共查询到20条相似文献,搜索用时 62 毫秒
1.
地表水硝酸盐污染已经受到世界研究者的广泛关注,中国地表水系统硝酸盐污染情况也不容乐观.为了解中国地表水硝酸盐分布、来源和转化机制,本研究系统收集了全国7大地区的71条主要河流硝酸盐数据,分析了地表水硝酸盐的分布及污染情况,并且通过硝酸盐氮氧同位素特征值揭示了不同地区、不同流域水体硝酸盐的主要来源.结果表明,我国7.83%河流硝酸盐质量浓度超过了标准限值(45 mg·L-1).牡丹江、海河和长江入海口的硝酸盐质量浓度超过90 mg·L-1,呈现重度污染现象.中国地表水δ15N-NO3和δ18O-NO3特征值范围分别为-23.5‰~26.99‰和-12.7‰~83.5‰.研究表明:东北、华中、华东地区地表水硝酸盐主要来源为生活污水,西北和华北地区地表水硝酸盐主要来源为生活污水、无机化肥和土壤有机质硝化,西南和华南地区地表水硝酸盐主要来源为无机化肥和生活污水.通过相关性分析得到中国地表水硝酸盐质量浓度与常住人口、废水排放量、农用氮肥施用折纯量和人均GDP呈正相关... 相似文献
2.
随着工农业的快速发展,地表水硝酸盐污染已成为黄土高原地区严重的环境问题之一.以黄土高塬沟壑区典型城郊流域砚瓦川为研究区,采用水化学分析方法和氮氧双稳定同位素技术,并结合SIAR模型,定量识别旱季和雨季研究区地表水硝酸盐不同污染源的贡献率,阐明不同污染源季节性差异的主要原因.结果表明,流域地表水无机氮主要以NO3--N和NO2--N形态存在,NO3--N和NO2--N雨季浓度平均值均高于旱季,而NH4+-N则呈现相反特征;流域内地表水硝酸盐的转化过程主要以硝化作用为主,雨季其主要来源是粪肥污水,而旱季主要为粪肥污水和土壤氮淋溶,铵肥次之;不同污染源对流域地表水硝酸盐的贡献比例具有显著的季节性差异,旱季与雨季城镇污水排放的贡献比例均为最高,分别为31.40%和65.66%,且雨季污水排放对NO3-的影响远高于旱季,夏季居民用水增加导致大量污水排放至流域内是引起这一现象的主要原因. 相似文献
3.
多年监测发现,5A级风景旅游区云台山水中总氮超标.为了摸清其不同形态氮含量水平并识别氮污染来源,本研究分别于丰水期(2021年9月、2022年6、7月)、平水期(2021年11月)和枯水期(2021年12月、2022年2月)采集云台山马鞍石水库表层和深层水及其上游河流表层水样品共58个,测定并分析了水化学参数(TN、NO3--N、NH4+-N和Cl-)的浓度和硝酸盐氮氧稳定同位素(δ15N-NO3-、δ18O-NO3-),同时利用SIAR同位素模型定量解析了水库及其上游河流中NO3-源的贡献.结果表明,马鞍石水库及其上游河流水中ρ(TN)、ρ(NO3--N)、ρ(NH4+-N)变化范围分别为1.86~6.4、1.40~... 相似文献
4.
