the formation of chloroanisoles in the contaminated field soils were measured. The majority of PCP removed by the Trametes isolates was in the first week after bioaugmentation. The maximum PCP removal by the fungi varied from 50 to 65% from a 1065 mg kg(-1) PCP contaminated field soil. Pentachlorophenol was preferentially converted to pentachloroanisole (PCA) by the Phanerochaete isolates (>60%), while 2 to 9% of the PCP removed by two Trametes isolates was converted to PCA. A pH increase was measured following bioaugmentation that was dependent on PCP concentration, fungal inoculum addition, and formulation. This, together with rapid initial PCP removal, possibly changed the bioavailability of the remaining PCP to the fungi and significantly decreased the sequestering of PCP in the contaminated field soils. The research supports the conclusion that New Zealand Trametes spp. can rapidly remove PCP in contaminated field soils. Bioavailability and extractability of PCP in the contaminated field soil may significantly increase after bioaugmentation.  相似文献   

15.
Pit lakes (abandoned flooded mine pits) represent a potentially valuable water resource in hot arid regions. However, pit lake water is often characterised by low pH with high dissolved metal concentrations resulting from Acidic and Metalliferous Drainage (AMD). Addition of organic matter to pit lakes to enhance microbial sulphate reduction is a potential cost effective remediation strategy. However, cost and availability of suitable organic substrates are often limiting. Nevertheless, large quantities of sewage and green waste (organic garden waste) are often available at mine sites from nearby service towns. We treated AMD pit lake water (pH 2.4) from tropical, North Queensland, Australia, with primary-treated sewage sludge, green waste, and a mixture of sewage and green waste (1:1) in a controlled microcosm experiment (4.5 L). Treatments were assessed at two different rates of organic loading of 16:1 and 32:1 pit water:organic matter by mass. Combined green waste and sewage treatment was the optimal treatment with water pH increased to 5.5 in only 145 days with decreases of dissolved metal concentrations. Results indicated that green waste was a key component in the pH increase and concomitant heavy metal removal. Water quality remediation was primarily due to microbially-mediated sulphate reduction. The net result of this process was removal of sulphate and metal solutes to sediment mainly as monosulfides. During the treatment process NH(3) and H(2)S gases were produced, albeit at below concentrations of concern. Total coliforms were abundant in all green waste-treatments, however, faecal coliforms were absent from all treatments. This study demonstrates addition of low-grade organic materials has promise for bioremediation of acidic waters and warrants further experimental investigation into feasibility at higher scales of application such as pit lakes.  相似文献   

16.
固定化微生物修复石油污染土壤特性试验   总被引:2,自引:0,他引:2  
利用梯度稀释法分离筛选原油降解混合菌,采用吸附法将混合菌固定在砾石和草炭土上,探讨固定化混合菌对土壤石油烃的去除效果。结果表明:分离得到的混合菌8-2,菌群结构简单,石油烃降解率可达52.1%。与砾石相比,草炭土所固定的微生物数量和活性较高,可达1.3×108 cfu/g和0.24A487。草炭土固定的混合菌8-2,修复含油量为30g/kg的污染土壤30d后,石油烃降解率达28.4%,高于游离降解菌的24.3%。固定化载体草炭土在修复过程中起到了微生物缓释剂的作用。  相似文献   

17.
The biogeochemistry related to iron- and sulfate-reducing conditions influences the fate of contaminants such as petroleum hydrocarbons, trace metals, and radionuclides (i.e., uranium) released into the subsurface. An understanding of these processes is imperative to successfully predict the fate of contaminants during bioremediation scenarios. A series of flow-through sediment column experiments were performed to determine if the commencement of sulfate-reducing conditions would occur while bioavailable Fe(III) was present and to determine how the bioreduction of a contaminant (uranium) was affected by the switch from iron-dominated to sulfate-dominated reducing conditions. The results presented herein demonstrated that, under biostimulation, sulfate reduction can commence even though a significant pool of bioavailable Fe(III) is present. In addition, the rate of U(VI) reduction was not negatively affected by the commencement of sulfate-reducing conditions.  相似文献   

