首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phytoremediation is a promising technique for cleaning petroleum contaminated soils. In this study, the effects of two grass species (Festuca arundinacea Schreb. and Festuca pratensis Huds.), infected (E(+)) and non-infected (E(-)) by endophytic fungi (Neotyphodium coenophialum and Neotyphodium uncinatum, respectively) on the degradation of petroleum hydrocarbons in an aged petroleum contaminated soil was investigated. Plants were grown in the soil for 7 months and unplanted soil considered as control. At the end of the experiment, total and oil-degrading bacteria, dehydrogenase activity, water-soluble phenols, total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs) contents were measured in the soil. The results demonstrated that E(+) plants contained more root and shoot biomass than E(-) plants and created higher levels of water-soluble phenols and dehydrogenase activity in the soil, while there was no significant difference in bacterial counts of planted soils. Planting stimulated total and oil-degrading bacterial numbers, dehydrogenase activity and the soil content of water-soluble phenols. Regardless of endophyte infection, PAH and TPH removal in the rhizosphere of plants were 80-84 and 64-72% respectively, whereas the removals in controls were 56 and 31%, respectively. It was revealed that TPHs in retention time range of n-alkanes with C(10)-C(25) chain lengths and TPH were more degraded in the rhizosphere of E(+) plants compared to E(-) ones. Thus, grasses infected with endophytic fungi could be more efficient for removal of TPH from oil-contaminated soils.  相似文献   

2.
The Intergovernmental Panel of Climate Change (IPCC) has concluded that the greenhouse gases carbon dioxide (CO2) and tropospheric ozone (O3) are increasing concomitantly globally. Little is known about the effect of these interacting gases on growth, survival, and productivity of forest ecosystems. In this study we assess the effects of three successive years of exposure to combinations of elevated CO2 and O3 on growth responses in a five trembling aspen (Populus tremuloides) clonal mixture in a regenerating stand. The experiment is located in Rhinelander, Wisconsin, USA (45 degrees N 89 degrees W) and employs free air carbon dioxide and ozone enrichment (FACE) technology. The aspen stand was exposed to a factorial combination of four treatments consisting of elevated CO2 (560 ppm), elevated O3 (episodic exposure-90 microl l(-1) hour(-1)), a combination of elevated CO2 and O3, and ambient control in 30 m treatment rings with three replications. Our overall results showed that our three growth parameters including height, diameter and volume were increased by elevated CO2, decreased by elevated O3, and were not significantly different from the ambient control under elevated CO2 + O3. However, there were significant clonal differences in the responses; all five clones exhibited increased growth with elevated CO2, one clone showed an increase with elevated O3, and two clones showed an increase over the control with elevated CO2 + O3, two clones showed a decrease, and one was not significantly different from the control. Notably. there was a significant increase in current terminal shoot dieback with elevated CO2 during the 1999-2000 dormant season. Dieback was especially prominent in two of the five clones, and was attributed to those clones growing longer into the autumnal season where they were subject to frost. Our results show that elevated O3 negates expected positive growth effects of elevated CO2 in Populus tremuloides in the field, and suggest that future climate model predictions should take into account the offsetting effects of elevated O3 on CO2 enrichment when estimating future growth of trembling aspen stands.  相似文献   