太子河流域中游地区河流硝酸盐来源及迁移转化过程 总被引:5,自引:2,他引:5
选取太子河中游地区为研究对象,联合硝酸盐(NO_3~-)、氯离子(Cl~-)、硝酸盐氮、氧同位素(δ~(15)N和δ~(18)O)和水的氧同位素(δ~(18)O)识别不同季节2016年5月和8月(对应枯水期和丰水期)地表水硝酸盐来源及迁移转化过程.结果表明通过ManWhitney U检验,枯水期ρ(Cl~-)、ρ(NO_3~-)、ρ(NH_4~+-N)和δ~(18)O-NO_3~-显著高于丰水期,δ~(15)N-NO_3~-无显著时间差异.根据NO_3~-/Cl~-,δ~(15)N-NO_3~-和δ~(18)O-NO_3~-的范围,发现不同采样期,硝酸盐主要来自于多种源的混合.丰水期,细河、蓝河和下达河硝酸盐来源是化学肥料、土壤氮和生活污水及畜禽粪便排放废水.二道河主要是土壤氮和化学肥料.枯水期,下达河硝酸盐主要来自于化学肥料和土壤氮,细河、蓝河和二道河硝酸盐来源主要是土壤氮和生活污水及畜禽粪便的排放.丰水期,ρ(NO_3~-)与ρ(NH_4~+)呈负相关关系,与δ~(15)N-NO_3~-呈正相关关系,说明研究区域发生了氨氮的挥发和硝化过程.二道河和蓝河随着ρ(NO_3~-)和ρ(Cl~-)降低,ρ(NH_4~+)和δ~(15)N-NO_3~-增加,说明有明显的反硝化过程发生.不同采样期NO_3~-和Cl~-呈显著正相关关系,表明各采样河流均发生了混合过程.研究结论为丘陵地区硝酸盐来源的季节差异分析提供参考. 相似文献
5.
6.
滇池流域硝酸盐污染的氮氧同位素示踪 总被引:3,自引:0,他引:3
滇池流域硝酸盐污染严重,厘清其来源对硝酸盐污染治理至关重要。本研究在滇池流域收集河水、湖水、井水、雨水样品,分析了无机氮浓度和硝酸根氮、氧同位素比值。总体上,硝酸盐浓度变化范围较大,从低于检测限到高达13.44mg-N/L,显示流域硝酸盐污染存在较大的空间差异。最高浓度出现在流域南部农田区的井水中,井水样品的氮、氧同位素数据大部分落在化学肥料和大气干湿沉降区,表明农业面源和大气输入对流域浅层地下水产生了污染,污染的浅层地下水又是湖泊水体的一个潜在污染源。流域内河流硝酸盐浓度变化范围较大,总体污染程度高于滇池湖泊水体,氮、氧同位素组成表明大部分河流中硝酸盐来自生活污水和人畜粪便。滇池水体的硝酸盐氮、氧同位素组成和河流的相似,说明人畜粪便和生活污水是主要来源。湖泊水体硝酸盐浓度从南向北有逐渐增加的趋势,这与滇池北部紧邻城区(生活污水)、流域南部主要为农田区(面源污染)的空间格局是一致的。总体上,滇池水体的硝酸盐主要来自城市生活污水,农业面源和大气输入。通过地下水途经进入湖泊主要发生在流域南部地区,具体的贡献份额还需要进一步的计算。 相似文献
7.
堤垸是滨湖、滨江低洼地带的一种重要景观,农业面源污染已成为其主要的环境问题之一.为解析堤垸地区地表水硝酸盐污染来源,以洞庭湖屈原垸平江河段为研究对象,采用稳定同位素及水化学分析方法定性识别污染来源,并结合MixSIAR模型量化不同污染源的贡献率.结果表明:(1)硝态氮和氨氮是屈原垸平江河段地表水无机氮的主要赋存形态,时间上,硝态氮浓度在丰、枯水期间无显著差异(p>0.05),而丰水期氨氮浓度平均值高于枯水期;空间上,垸内硝态氮浓度显著低于垸外(p<0.01),而氨氮浓度显著高于垸外(p<0.01).(2)MixSIAR模型结果表明,化肥、土壤有机氮、水产养殖废水、粪肥和污水是研究区地表水硝酸盐的主要来源,对丰水期地表水中硝酸盐的贡献率分别为33.0%、32.6%、19.4%和11.7%,对枯水期的贡献率分别为26.7%、31.2%、21.5%和16.9%,而大气沉降对地表水中硝酸盐来源贡献较小,仅为3.5%.(3)研究区地表水硝酸盐转化过程主要以硝化作用为主,未发生明显的反硝化过程.研究显示,研究区地表水硝酸盐污染主要受农业面源污染的影响,污染物主要来源于土壤有机氮、... 相似文献
8.
