首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Caulerpa paspaloides (Bory) Greville were collected during the winter and summer (1978 to 1979) from the Florida Keys, USA. Thalli collected during the winter photosynthesized more efficiently at low light intensities (Ic<1, Ik=38 Exm-2xs-1) than did thalli collected in the summer (Ic=13, Ik=111 Exm-2xs-1). Summer thalli exhibited higher Pmax values (2.20 mgO2xg-1 dry wtxh-1) than winter thalli (1.70 mg O2xg-1 dry wtxh-1). Rates of rhizome elongation and frond initiation were strongly inhibited by winter temperatures. The maximum lethal temperature for summer thalli was 37° to 38°C as measured by both growth and photosynthesis. No evidence of nitrogen or phosphorus limitation was found. Relatively minor reductions in salinity (3S) resulted in significant increases in rhizome apex motality. Results indicate that low winter temperatures are responsible for reduced winter growth rates previously reported for the Key Largo population. Increased photosynthetic efficiency at low light intensities and preferential maintenance of rhizome elongation over frond initiation appear to allow this tropical macroalga to optimize growth and survival during the winter.  相似文献   

2.
Oxygen evolution and uptake by whole thalli of the large marine alga Laminaria longicruris de la Pylaie were measured for 24 h, once every 2 weeks for a year, using large chambers to incubate the plants on the sea bed. Diel rates of photosynthesis and respiration were calculated from these measurements and continuous light measurements were used to extrapolate the data between observation dates. The resulting estimates were combined with measurements of growth and carbon content to give an annual carbon budget for a typical mature plant. Annual net assimilation was 6.8 mgC per cm2 of frond surface (71 cal cm-2). Approximately 45% of this appeared in the production of new frond tissue, and a further 12% was accounted for by storage of carbon in mature frond tissue. About 8% was needed for stipe growth, and the remaining 35% was assumed to be lost as dissolved organic carbon. Diel net photosynthetic rates reached a maximum in June and July and were negative only in November, indicating an ability to produce a photosynthetic surplus throughout winter. In early winter the plants drew on stored reserves to supplement photosynthesis in providing carbon for growth, but from January onwards photosynthesis provided more than enough carbon for growth.  相似文献   

3.
Rates of net photosynthesis and nocturnal respiration by individual blades of the giant kelp Macrocystis pyrifera (L.) C. Agardh in southern California, were determined in situ by measuring oxygen production in polyethylene bags during spring/summer of 1983. Mature blades from different depths in the water column exhibited different photosynthetic characteristics. Blades from the surface canopy (0 to 1 m depth) exhibited higher photosynthetic capacity under saturating irradiance and higher photosynthetic efficiency at low irradiances than blades from 3 to 5 or 7 to 9 m depths. Saturating irradiance was lower for canopy blades than for deeper blades. Canopy blades showed no short-term photoinhibition, but photosynthetic rates of deeper blades were significantly reduced during 1 to 2 h incubations at high irradiances. Results of 1 to 2 wk acclimation experiments indicated that differences between photosynthetic characteristics of blades from different depths were primarily attributable to acclimation light conditions. Vertical displacement of blades within the kelp canopy occurred on a time-scale of 1 min to 1 h. Blades continually moved between the unshaded surface layer and deeper, shaded layers. Vertical movement did not maximize photosynthesis by individual blades; only a small proportion of blades making up a dense surface canopy maintained light-saturated photosynthetic rates during midday incubations. The relatively high photosynthetic rates exhibited by canopy blades over the entire range of light conditions probably resulted from acclimation to intermittent high and low irradiances, a consequence of vertical displacement. Vertical displacement also reduced the afternoon depression in photosynthesis of individual canopy blades. The overall effect of vertical displacement was optimization of total net photosynthesis by the kelp canopy and, therefore, optimization of whole-plant production.  相似文献   