3.
CO(2) enrichment is expected to alter leaf demand for nitrogen and phosphorus in plant species with C(3) carbon dioxide fixation pathway, thus possibly causing nutrient imbalances in the tissues and disturbance of distribution and redistribution patterns within the plants. To test the influence of CO(2) enrichment and elevated tropospheric ozone in combination with different nitrogen supply, spring wheat (Tritium aestivum L. cv. Minaret) was exposed to three levels of CO(2) (361, 523, and 639 microl litre(-1), 24 h mean from sowing to final harvest), two levels of ozone (28.4 and 51.3 nl litre(-1)) and two levels of nitrogen supply (150 and 270 kg ha(-1)) in a full-factorial design in open-top field chambers. Additional fertilization experiments (120, 210, and 330 kg N ha(-1)) were carried out at low and high CO(2) levels. Macronutrients (N, P, K, S, Ca, Mg) and three micronutrients (Mn, Fe, Zn) were analysed in samples obtained at three different developmental stages: beginning of shoot elongation, anthesis, and ripening. At each harvest, plant samples were separated into different organs (green and senescent leaves, stem sections, ears, grains). According to analyses of tissue concentrations at the beginning of shoot elongation, the plants were sufficiently equipped with nutrients. Elevated ozone levels neither affected tissue concentrations nor shoot uptake of the nutrients. CO(2) and nitrogen treatments affected nutrient uptake, distribution and redistribution in a complex manner. CO(2) enrichment increased nitrogen-use efficiency and caused a lower demand for nitrogen in green tissues which was reflected in a decrease of critical nitrogen concentrations, lower leaf nitrogen concentrations and lower nitrogen pools in the leaves. Since grain nitrogen uptake during grain filling depended completely on redistribution from vegetative pools in green tissues, grain nitrogen concentrations fell considerably with severe implications for grain quality. Ca, S, Mg and Zn in green tissues were influenced by CO(2) enrichment in a similar manner to nitrogen. Phosphorus concentrations in green tissues, on the other hand, were not, or only slightly, affected by elevated CO(2). In stems, 'dilution' of all nutrients except manganese was observed, caused by the huge accumulation of water soluble carbohydrates, mainly fructans, in these tissues under CO(2) enrichment. Whole shoot uptake was either remarkably increased (K, Mn, P, Mg), nearly unaffected (N, S, Fe, Zn) or decreased (Ca) under CO(2) enrichment. Thus, nutrient cycling in plant-soil systems is expected to be altered under CO(2) enrichment.  相似文献   

4.
The winter ephemeral Dimorphotheca pluvialis was grown in open-top chambers in ambient or elevated CO2 (350 or 650 micromol mol(-1)), combined with ambient (2.39 to 7.59 kJ m(-2) d(-1)) or increased (4.94 to 11.13 kJ m(-2) d(-1)) UV-B radiation. Net CO2 assimilation rate and leaf water use efficiency increased in elevated CO2, but increased UV-B did not affect gas exchange. Leaf biomass was greater under increased UV-B, but vegetative biomass was unaffected in elevated CO2. Initiation of reproduction was delayed, and proportional investment in reproductive biomass at harvest was reduced in elevated CO2. Increased UV-B stimulated reproduction, particularly in ambient CO2, but also in elevated CO2 at a later stage. Changes in reproductive phenology and prolonged development in elevated CO2 during the stressful late season could indirectly be detrimental to reproductive success of D. pluvialis, but stimulation of reproduction by enhanced UV-B may to some extent mitigate this.  相似文献   

5.
Dilly O  Blume HP  Sehy U  Jimenez M  Munch JC 《Chemosphere》2003,52(3):557-569
Land use and agricultural practices modify both the amounts and properties of C and N in soil organic matter. In order to evaluate land use and management-dependent modifications of stable and labile C and N soil pools, (i). organic C and total N content, (ii). microbial (C(mic)) and N (N(mic)) content and (iii). C and N mineralisation rates, termed biologically active C and N, were estimated in arable, grassland and forest soils from northern and southern Germany. The C/N-ratios were calculated for the three levels (i)-(iii) and linked to the eco-physiological quotients of biotic-fixed C and N (C(mic)/C(org), N(mic)/N(t)) and biomass-specific C and N mineralisation rate (qCO(2), qN(min)). Correlations could mainly be determined between organic C, total N, C(mic), N(mic) and C mineralisation for the broader data set of the land use systems. Generally, the mineralisation activity rate at 22 degrees C was highly variable and ranged between 0.11 and 17.67 microg CO(2)-C g(-1) soil h(-1) and -0.12 and 3.81 microg (deltaNH(4)(+)+deltaNO(3)(-))-N g(-1) soil h(-1). Negative N data may be derived from both N immobilisation and N volatilisation during the experiments. The ratio between C and N mineralisation rate differed significantly between the soils ranging from 5 to 37, and was not correlated to the soil C/N ratio and C(mic)/N(mic) ratio. The C/N ratio in the 'biologically active' pool was significantly smaller in soils under conventional farming than those under organic farming systems. In a beech forest, it increased from the L, Of to the Ah horizon. The biologically active C and N pools refer to the current microbial eco-physiology and are related to the need for being C and N use efficient as indicated by metabolic qCO(2) and qN(min) quotients.  相似文献   