岩溶流域地表水和地下水硝酸盐来源定量识别 总被引:1,自引:0,他引:1
选取岩溶地区花溪河流域典型农业区为研究对象,运用δ15N-NO3-,δ18O-NO3-和δ18O-H2O同位素示踪技术和水化学分析方法,阐明了研究区地表水和地下水中硝酸盐的分布特征,并揭示其来源和形成过程,基于R语言下运行的贝叶斯模型(stable isotope analysis in R),对研究区水体中各种硝酸盐来源的贡献比例进行了定量识别.结果显示:受碳酸岩盐风化的控制,流域内地表水和地下水的水化学类型以HCO3-Ca型为主,硝酸盐在研究区水体中的空间分布特征受土地利用类型影响明显;在研究区水体硝酸盐形成过程中,硝化作用起主导作用,水体中的硝酸盐来源主要有化肥、降雨中的氨盐、土壤有机氮、粪便和污水,与地表水相比,地下水中硝酸盐受粪便和污水的影响较大;基于SIAR源解析模型分析,大气沉降、化肥、土壤有机氮和粪便污水对研究区地表水硝酸盐的贡献比例分别为3.97%、26.87%、36.80%和32.37%,对地下水硝酸盐的贡献比例分别为2.83%、13.96%、21.03%和62.18%. 相似文献
9.
无定河流域作为黄河的一级支流,其水生态环境质量深刻影响着黄河流域生态保护与高质量发展.为识别无定河流域硝酸盐污染来源,对2019~2021年期间无定河的地表水样品进行了采集,探究了流域地表水体硝酸盐浓度的时空分布特征及影响因素,借助水化学方法、氮氧同位素示踪技术以及MixSIAR模型定性和定量地确定了地表水硝酸盐各来源及其贡献率.结果表明,无定河流域硝酸盐浓度存在显著时空差异.时间上,丰水期地表水NO-3-N浓度均值高于平水期;空间上,下游地表水NO-3-N浓度均值高于上游.地表水硝酸盐浓度的时空差异主要受降雨径流、土壤类型以及土地利用类型的影响.无定河流域地表水丰水期硝酸盐的主要来源是生活污水及粪肥、化学肥料和土壤有机氮,其贡献率分别为43.3%、 27.6%和22.1%,降水的贡献率仅占7.0%.不同河段地表水硝酸盐污染源贡献率存在差异,上游土壤氮贡献率明显高于下游,为26.5%;而下游生活污水及粪肥的贡献率明显高于上游,为48.9%.可为无定河乃至干旱及半干旱地区的河流硝酸盐来源解析和污染治理... 相似文献
10.
为有效控制流域水质污染,保证饮用水水源的水质安全,通过采集和测定流域内土壤、植物以及河流断面水体悬浮颗粒有机质(POM)在枯水期和丰水期的碳、氮稳定同位素值和C/N比值,对石头口门水库汇水流域水体POM的来源进行研究.结果表明,水体中POM主要来源于土壤有机质,其贡献为69.2%,藻类等大型水生生物和浮游植物的贡献分别为23.1%和7.7%.流域水体中POM的来源存在时空差异.丰水期,浮游植物和藻类等大型水生植物的贡献均为15.4%,而枯水期后者的贡献提高到了30.8%.水体POM主要来源于双阳河和饮马河下游的土壤有机质,说明该区域土壤侵蚀较重,易发生非点源污染;岔路河和饮马河上游支流小黄河,水体POM以浮游植物的贡献占主导,其贡献分别为86.3%和94.8%,这些区域侵蚀较弱,非点源污染发生的风险小;大中型水库区域的POM主要由藻类等大型水生植物贡献,表明悬浮颗粒物在进入水库后可能发生了明显沉积. 相似文献
11.