4.
The sea anemone Anthopleura elegantissima hosts two phylogenetically different symbiotic microalgae, a dinoflagellate Symbiodinium (zooxanthellae, ZX) and a chlorophyte (zoochlorellae, ZC). The photosynthetic productivity (P), respiration (R), and contribution of algal carbon translocated to the host (CZAR) in response to a year’s seasonal ambient changes of natural light and temperature are documented for both ZX- and ZC-bearing anemones. Light and temperature both affect photosynthesis, respiration, and CZAR, as well as various algal parameters; while there are evident seasonal differences, for the most part the relative effects on P, R, and CZAR by the two environmental variables cannot be determined. Net photosynthesis (Pn) of both ZX and ZC was significantly higher during spring and summer. During these seasons, the Pn of ZX was always greater than that of ZC. Regardless of algal symbiont, anemone respiration (R) was significantly higher during the spring and summer. The annual net carbon fixation rate of anemones with ZX and ZC was 325 and 276 mg C anemone−1 year−1, respectively, which translates to annual net community productivity rates of 92 and 60 g C m−1 year−1 for anemones with ZX or ZC, respectively. CZAR did not show a clear relationship with season; however the CZAR for ZX was always significantly greater than for ZC. Lower ZX growth rates, coupled with higher photosynthetic rates and higher CZAR estimates, compared to ZC, suggest that if A. elegantissima is simply carbon limited, ZX-bearing anemones should be the dominant symbiont in the field. However ZC-bearing anemones persist in low light and reduced temperature microhabitats, therefore more than the translocation of carbon from ZC must be involved. Given that global climate change will increase water temperatures, the potential for latitudinal range shifts of both ZC and ZX (S. californium and muscatinei) might be used as biological indicators of thermal shifts in the littoral zone of the Pacific Northwest.  相似文献   

5.
Dissolved inorganic carbon (DIC) is rarely considered limiting for macroalgae, but some research suggests that under conditions of N sufficiency, photosynthetic capacity is enhanced with DIC enrichment. During spring (April–May) and summer (July–August) 1993, we investigated the interactive effects of nitrogen (N) and DIC on photosynthetic capacity, growth, and nutrient uptake rates of the macroalgae, Cladophora vagabunda (L.) van den Hoek and Gracilaria tikvahiae (McLachlan), dominant species in a temperate eutrophic estuary (Cape Cod, Massachusetts, USA). Water-column CO2 concentrations showed significant diurnal fluctuations, ranging from a morning CO2 peak (21 M) to an afternoon low (13 M) during summer, probably associated with metabolic activities in a thick algal mat. Results from instantaneous photosynthesis measurements and microcosm experiments indicate that DIC limits photosynthetic capacity and growth rates of C. vagabunda during summer, perhaps related to tissue N sufficiency and low water-column CO2 concentrations. For example, this species showed enhanced growth (F=8.69, P<0.02) under DIC but not N enrichment. G. tikvahiae showed marginal DIC enhancement of maximum photosynthetic rate, while growth was significantly stimulated by addition of N. Reduced thallus N of this species during the summer further identifies N as the primary factor limiting growth. In addition, G. tikvahiae has the ability to use DIC in its several forms, while C. vagabunda primarily uses dissolved CO2. DIC enrichment resulted in a depression of NH4 + uptake rates for both species, particularly during summer at saturating (60 M) ammonium levels, suggesting competition between NH4 + uptake and DIC acquisition under conditions of N sufficiency. Dominance of C. vagabunda and G. tikvahiae in areas undergoing eutrophication has been attributed to their successful procurement and storage of N as well as to high growth rates. The present study revealed that under conditions of N sufficiency during summer, DIC may control rates of production of these opportunistic macroalgae.  相似文献   