6.
In this study, (1) change in the concentration of bisphenol A (BPA) leached from polycarbonate (PC) tube to control water (BPA free), seawater and river water at 20 and 37 degrees C as a function of time, (2) the fate of BPA caused by addition of H(2)O(2) and Fe(3+) to seawater containing BPA leached from PC tube were assessed. BPA leached from PC tube to all water samples increased with the ascendant of temperature and with the passage of time. The BPA leaching velocity in seawater was the fastest in three samples (11 ng/day for seawater, 4.8 ng/day for river water 0.8 ng/day for control water at 37 degrees C).BPA leaching velocity from PC tube was significantly high at pH 8 (50 mM Na(2)HPO(4)) and increased dose-dependently. There was no difference in the velocity of BPA among the 50 mM phosphate-buffers at pH 6.5, 7.0 and 7.5. BPA was leached three times higher by addition of Na(+) than K(+). However, the higher the K(+) concentration, the larger the BPA leached from PC tube. Na(+) mixed with PO(4)(-) was effective on BPA leaching from PC tube, but not with SO(4)(-) or Cl(-). The results suggested that BPA leaching from PC tube would be attributed to the concentration of bibasic phosphate such as Na(2)HPO(4) and K(2)HPO(4) in water samples. BPA was degraded in both control water and seawater in the presence of radical oxygen species, but the degradation rate was lower in seawater than in control water, suggesting that anti-oxidative system exists in seawater. Neo-synthesized substance in both control water and seawater in the presence of reactive oxygen species was identified as BPA-quinone by LC-MS.  相似文献   

7.
Airborne particulate matter (PM(10)) was collected from July 1997 to July 1998 at three locations in the city of Thessaloniki. PM(10) samples were analyzed for Cl(-), NO3(-), SO4(2-), Ca(2+), Mg(2+), Na(+), K(+) and NH4(+). The average PM(10) concentrations were found similar in all three sites with higher values in cold period. The ionic content comprised the 17-23% of the PM(10) mass and sulfate made up the 35-38% of the PM(10) ionic content with an average concentration of 4.80-7.26 microg m(-3). Good correlation was found for SO4(2-) and NO3(-) with Ca(2+), Mg(2+) and Cl(-). Two factors were found to influence the variance of ionic constituents in PM(10) by using factor analysis. Data evaluation considering wind direction showed that higher PM(10) and other ionic concentrations are associated with calm conditions, suggesting influences of local sources.  相似文献   

8.
In 1988 the effect of ambient levels of air pollutants on the nutrients status and grain quality of spring wheat (Triticum aestivum cv. Pelican) was investigated by comparing plants grown in open-top chambers (OTC) ventilated with ambient air (NF treatments) and charcoal-filtered air (CF treatments) at a rural site (Tervuren, Belgium). Spring wheat cultivated in NF OTC showed only minor differences in the P, K, Ca, Mg, Mn and Na concentrations of the different plant parts at final harvest, as well as organic and inorganic S fractions, compared to those of the plants grown in CF air. The plants' total P content was reduced, as well as the P and K concentration of the flour. The total S concentration of the flour was increased by 4%. Effects on N concentrations and grain quality were much more pronounced. At final harvest the N concentrations of straw and flour of the NF air treated plants were much higher compared to CF air. However, the N content of the aerial biomass and the grain N yield were not significantly affected, implying a reduction of other structual compounds. Nitrogen harvest index (NHI) and the ratio of NHI over grain harvest index (GHI), indicated a significant reduction of N translocation from the above-ground biomass to the grain. Changes in the N status and partitioning of spring wheat had an effect on the baking quality of wheat flour. Several parameters that are commonly used as an indication of baking quality have been significantly increased in the NF treatment: total protein concentration, Zeleny value, dry and wet gluten concentration. A slightly increased Hagberg value indicated a reduced alpha-amylase activity. The possibility of foliar N uptake as an additional N source, especially after anthesis and implications of increased protein production instead of carbohydrate synthesis are discussed.  相似文献   