典型岩溶地下河流域水体中硝酸盐源解析 总被引:3,自引:4,他引:3
地下河是岩溶地区地下水赋存运动的主要场所和重要水源,近年来,硝酸盐污染严重.为解析典型岩溶地下河流域水体中硝酸盐的来源,利用δ15N-NO-3、δ18O-NO-3和δ18O-H2O稳定同位素示踪技术开展研究,并通过SIAR稳定同位素模型,对不同污染源的贡献率进行了定量识别,同时阐明了土地利用类型对流域水体硝酸盐分布及来源的影响.结果表明:①降雨/化肥中的氨盐、土壤有机氮和粪肥污水是流域内水体硝酸盐的主要来源;②流域内水体硝酸盐的转化过程主要以硝化作用为主导,水体硝酸盐氮氧同位素初始值未受分馏影响;③基于SIAR模型,不同端元对流域内水体硝酸盐的贡献比例呈季节性差异,化肥、土壤有机氮和粪便污水对丰水期流域内水体硝酸盐的贡献比例分别为57.07%、 34.06%和8.87%;对流域内枯水期水体硝酸盐的贡献比例分别为34.14%、 33.02%和32.84%. 相似文献
12.
九龙江流域大气氮湿沉降研究 总被引:25,自引:5,他引:25
通过2004~2005年对位于我国东南沿海的九龙江流域及周边共17个站点的实地观测,运用GIS技术定量揭示了大气氮湿沉降强度和时空分布特征,并利用氮稳定同位素分析雨水硝态氮的主要来源.结果表明,①17个站点雨水总氮平均浓度为(2.20±1.69)~(3.26±1.37) mg·L-1(以N计,下同),铵态氮、硝态氮和有机氮分别占39%、25%和36%;②雨水氮浓度随降雨强度的增大呈降低趋势,旱季浓度明显大于雨季,降水对大气具有清洗作用;③低δ15N值表明雨水硝态氮主要来源于汽车尾气排放、化石燃料燃烧和化肥施用;④九龙江流域大气氮湿沉降量平均9.9 kg·hm-2,春夏2季约占全年的91%,大气氮湿沉降占沉降总量的66%,揭示了该地区1∶2的大气氮干湿沉降结构.大气氮湿沉降时空差异与降雨量和氮的排放直接相关. 相似文献
13.
九龙江流域潜在病原菌污染分析 总被引:1,自引:1,他引:1
近年来,由于流域经济快速发展和城镇化进程加快等原因,九龙江水污染问题日趋严重.为全面认识九龙江流域病原菌的分布状况,应用16S rRNA基因-454焦磷酸测序技术测定九龙江支流西溪、北溪水体和沉积物中细菌16S rRNA基因V1~V3高变区,共获得204 216条高质量序列.通过与病原菌参考数据库对比分析发现,九龙江分布有68个潜在病原菌属,占序列总量的6.1%.其中梭菌属(Clostridium)、分支杆菌属(Mycobacterium)和鞘氨醇单胞菌属(Sphingomonas)在所有样品中都有检出,且丰度最高,分别占病原菌属序列总量的54.5%、5.9%和5.6%.在种水平上,九龙江分布有48种病原菌,占序列总量的0.76%.其中Afipia felis、Mycobacterium asiaticum、Clostridium baratii、Brucella melitensis和Delftia tsuruhatensis是丰度最高的5种病原菌,分别占病原菌种序列总量的48.9%、20.3%、8%、2.7%和1.7%.统计分析表明,九龙江水体中分布的病原菌种类数(属或种)显著高于沉积物中,且西溪水体检出的病原菌种类(属或种)和丰度最高,说明九龙江水体,尤其是西溪水体受病原菌污染的风险较高.此外,相关分析表明,九龙江水体中病原菌的种类数(属或种)和丰度与营养盐(氮、磷)有着显著的正相关关系,说明九龙江水体中分布的病原菌与沿岸的人类活动,如养殖业、污水排放等密切相关.因此,为保证流域的公共卫生安全,需进一步加强污染源清理整顿工作,开展水环境病原菌的实时监测. 相似文献
14.