6.
Photosynthesis in whole plants of the salt-marsh algae Fucus vesiculosus and Ulva lactuca was evaluated by 14C-uptake under a variety of light intensities at approximately mately monthly intervals during a 15-month study. Photosynthetic capacity in both species was closely related to seasonal irradiation patterns and changes in field biomass. Maximum photosynthesis occurred in the spring and summer months. Photosynthesis on a dry weight basis was higher in U. lactuca, while photosynthesis on a chlorophyll a basis was equal in both species. Photosynthetic capacity was inversely related to pigment content. Maximum chlorophyll a concentrations occurred during the winter. Frond profile studies in F. vesiculosus indicated that apices always exhibited greatest photosynthetic capacity. Uptake of 14C into ethanol-soluble and insoluble fractions was different in each species. F. vesiculosus showed greater activity in the ethanol-soluble fraction while U. lactuca exhibited greater activity in ethanol-insoluble fractions.This research was supported by Research Grant AG-375 from the National Science Foundation and, in part, by the State University of New York Research Foundation and the Energy Research and Development Administration (ERDA).  相似文献   

7.
The net photosynthesis of intertidal, subtidal, carposporic, tetrasporic, and winter versus summer acclimatized plants of Chondrus crispus Stackhouse were evaluated under different temperatures and quantities of light. The optimum temperature and light conditions for net photosynthesis of C. crispus are seasonally and spatially variable, and there is an adaptive shift in the photosynthetic capacity at different seasons and positions on the shore. Plants collected during the fall and winter had lower light optima (465 to 747 ft-c) for net photosynthesis than spring and summer specimens (about 1000 ft-c). Intertidal populations exhibited a higher rate of net photosynthesis between 250 and 2819 ft-c than subtidal plants. Summer materials have a greater tolerance to high temperatures and a higher temperature optimum than winter materials. Shallow subtidal populations (-6m) exhibited a higher temperature optimum than deep subtidal plants (-12m). Tetrasporic plants (diploid) showed a higher rate of net photosynthesis than carposporic plants (haploid). It is suggested that the diploid plants of C. crispus may extend deeper in the subtidal zone, because they have a higher rate of net photosynthesis than carposporic plants. The results of the present studies are compared with previous physiological studies of C. crispus.Published with the approval of the Director of the New Hampshire Agriculture Experiment Station as Scientific Contribution Number 742.  相似文献   

8.
Although mysids play important roles in marine food chains, studies on their production are scarce, especially for warm-water species. We investigated life history and production of Orientomysis robusta in a shallow warm-temperate habitat of the Sea of Japan. Its spawning and recruitment occurred throughout the year; 19 overlapping cohorts were recognizable over an annual cycle. The summer cohorts recruited in July–September exhibited rapid growth, early maturity, small brood size, and small body size. A converse set of life history traits characterized the autumn–winter cohorts recruited in October–March. The spring cohorts recruited in April–June had intermediate characteristics of both cohorts. Life spans were 19–33, 21–48, and 69–138 days for summer, spring, and autumn–winter cohorts, respectively, and mortality rates were high for spring and summer cohorts, especially during June–August but were low for autumn–winter cohorts. Production calculated from the summation of growth increments was 488.8 mg DW m−2 year−1 with an annual P/B ratio of 21.26. The short life span seems to be responsible for such an extremely high P/B ratio. A method not requiring recognition and tracking cohorts gave similar values (534.0 mg DW m−2 year−1 and 20.49). The close agreement in production values between the two methods indicates our estimates are valid.  相似文献   

9.
The seasonal photosynthetic responses and daily carbon gain of upper intertidal, low intertidal and subtidal (3 to 4 m depth) populations ofColpomenia peregrina were examined over a 2 yr period (1986–1988) in Santa Catalina Island, California, USA. The populations showed significant differences in their photosynthetic responses, daily carbon balance and carbon-specific growth rates when normalized to tissue area or to chlorophyll content. The substantial plasticity with respect to photosynthetic responses shown byC. peregrina is considered to be an important factor in facilitating the colonization of both intertidal and subtidal habitats. This species appears to have a cellular carbon metabolism influenced by responses to season and tidal elevation. Highest net daily carbon balance, predicted carbonspecific growth rates and net growth efficiency were achieved in upper intertidal habitats during summer. These parameters decreased in winter and progressively declined with increasing depth as plants become increasingly exposed to low-light regimes. The diminishing net daily carbon balance and predicted carbon-specific field growth rates found during winter suggest that standing stock and lower subtidal limits of distribution ofC. peregrina are at least partly controlled by these two factors.  相似文献   