9.
Yan X  Yu D  Li YK 《Chemosphere》2006,62(4):595-601
An approximately four months long glasshouse experiment was conducted to examine the effects of elevated carbon dioxide (CO(2)) concentration (1,000 +/- 50 micromol mol(-1)) in the atmosphere on biomass accumulation and allocation pattern, clonal growth and nitrogen (N), phosphorus (P) accumulation by the submerged plant Vallisneria spinulosa Yan. Elevated CO(2) significantly increased V. spinulosa total fresh biomass ( approximately 130%) after 120 days, due to more biomass accumulation in all morphological organs than in those at ambient CO(2) (390 +/- 20 micromol mol(-1)). About 75% of the additional total biomass at elevated CO(2) was accounted for by leaf and rhizome (above ground) biomass and only 25% of it belonged to root and turion (below ground). However, the turions biomass exhibited a greater increase rate than that of organ above ground, which caused reduction in the above/below ground biomass ratio. The clonal growth of V. spinulosa responded positively to elevated CO(2). The number of primary ramets increased up to 1.4-folds at elevated CO(2) and induced a dense growth pattern. For nutrients absorption, concentration of N in leaf and in turion was significantly (p 相似文献   

10.
The use of plants to decontaminate soils polluted by heavy metals has received considerable attention in recent years as a low-cost technique. Poplars (Populus spp.) can accumulate relatively high levels of certain metals, and have the added advantage of producing biomass that can be used for energy production. A short rotation coppice culture with 13 poplar clones was established on a former waste disposal site, which was moderately polluted with heavy metals. Total content of metals in leaves, wood and bark were determined in August and October/November. Significant clonal differences in accumulation were found for most metals, although clones with the highest concentration of all metals were not found. Cadmium, zinc and aluminium were most efficiently taken up. The lowest concentration was found in wood; the highest concentrations were generally found in senescing leaves, making removal and treatment of fallen leaves necessary.  相似文献   

11.
The effects of harvest intensity (sawlog, SAW; whole tree, WTH; and complete tree, CTH) on biomass and soil C were studied in four forested sites in the southeastern US (mixed deciduous forests at Oak Ridge, TN and Coweeta, NC; Pinus taeda at Clemson, SC: and P. eliottii at Bradford, FL). In general, harvesting had no lasting effects on soil C. However, intensive temporal sampling at the NC and SC sites revealed short-term changes in soil C during the first few years after harvesting, and large, long-term increases in soil C were noted at the TN site in all treatments. Thus, changes in soil C were found even though lasting effects of harvest treatment were not. There were substantial differences in growth and biomass C responses to harvest treatments among sites. At the TN site, there were no differences in biomass at 15 years after harvest. At the SC site, greater biomass was found in the SAW than in the WTH treatment 16 years after harvest, and this effect is attributed to be due to both the N left on site in foliar residues and to the enhancement of soil physical and chemical properties by residues. At the FL site, greater biomass was found in the CTH than in the WTH treatment 15 years after harvest, and this effect is attributed to be due to differences in understory competition. Biomass data were not reported for NC. The effects of harvest treatment on ecosystem C are expected to magnify over time at the SC and FL sites as live biomass increases, whereas the current differences in ecosystem C at the TN site (which are due to the presence of undecomposed residues) are expected to lessen with time.  相似文献   

12.
Wet deposition and related rainwater chemistry were studied at the Itatiaia massif, on which is settled the Itatiaia National Park (INP). Samples were simultaneously collected on a weekly basis over 12 months, using automated wet and dry samplers, at the INP-Headquarters (INP-Hq; altitude=820 m) and the Itatiaia Plateau (It-Pt; altitude=2460 m). Conductivity, pH, Na(+), K(+), Mg(2+), Ca(2+), NH(4)(+), Cl(-), NO(3)(-) and SO(4)(2-) were determined in 36 rainwater samples. Volume-weighted mean (VWM) pH was lower at the INP-Hq (4.9) than at the It-Pt (5.3). Very strong correlation between Cl(-) and Na(+) was found for the INP-Hq (r=0.99). At the Itatiaia massif, SO(4)(2-), NO(3)(-), and NH(4)(+) comprised together about 60% of the total inorganic ions and appear to exert the major control on rainwater pH.  相似文献   