北京城市生态系统地表水硝酸盐污染空间变化及其来源研究 总被引:1,自引:1,他引:1
利用2009~2010年北京城市生态系统地表水10处监测点水环境监测数据,评价了北京城市生态系统地表水硝酸盐污染状况及其空间分布,结合水化学因子相关关系分析了硝酸盐的主要来源.结果表明,北京城市生态系统地表水硝态氮(NO3--N)质量浓度为0.7~7.6 mg.L-1,其中,位于北京市东南部的地表水监测点(东便门和通惠河)水体NO3--N质量浓度为7.0~7.6 mg.L-1,显著高于上游8个监测点NO3--N质量浓度(P<0.01);Cl-质量浓度为14.8~86.0 mg.L-1,东便门、通惠河地表水监测点水体Cl-质量浓度为81.5~85.0 mg.L-1,约为上游其他8个监测点的2.3~5.8倍.东便门、通惠河地表水监测点水体电导率(EC)、SO24-质量浓度也表现出同NO3--N、Cl-相似的变化规律,表明东便门、通惠河两处地表水监测点附近存在明显的污染源.相关分析表明,地表水Cl-/Na+和SO24-/Ca2+呈明显的线性相关,说明地表水NO3--N污染来源比较单一;水体中NO3--N/Cl-及NO3--N的质量浓度状况说明北京城市生态系统地表水NO3--N污染来源主要是城市污水,包括污水处理厂的废水、垃圾沥出液及生活污水.未来北京市地表水治理应重点关注东便门、通惠河等东南部下游水体污染治理. 相似文献
15.
为探寻西苕溪流域地下水中NO3--N的污染来源,对西苕溪流域地表水、地下水体的NO3--N污染状况进行了调查,并结合水化学与NO3--N同位素对其来源进行解析. 结果显示,西苕溪流域地表水的ρ(NO3--N)为1.07~3.45 mg/L,ρ(NO2--N)为0.15~0.35 mg/L;地下水中ρ(NO3--N)为3.24~15.31 mg/L,平均值达9.26 mg/L. 下游地区地下水的ρ(NO2--N)较高(0.26~4.25 mg/L),平均值达3.00 mg/L. ρ(NO3-)与ρ(Cl-)的关系显示,西苕溪地表水、地下水存在比较稳定的NO3--N输入来源. NO3--N同位素分析结果显示,地表水的δ15N为7.0‰~16.7‰,说明上游NO3--N主要来源于土壤有机氮的矿化,中下游则主要受到农业施用化肥与人类生活污水二者的共同影响;地下水的δ15N为14.3‰~27.1‰,说明调查区域内的地下水受人畜粪便和生活污水的影响可能更为强烈,另外,地下水中存在的反硝化作用也是造成地下水δ15N增高的原因. 相似文献
16.
利用氮氧同位素解析赤水河流域水体硝酸盐来源及其时空变化特征 总被引:1,自引:0,他引:1
赤水河流域作为长江上游重要的水源涵养区,其生态环境状况及水环境质量备受关注。为了了解流域河水氮素来源,本次研究利用硝酸盐稳定同位素(~(15)N、~(18)O)示踪技术并结合流域土地利用类型空间分布分析了赤水河流域丰水期与枯水期干流及主要支流河水硝酸盐来源与转化过程。结果表明,流域水体NO_3~-浓度具有明显的时空变化,其中丰水期NO_3~-浓度要高于枯水期,喀斯特区域的NO_3~-浓度要高于非喀斯特区域。流域干、支流水体δ~(15)N-NO_3~-、δ~(18)O-NO_3~-季节性差异明显,丰水期支流δ~(15)N-NO_3~-差异较大,干流差异较小,而枯水期支流δ~(15)N-NO_3~-差异较小,干流差异较大。结合氮氧同位素和土地利用信息发现,丰水期支流NO_3~-受其土地利用方式的影响,其来源具有多样性;干流NO_3~-浓度则主要受支流混合作用影响。枯水期干流NO_3~-受流域人为活动影响较为显著,点源输入造成水体氮同位素分布范围较宽,主要来源表现为生活污水和土壤有机氮;而支流NO_3~-多表现为土壤有机氮来源,部分支流受流域内城镇影响,生活污水对河流NO_3~-贡献较大。流域水体氮污染控制应以农业面源氮流失为主,同时严格控制点源污染的输入。 相似文献
17.
18.