10.
Various constituents of spring water (calcium, bicarbonate, nitrate, phosphate, total organic material) influence the response of photosynthetic rate of Bostrychia binderi Harvey to changes in salinity. The rate of photosynthesis increased with a decrease in salinity. The rate of photosynthesis in low salinities was greater in seawater diluted with spring water than in sewater diluted with distilled water. Elevation of photosynthetic rates in the lower salinities (0 and 5 ppt) was partially due to increased levels of bicarbonate and various nutrients present in natural spring water. The higher calcium levels in spring water resulted in higher photosynthetic rates in plants held for 3 to 7 d in the lower salinities (0 to 5 ppt). Increased levels of calcium in salinities of 5 ppt or higher increased the photosynthetic rate only during the first 7 d of exposure, since acclimation occurred equally in individuals held for 2 to 8 wk in sewater diluted with distilled or spring water. This study suggests that the diverse algal floras, characteristic of estuaries on the west coast of Florida are in part the result of natural spring water mixing with seawater, sustaining the algae over short periods of low salinities.  相似文献   

11.
A. L. Suer 《Marine Biology》1984,78(3):275-284
Growth and spawning of the large, infaunal echiuran worm Urechis caupo Fisher and MacGinitie were studied at Bodega Harbor on the coast of central California, USA, from 1978 through 1981. In situ growth rates of marked worms were negatively related to initial size. Short-term, summer growth rates (volmo–1) of small worms (<80 ml) were greater than longer-term growth rates measured over several seasons (asesonal). Size-frequency distributions of worms sampled from two sites also suggested a seasonal growth pattern with relatively fast spring-summer growth and slower winter growth. However, larger worms sometimes lost volume during in situ growth experiments, and the loss was most pronounced during short-term, summer growth periods. It is suggested that energy used in burrow construction may have contributed to volume loss during short-term growth experiments. In contrast, longer-term, aseasonal growth rates were nearly always positive, and indicated that reproductive size (about 56 ml) could be reached within about 1.5 yr of recruitment, and a large size (about 158 ml) could be reached within about 6 yr. A seasonal pattern of spawning was observed during three consecutive years, as indicated by ripeness indices (storage organ dry weight ÷ body wall dry weight). At least two spawning episodes occurred annually: ripe gametes that accumulated in the storage organs during the summer and fall were spawned during the winter; gametes that accumulated during late winter and early spring were spawned during the spring or early summer. Worms were spawned-out by mid-summer.  相似文献   

12.
The rates of photosynthesis and dark respiration for 7 marine algae and 1 fresh-water alga were measured and compared. The dinoflagellates Glenodinium sp. and zooxanthellae have high dark respiration rates relative to photosynthetic rates, which may decrease their net growth rates. Photorespiration in the 8 algal species was studied by examining the effects of the concentration of oxygen on the rates of photosynthesis, on the incorporation of 14CO2 into the photorespiratory pathway intermediates glycine and serine, and on the postillumination burst of carbon dioxide production and oxygen consumption. A combination of these results indicates that all the algae tested can photorespire, but that Glenodinium sp., Thalassiosira pseudonana, and zooxanthellae either have a photorespiratory pathway different from that proposed for freshwater algae (Tolbert, 1974), or an additional pathway for glycolate metabolism.  相似文献   

13.
Growth rates of Laminaria longicruris increase during January and February, and the role of carbohydrate reserves as a carbon source for this growth was investigated. Seasonal variations in the levels of laminaran and mannitol showed maximum values for both in late summer. Minimum values occurred in February at the time when growth rates were increasing rapidly. Erosion of the blades in winter carried away much of the tissue containing carbohydrate reserves accumulated during the previous summer. Experimental reduction of carbohydrate reserves by fertilization with sodium nitrate during the summer did not affect subsequent winter growth rates. Truncation of the plants in November significantly reduced growth rates. The lower rate of growth is attributed to a reduction in photosynthetic area rather than a loss of storage products.NRCC No. 16478  相似文献   