13.
The influence of atmospheric deposition on the chemical characteristics of soil solutions in a small catchment area in NW Spain was studied. The soils, developed from slates, were sampled from seven sites supporting different forms of vegetation (deciduous and pine forest and heath). Soil solutions were extracted, by the column displacement method, from soil samples collected monthly from March 1992 until November 1993. The solutions were acidic with a low content of basic cations. The most common ions in all horizons were Cl(-) and Na(+), due to marine influence. In the surface horizons (0-10 cm), relatively high concentrations of SO(2-)4 (150-380 micromol litre(-1)) and Zn (approximately 2 micromol litre(-1)) were obtained, with good correlation between the two ions. These results, along with the prevalence of inorganic forms of Al (50-90% of total Al), were related to the effects of acidic deposition in the catchment area. The more rapid breakdown of litter in the soils under deciduous forest explains the greater ionic concentrations obtained in these solutions.  相似文献   

14.
15.
A field study was conducted on a Lowell silty loam soil of 2.7% organic matter at the Kentucky State University Research Farm, Franklin County, Kentucky. Eighteen universal soil loss equation (USLE) standard plots (22 x 3.7 m each) were established on a 10% slope. Three soil management practices were used: (i) class-A biosolids (sewage sludge), (ii) yard waste compost, each mixed with native soil at a rate of 50 ton acre(-1) on a dry-weight basis, and (iii) a no-mulch (NM) treatment (rototilled bare soil), used for comparison purposes. Devrinol 50-DF "napropamide" [N,N-diethyl-2-(1-naphthyloxy) propionamide] was applied as a preemergent herbicide, incorporated into the soil surface, and the plots were planted with 60-day-old sweet bell pepper seedlings. Napropamide residues one hour following spraying averaged 0.8, 0.4, and 0.3 microg g(-1) dry soil in sewage sludge, yard waste compost, and no-mulch treatments, respectively. Surface runoff water, runoff sediment, and napropamide residues in runoff were significantly reduced by the compost and biosolid treatments. Yard waste compost treatments increased water infiltration and napropamide residues in the vadose zone compared to sewage sludge and NM treatments. Total pepper yields from yard waste compost amended soils (9187 lbs acre(-1)) was significantly higher (P < 0.05) than yield from either the soil amended with class-A biosolids (6984 lbs acre(-1)) or the no-mulch soil (7162 lbs acre(-1)).  相似文献   

16.
Diffusion coefficients (T=23 +/- 2 degrees C) and accessible porosities for HTO, 36Cl(-) and 125I(-) were measured on Opalinus Clay (OPA) samples from the Mont Terri Underground Rock Laboratory (URL) using the through-diffusion technique. The direction of transport (diffusion) was perpendicular to bedding. Special cells that allowed the application of confining pressure were designed and constructed. The pressures ranged from 1 to 5 MPa, the latter value simulating the overburden at the Mont Terri URL (about 200 m). The test solution used in the experiments was a synthetic version of the Opalinus Clay pore water, which has Na(+) and Cl(-) as the main components (I=0.42 M). The measured values of the effective diffusion coefficients (D(e)) and rock capacity factors (alpha) are: D(e)=1.2-1.5 x 10(-11) m(2) s(-1) and alpha=0.09-0.11 for HTO, D(e)=4.0-5.5 x 10(-12) m(2) s(-1) and alpha=0.05 for 36Cl(-) and D(e)=3.2-4.6 x 10(-12) m(2) s(-1) and alpha=0.07-0.10 for 125I(-). For non-sorbing tracers (HTO, 36Cl) the rock capacity factor alpha is equal to the diffusion-accessible porosity epsilon. The experimental results showed that pressure only had a small effect on the value of the diffusion coefficients. Increasing the pressure from 1 to 5 MPa resulted in a decrease of the diffusion coefficient of approximately 17% for HTO, approximately 28% for 36Cl(-) and approximately 30% for 125I(-). Moreover, the diffusion coefficients for 36Cl(-) and 125I(-) are smaller than for HTO, which is consistent with an effect arising from anion exclusion. The diffusion coefficients of HTO and 125I(-) measured in this study are in good agreement with recent measurements at three other laboratories performed within the framework of a laboratory comparison exercise. The values of the diffusion-accessible porosities show a larger degree of scatter.  相似文献   