流域水质时空分布特征及其影响因素初析 总被引:6,自引:8,他引:6
选取闽东南九龙江流域21个典型小流域开展2010年丰(8月)、平(11月)、枯(2月)3个水期的基流水质监测,并借助GIS、多元统计分析方法识别流域水质的时空分布特征及其影响因素,为九龙江流域水质监测、管理与控制提供依据.结果表明,九龙江水质枯水期最差,平水期次之,丰水期水质较好.表征生活污水、工业废水的污染因子对水质变化的贡献率为45.58%,表征农业污染的主成分的贡献率为21.28%.NH4+-N、SRP、高锰酸盐指数、K+、Cl-、Mg2+、Na+浓度与建设用地比例、人口密度呈显著的正相关,NO3--N浓度与耕地比例有显著的正相关,自然用地面积比例与NO3--N、K+、Cl-、Na+浓度有显著的负相关.建设用地比例较大、人口较密集的小流域NH4+-N、SRP、高锰酸盐指数、K+、Cl-的浓度较高,耕地比例较大的小流域NO3--N浓度则较高.在流域水质管理上,建议提高污水处理率,并重视由于化肥施用导致的农业非点源污染对水质的影响. 相似文献
19.
漓江地表水体有机碳来源 总被引:3,自引:3,他引:3
科学辨识河流有机碳来源是碳循环研究的关键.本文选取典型岩溶流域漓江流域为研究对象,通过同位素示踪法、相关分析法、端元混合模型,利用碳稳定同位素、C/N对其2016年7~9月有机碳来源进行研究.结果表明:(1)DIC浓度空间分布特征为:岩溶区岩溶区与非岩溶区的混合区非岩溶区;干流区DIC浓度从上游到下游递增,主要受控于流域碳酸盐岩的空间分布比例.(2)DOC是构成漓江水体TOC的主体,TOC来源以内源有机碳为主,内源碳浓度空间分布特征为:岩溶区混合区非岩溶区,可能与岩溶区水生植物丰茂、碳酸酐酶活性较强有关,TOC中内源碳的浓度介于1.02~5.14 mg·L~(-1),平均为2.54 mg·L~(-1);TOC中内源碳的比例空间分布差异不大,平均为73.07%.(3)POC浓度、POC中内源碳的浓度及POC中内源碳的比例空间分布差异不大,POC来源以外源碳为主,POC中内源有机碳浓度介于0.01~0.16 mg·L~(-1),平均为0.05mg·L~(-1),水生生物量对漓江流域POC贡献平均为17.31%.(4)DOC浓度及内源DOC浓度空间分布均为:岩溶区混合区非岩溶区,DOC主要来源于水生生物的初级生产力,DOC中内源碳的浓度介于0.97~5.10 mg·L~(-1),平均为2.48 mg·L~(-1);DOC中内源碳的比例空间分布差异不大,平均为79.51%.研究水生光合生物对流域有机碳的影响,可以为岩溶碳汇稳定性科学问题的解答提供基础. 相似文献
20.
利用2011年1月和7月鄱阳湖流域地表水中NO3-的质量浓度实测数据,评价NO3-在不同时期的污染状况及空间分布,运用GIS和统计学方法分析NO3-的时空变异特征,结合水化学因子相关关系分析NO3-的主要污染来源。结果表明,在丰水期,鄱阳湖流域地表水NO3-质量浓度为0~33.33 mg/L,在枯水期NO3-质量浓度为0~51.50 mg/L;空间差值分析显示在丰水期,鄱阳湖南湖区NO3-的质量浓度明显高于北湖区,这主要是来源于生活污水、工业废水、农业及养殖业等产生的氮;而在枯水期恰好相反,北湖区NO3-的质量浓度较高于南湖区,主要是受到沿湖周边工业废水的影响;通过运用水化学因子相关关系分析发现,地表水中各监测点Cl-/Na+和SO42-/Ca2+变化趋势较相似,说明水体中NO3-的污染来源可能比较单一;研究NO3-/Cl-的变化关系曲线发现在枯水期,水体中NO3-的污染来源主要为污水,而丰水期NO3-的污染来源比较复杂,包括农业非点源污染和渔类珍珠养殖业等。 相似文献