14.
R. Gaudy  M. Pagano 《Marine Biology》1987,94(3):335-345
The reproduction of Eurytemora velox, a brackish copepod from temporary lakes of the south of France, was studied in winter and spring 1978, under various temperature and salinity conditions, using Chlorella sp. and Amphidinium sp. as food. Maximum numbers of successive eggs sacs (9), eggs per sac (39.3) and total egg production per female (311) were recorded for the witner generation, only 4.8, 34.8 and 109, respectively, for the spring generation. In contrast, the number of eggs per female per day was highest (11.3) in the spring generation, which displayed a more rapid reproductive cycle. Despite strong individual variations in the rhythm of egg sac production and in abundance of eggs per sac, egg production was generally higher during the first third of adult life, attaining a maximum after production of the second or the third egg sac. The continuous presence of the males was necessary to assure complete fertilization of eggs throughout the whole life of adult females. Hatching rate displayed high individual variability, in particular for the spring generation, which had lower average hatching rates (between 0 and 26%, depending on salinity or temperature) than the winter generation (14 to 64%). These differences may be related to the ability of E. velox to produce resting eggs during spring, allowing the species to maintain itself in a temporary water milieu. Temperature significantly affected longevity and daily egg production of females; presence or absence of males did not affect these parameters. An increase in salinity from 20 to 30%. reduced longevity, number of egg sacs, and daily egg production in the winter generation, but not in the spring generation. The specific daily production of females during their adult life was calculated from the egg production:biomass ratio of females, in carbon units. In the winter generation, this ratio increased between 10° and 15°C compared to ratios between 15° and 20°C; the opposite was observed for the spring generation. The seasonal differences in the effects of temperature and salinity on reproduction could indicate an adaptation mechanism to the strongly thermal and haline seasonal fluctuations which characterize the habitat of Ex. velox (brackish waters, drying-up in summer). Larval mortality was high, except at 20%. S for the spring generation. The sex-ratio of the offspring was unaffected by variations in breeding conditions. Hatching time and development time of larvae could be described by two Blehrádek equations displaying close b and () coefficients. We calculated the energy balance of adult females from data obtained in a previous study on feeding and respiration in E. velox, and this is discussed in context with the egg production results. Net growth efficiency varied with algal concentration according to an asymptotic curve, reaching a maximum of 0.43 with Tetraselmis maculata as food or 0.53 with Amphidinium sp. Actual egg production rate obtained in the present study was in good agreement with that calculated by the difference between assimilated food and respiration expenses.  相似文献   

15.
Photoadaptation of photosynthesis in Gonyaulax polyedra   总被引:1,自引:0,他引:1  
Gonyaulax polyedra Stein exhibited a combination of photoadaptive strategies of photosynthesis when only a single environmental variable, the light intensity during growth, was altered. Which of several biochemical/physiological adjustments to the light environment were employed depended on the level of growth irradiance. The photoadaptive strategies employed over any small range of light levels appeared to be those best suited for optimizing photosynthetic performance and not photosynthetic capacity. (Photosynthetic performance, P i, is defined as the rate of photosynthesis occurring at the level of growth irradiance.) Among all photosynthetic parameters examined, only photosynthetic performance showed a consistent correspondence to growth rates of G. polyedra. Above 3500 to 4000 W cm-2, where photosynthetic performance was equal to photosynthetic capacity, cells were not considered light-limited in either photosynthesis or growth. At these higher light levels, photosynthetic perfomance, cell volume, growth rates and respiration rates remained maximal; photosynthetic pigment content varied only slightly, while the photosynthetic capacity of the cells declined. At intermediate light levels (3000 to 1500 W cm-2), photosynthesis, not growth, was light-limited, and photoadaptive strategies were induced which enhance absorption capabilities and energy transfer efficiencies of chlorophyll a to the reaction centers of G. polyedra. Photosynthetic capacity remained constant at about 280 mol O2 cm-3 h-1, while photosynthetic performance ranged from 100 to 130 mol O2 cm-3 h-1. Major increases in photosynthetic pigments, especially peridinin-chlorophyll a-proteins and an unidentified chlorophyll c component, accompanied photoadaptation to low irradiances. Maximal growth rates of 0.3 divisions day-1 were maintained, as were respiration rates of about-80 mol O2 cm-3 h-1 and cell volumes of about 5.4×10-8 cm-3 cell-1. Below about 1250 W cm-2, photosynthesis in G. polyedra was so light-limited that photosynthetic performance was unable to support maximal growth rates. Under these conditions, G. polyedra displayed photostress responses rather than photoadaptive strategies. Photostress was manifested as reduced cell volumes, slower growth, and drastic reductions in pigmentation, photosynthetic capacity, and rates of dark respiration.  相似文献   