17.
Phytomanagement employs vegetation and soil amendments to reduce the environmental risk posed by contaminated sites. We investigated the distribution of trace elements in soils and woody plants from a large phytomanaged site, the Guadiamar Valley (SW Spain), 7 years after a mine spill, which contaminated the area in 1998. At spill-affected sites, topsoils (0-25 cm) had elevated concentrations of As (129 mg kg(-1)), Bi (1.64 mg kg(-1)), Cd (1.44 mg kg(-1)), Cu (115 mg kg(-1)), Pb (210 mg kg(-1)), Sb (13.8 mg kg(-1)), Tl (1.17 mg kg(-1)) and Zn (457 mg kg(-1)). Trace element concentrations in the studied species were, on average, within the normal ranges for higher plants. An exception was white poplar (Populus alba), which accumulated Cd and Zn in leaves up to 3 and 410 mg kg(-1) respectively. We discuss the results with regard to the phytomanagement of trace element contaminated sites.  相似文献   

18.
The effect of NaF addition on pH, organic matter and the solubilities of fifteen elements was investigated on twenty-eight surface soil samples. Four concentrations of NaF were added: 0, 10(-2.7), 10(-1.7) and 10(-1.0)m F in solution. Addition of NaF increased the pH and the solubility of organic matter for all soils. The magnitude of these increases was higher for acid than for alkaline soils. Aluminum, Fe and Ca showed the greatest increases in solubility while Mg, K, Mn and P showed intermediate increases. The elements Cd, Cr, Ni, Cu, Zn, B, Mo and Ba showed only slight increases in solubility. Another experiment was conducted to test whether the effects of NaF on pH, organic matter and the solubilities of various elements were due to F or Na. Four levels of NaCl similar to those for NaF were added to three acid and two alkaline soils. The results confirmed the effects of F on soil pH, organic matter and the solubilities of all elements investigated except those of K, Ca and Mg. Addition of Na as NaF resulted in release of K, Ca and Mg from the exchange sites on solid surfaces into solution.  相似文献   

19.
This work focuses on bulk deposition in a rural area located around a large coal-fired power station in northeast Spain. Deposition chemistry was characterised by high concentrations of SO(4)(2-), Ca(2+) and NH(4)(+), which were relatively high when compared with other rural areas. Monthly bulk deposition evolution of major ions was the result of two superimposed patterns: one pattern related to the volume of precipitation and the other showed the seasonal influence of the major ionic sources. A major local origin was attributed to bulk deposition of SO(4)(2-), NH(4)(+), and Ca(2+), whereas a relatively higher contribution of an external source was deduced for NO(3)(-), Na(+) and Cl(-). The SO(4)(2-) concentrations showed a significant correlation with the local SO(2) emissions. High levels of Ca(2+) were due to the high alkalinity of soils in the study area, although an external origin was attributed to the frequent air mass intrusions from the Sahara. Sources of NH(4)(+) were related to intensive livestock farming in the area. Total suspended particles exert a marked influence over bulk deposition and neutralisation. Thus, despite the high emissions of SO(2) in the area, neutral pH values have always been attained given that the concentrations of Ca(2+) and NH(4)(+) account for the total neutralisation of NO(3)(-) and SO(4)(2-).  相似文献   

20.
The dominant nitrogen (N) fluxes were simulated in a mountain forest ecosystem on dolomitic bedrock in the Austrian Alps. Based on an existing small-scale climate model the simulation encompassed the present situation and a 50-yr projection. The investigated scenarios were current climate, current N deposition (SC1) and future climate (+2.5 degrees C and +10% annual precipitation) with three levels of N deposition (SC2, 3, 4). The microbially mediated N transformation, including the emission of nitrogen oxides, was calculated with PnET-N-DNDC. Soil hydrology was calculated with HYDRUS and was used to estimate the leaching of nitrate. The expected change of the forest ecosystem due to changes of the climate and the N availability was simulated with PICUS. The incentive for the project was the fact that forests on dolomitic limestone stock on shallow Rendzic Leptosols that are rich in soil organic matter are considered highly sensitive to the expected environmental changes. The simulation results showed a strong effect due to increased temperatures and to elevated levels of N deposition. The outflux of N, both as nitrate (6-25kg Nha(-1)yr(-1)) and nitrogen oxides (1-2kg Nha(-1)yr(-1)), from the forest ecosystem are expected to increase. Temperature exerts a stronger effect on the N(2)O emission than the increased rate of N deposition. The main part of the N emission will occur as N(2) (15kg Nha(-1)yr(-1)). The total N loss is partially offset by increased rates of N uptake in the biomass due to an increase in forest productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号