18.
三氯乙烯污染地下水的原位修复技术研究及应用现状   总被引:3,自引:0,他引:3  
三氯乙烯(TCE)在工业生产中的大规模使用,使其成为土壤和地下水中分布最广泛的污染物之一。本文综述了TCE污染地下水的原位修复方法,包括化学氧化法、电动修复法、生物修复以及渗透反应格栅技术,文章并对今后研究发展趋势进行了讨论。  相似文献   

19.
This paper presents a hybrid technology of soil remediation based on the integration of biodegradation and electroosmosis. We employed soils with different texture (clay soil and loamy sand) containing a mixture of polycyclic aromatic hydrocarbons (PAH) present in creosote, and inoculation with a representative soil bacterium able to degrade fluorene, phenanthrene, fluoranthene, pyrene, anthracene, and benzo[a]pyrene. Two different modes of treatment were prospected: (i) inducing in soil the simultaneous occurrence of biodegradation and electroosmosis in the presence of a biodegradable surfactant, and (ii) treating the soils sequentially with electrokinetics and bioremediation. Losses of PAH due to simultaneous biodegradation and electroosmosis (induced by a continuous electric field) were significantly higher than in control cells that contained the surfactant but no biological activity or no current. The method was especially successful with loamy sand. For example, benzo[a]pyrene decreased its concentration by 50% after 7 d, whereas 22 and 17% of the compound had disappeared as a result of electrokinetic flushing and bioremediation alone, respectively. The use of periodical changes in polarity and current pulses increased by 16% in the removal of total PAH and in up to 30% of specific compounds, including benzo[a]pyrene. With the aim of reaching lower residual levels through bioremediation, an electrokinetic pretreatment was also evaluated as a way to mobilize the less bioaccessible fraction of PAH. Residual concentrations of total biodegradable PAH, remaining after bioremediation in soil slurries, were twofold lower in electrokinetically pretreated soils than in untreated soils. The results indicate that biodegradation and electroosmosis can be successfully integrated to promote the removal of PAH from soil.  相似文献   

20.
Phytoremediation offers an ecologically and economically attractive remediation technique for soils contaminated with polycyclic aromatic hydrocarbons (PAHs). In addition to the choice of plant species, agronomic practices may affect the efficiency of PAH phytoremediation. Inorganic nutrient amendments may stimulate plant and microbial growth, and clipping aboveground biomass might stimulate root turnover, which has been associated with increases in soil microbial populations. To assess the influence of fertilization and clipping on PAH dissipation in a nutrient-poor, aged PAH-contaminated soil, a 14-mo phytoremediation study was conducted using perennial ryegrass (Lolium perenne) as a model species. Six soil treatments were performed in replicate: unplanted; unplanted and fertilized; planted; planted and fertilized; planted and clipped; and planted, clipped, and fertilized. Plant growth, soil PAH concentrations, and the concentrations of total and PAH-degrading microorganisms were measured after 7 and 14 mo. Overall, planting (with nearly 80% reduction in total PAHs) and planting + clipping (76% reduction in total PAHs) were the most effective treatments for increased PAH dissipation after 14 mo. Fertilization greatly stimulated plant and total microbial growth, but negatively affected PAH dissipation (29% reduction in total PAHs). Furthermore, unplanted and fertilized soils revealed a similar negative impact (25% reduction) on PAH dissipation after 14 mo. Clipping did not directly affect PAH dissipation, but when combined with fertilization (61% reduction in total PAHs), appeared to mitigate the negative impact of fertilization on PAH dissipation. Therefore, fertilization and clipping may be included in phytoremediation design strategies, as their combined effect stimulates plant growth while not affecting PAH dissipation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号