16.
Photosynthesis in whole plants of the intertidal alga Ascophyllum nodosum ecad scorpiodes was evaluated by measuring 14C-uptake under a variety of light intensities and approximately monthly intervals during a 15 month study. Photosynthetic rates were determined in terms of dry weight, pigment content and uptake into ethanolsoluble and insoluble fractions. The specimens, naturally acclimated to in situ light intensities and temperatures, exhibited photosynthetic responses to light intensity which differed with time of year. Maximum photosynthetic potential occurred during the spring months and minimum potential occurred during late summer and winter months. Variations in photosynthetic potential were closely related to seasonal changes in field biomass. Both photosynthetic potential and biomass were inversely related to growth patterns of the salt-marsh phanerogam Spartina alternilora.This research was supported by Research Grant AG-375 from the National Science Foundation and, in part, by the State University of New York Research Foundation and the Energy Research and Development Administration (ERDA).  相似文献   

17.
Cultures of the marine dinoflagellate Glenodinium sp. were light-shifted and rates of photoadaptation determined by monitoring changes in cell volume, growth rate, pigmentation, parameters of the photosynthesisirradiance (P-I) curves and respiration. To approximate physiological conditions of field populations, cells were cultured on an alternating light-dark cycle of 12hL:12hD, which introduced a daily periodicity of photosynthesis. One result of the present study was to demonstrate how specific parameters of the P-I relationship influenced by periodicity of the light: dark cycle are distinguished from photosynthetic parameters influenced by changes in light level. Under steady-state conditions, rates of both light-saturated (Pmax) and light-limited photosynthesis changed in unison over the day; these changes were not related to pigmentation, and displayed their maxima midday. This close relationship between Pmax and the slope (a) of the cellular P-I curves in steadystate conditions was quickly adjusted when growth illumination was altered. Rates of light-limited photosynthesis were increased under low light conditions and the periodicity of cellular photosynthesis was maintained. The short-term responses of the P-I relationship to changing light level was different, depending on (1) whether the light shift was from high to low light or vice versa, and (2) whether the high light levels were sufficient to promote maximal photosynthesis rates. Major increases in the photosynthetic carotenoid peridinin, associated with a single type of light-harvesting chromo protein in the chloroplast, was observed immediately upon shifting high light cultures to low light conditions. Following pigment synthesis, significant increases in rates of light-limited photosynthesis were observed in about one-tenth the generation time, while cellular photosynthetic potential was unaffected. it is suggested that general results were consistent with suggested that general results were consistent with earlier reports that the major photoadaptive strategy of Glenodinium sp. is to alter photosynthetic unit (PSU) size. Photoadaptive response times to high light were light-dependent, but appeared to be shower than photoadaptive responses to low light. If light intensities were bright enough to maximize growth rates, photosynthetic response times were on the order of a generation period and pigmentation fell quickly as cells divided at a faster rate. If light-intensities were not sufficient to maximize growth rates, then pigment content did not decline, while rates of light-limited photosynthesis declined quickly. In all cases, photoadaptation was followed best by monitoring fast changes in half saturation constants for photosynthesis, rather than fluctuating changes in pigmentation. Results compared well with time-course phenomena reported for other groups of phytoplankton. Overall, results suggest phytoplankton can bring about photo-induced changes in photosynthesis very quickly and thus accommodate widely fluctuating light regimes over short periods of time.  相似文献   

18.
The relative effects of NH 4 + (N) and PO 4 3- (P) on growth rate, photosynthetic capacity (Pmax), and levels of chemical constituents of the red macroalga Gracilaria tikvahiae McLachlan were assayed during winter and summer, 1983 in inshore waters of the Florida Keys by using in-situ cage cultures. During winter, both N and P enrichment enhanced growth over that of ambient seawater; however, P rather than N accounted for more (60%) of the increased winter growth. During summer, P, but not N, enhanced growth over ambient seawater and accounted for 80% of increased growth. Similarly, Pmax was enhanced by both P and N during winter (but mostly by P) and only by P during summer. Elevated C:P, C:N and N:P ratios of G. tikvahiae tissue during winter, but only C:P and N:P ratios during summer, support the pattern of winter N and P limitation and summer P-limitation. This seasonal pattern of N vs P limited growth of G. tikvahiae appears to be a response to seasonally variable dissolved inorganic N (twofold greater concentrations of NH 4 + and NO 3 - during summer compared to winter) and constantly low to undetectable concentrations of PO 4 3- . Mean C:P and N:P ratios of G. tikvahiae tissue during the study were 1 818 and 124, respectively, values among the highest reported for macroalgae.  相似文献   

19.
Respiration rates of Hypnea musciformis (Wulfen) Lamouroux in Florida, USA, generally increased with increased temperature. Gulf coast H. musciformis respired at significantly higher rates than the Atlantic coast population, which exhibited a region of temperature independence between 24°–32°C. Respiration rates were highest in the fall and winter, during the periods of rapid growth. Respiration rates were lowest in the summer indicating a period of storage and low metabolism. Photosynthetic responses to various levels of light and temperature indicated that the Gulf coast population was more tolerant to high light intensities than the Atlantic coast population. Maximum photosynthetic responses for both populations occurred between 24° and 32°C which corresponds to the shallow slope region of the respiration-temperature curves. The results indicate that water temperature rather than light intensity is a significant factor in modifying seasonal photosynthetic capacities. The greatest seasonal variation in photosynthetic responses occurred at the light-temperature levels of highest responses while little seasonal variation was demonstrated at tolerance limits.  相似文献   

20.
The mussel Mytilus galloprovincialis is highly invasive worldwide, but displays varying degrees of local and regional coexistence with indigenous mussels through spatial habitat segregation. We investigated the roles of settlement, post-settlement mortality, juvenile growth and recruitment in partial habitat segregation between the invasive M. galloprovincialis and the indigenous mussel Perna perna on the south coast of South Africa. We used two study locations, Plettenberg Bay and Tsitsikamma, 70 km apart, with two sites (separated by 300–400 m) per location, each divided into three vertical zones. There were no significant effects in Tsitsikamma, where daily settlement and monthly recruitment were significantly lower than in Plettenberg Bay. In Plettenberg Bay, settlement (primary and secondary) and recruitment of both species decreased upshore. Post-settlement mortality was measured over two consecutive 6-day periods during a spring tide and a neap tide. For both species mortality was low on the low-shore. High-shore mortality was consistently low for M. galloprovincialis, but increased dramatically for P. perna during spring tide. No data were obtained for growth of P. perna, but juvenile M. galloprovincialis grew more slowly farther upshore. P. perna recruited mainly in spring and summer, with a peak in summer far greater than for M. galloprovincialis. Recruitment of M. galloprovincialis was more protracted, continuing through autumn and winter. Thus local coexistence is due to a combination of pre- and post-recruitment factors differing in importance for each species. P. perna is excluded from the high-shore by recruitment failure (low settlement, high mortality). High survival and slow growth in juveniles may allow large densities of M. galloprovincialis to accumulate there, despite low settlement rates. With no differences between species in settlement or mortality on the low-shore, exclusion of M. galloprovincialis from that zone is likely to be by post-recruitment processes, possibly strengthened by periodic heavy recruitments of P. perna. At larger scales, larval retention and protracted recruitment contribute to the success of M. galloprovincialis at Plettenberg Bay, while recruitment limitation may explain why M. galloprovincialis is less successful at other sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号