首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diel reproductive periodicity of Carangidae is poorly known but appears to be highly variable between species. Some species spawn during the day, others are believed to spawn at night, and it is demonstrated here that round scad, Decapterus punctatus, spawn at dusk. We collected D. punctatus in the eastern Gulf of Mexico during three April cruises (1995, 1996, and 1997). Based on histological criteria, size at 50% maturity was 113 mm fork length (FL) for males and 128 mm FL for females. The gonad-somatic index (GSI) of mature males was significantly different between hours and appeared to show diel periodicity. Diel periodicity was also observed in changes in female GSIs, whole oocyte diameters, and ovarian histology. The average GSI of mature females fluctuated two-fold between day and night, and the size distribution of whole oocytes in some fish was bimodal (at 0.3-0.4 and 0.7-0.8 mm diameter) at dusk rather than unimodal during most of the diel cycle. Histological preparations revealed that these rapid changes in ovarian GSIs and oocyte size distributions were the result of final oocyte maturation. Germinal vesicle migration was observed from 0900 to 1400 hours eastern standard time (EST), germinal vesicle breakdown was evident as early as 1100 hours EST, and ovulation occurred as early as 1800 hours EST. Spawning frequency (approximately every 5 days) was similar whether calculated from the proportion of females with hydrated oocytes during the afternoon or from the proportion of females with postovulatory follicles during the morning. Batch fecundity correlated with fish size and ranged from 5,500 to 34,700 hydrated eggs per individual. These findings do not support published hypotheses that young-of-the-year D. punctatus reproduce before their first winter or that D. punctatus reproductive output is bimodal within a year.  相似文献   

2.
The reproductive ecology of female Hawaiian damselfish Dascyllus albisella (Gill) was studied at Kaneohe Bay, Oahu, Hawaii (21°27'N; 157°47'W) during two peak reproductive seasons (June–September 1997, July–August 1998). In both years, spawning occurred cyclically every 5–7 days, with all spawning in the study area in each cycle concluding within 2–3 days. The study period encompassed 16 spawning cycles in 1997 and 10 cycles in 1998. Some females spawned in almost all cycles, whereas others spawned in as few as one. Mean spawning interval of individual females ranged from 6.4 to 11.7 days in 1997 and from 5.5 to 29.0 days in 1998. Batch fecundity increased exponentially with body length, and ranged from 23,100 to 52,800. Spawning duration increased linearly with body length and ranged from 20 to 286 min. On a single day, large females spawned earlier than small females. Females mated with several different males over a season, but typically mated with only one male on a single spawning day. Female spawning frequency and interval, spawning duration, batch fecundity, as well as diel timing of spawning in D. albisella were comparable to those reported for other large, planktivorous, non-territorial damselfishes.  相似文献   

3.
Histological examination of gonads of female and male red porgy, Pagrus pagrus, reared in captivity, was carried out in order to describe the main gonadal changes related to gametogenesis and the seasonal changes of environmental factors. The gonadosomatic index (GSI) and the concentration of serum vitellogenin (VTG) were also determined. The frequency distribution of gonad development stages and the GSI and vitellogenin concentration during the annual cycle indicated the separation of the female and male reproductive cycles into three main periods. The autumn period when gametogenesis begins (October-November), the period of exogenous vitellogenesis (December-March) or spermiation (December-March), and the spawning season (March-May). The spawning period coincided with an increase in temperature (15-19°C) and daylength. Serum levels of vitellogenin rose significantly in January, reached a peak at the beginning of the spawning period (March, 405.5 µg ml-1) and remained high until the end of the spawning period (May).  相似文献   

4.
The pattern of seasonal gonadal development and variations in plasma sex steroids were investigated in adult male and female winter flounder, Pleuronectes americanus (Walbaum), from Conception Bay Newfoundland beginning August 1987 to December 1988. The winter flounder reproductive cycle can be divided into five consecutive phases of relative reproductive activity including: (1) rapid gonadal recrudescence in the fall (August–December); (2) continued slow gondadal growth in females, or maintenance of the well developed gonads in males, during the winter (December–February); (3) a prespawning phase of gonadal maintenance in the spring (March–April); (4) spawning early in the summer (May–June) after the female gonads reach peak weight; and (5) the summer postspawned period (June–August) when the gonads remain regressed. Female gonadal recrudescence in August is characterized by small increases in plasma estrogen levels and recruitment of small oocytes (150 m) into yolk accumulation. For the winter months, estradiol-17 levels in the plasma remain stable, approximately 15 ng ml-1, until rising again together with testosterone to peak hormone levels just prior to spawning in conjunction with the highest seasonal values for the gonadosomatic index (GSI) and oocyte diameter. After spawning, the ovaries are regressed and sex steroids in the plasma fall to very low levels. Rapid seasonal recrudescence of the gonads in males is evident from rising GSI values, which reach a maximum in October, and from substantial early seasonal increases in plasma testosterone and 11-ketotestosterone. Afterwards, although GSI values subsequently decline presumably reflecting the process of spermiogenesis and/or onset of spermiation in some males, the testes remain relatively well developed with the presence of sperm throughout the spawning season. As the proportion of spermiating males increases, the plasma levels of the androgenic steroid hormones rise to peak circulating levels from April to June. At the end of the summer reproductive season, the testes of post-spawned males become regressed and plasma testosterone and 11-ketotestosterone levels fall, reaching the lowest seasonal values.  相似文献   

5.
We studied the processes of gonadal maturation, spawning, fertilization and embryonic development of the giant jellyfish Nemopilema nomurai, which has been blooming in recent years in the Sea of Japan. Healthy medusae actively swimming offshore had immature gonads, but damaged and ashore-drifted animals had relatively mature gonads. The animals maintained in a small net on the nearshore to mimic the drifted condition showed induced gonadal maturation by the increase in oocyte diameter and darkness in the matrix. A similar maturation process also occurred in isolated pieces of ovary incubated at the same temperature. Fully grown oocytes that probably stopped at the prophase of the first meiosis reinitiated maturation divisions in response to light exposure, and massive spawnings occurred 80–100 min after the exposure. The spawned oocytes were first released within the subgenital sinus, then transported peripherally and finally shed into the gastrovascular cavity. Maturation and spawning in male gonads were similar to those of females except that the male spawning occurred within 30 min after the light exposure and always preceded the female spawning. Hence, it was suggested that fertilization might take place in the female gastrovascular cavity by the sperm that came in from surrounding seawater by animals’ pumping activities after dawn. Having mechanical damages might promote fertilization success of this species in the Sea of Japan.  相似文献   

6.
Alcyonium acaule (Cnidaria, Octocorallia) is a common, hard-bottom soft coral in the northwestern Mediterranean Sea. This study describes sexual reproduction and the gamete development cycle of this soft coral. A population at 15–18 m depth in the Marine Protected Area of the Medes Islands (42º02′55″ N, 3º13′30″ E) was sampled from July 1994–August 1995. A. acaule is gonochoristic and a surface brooder, spawning once a year in early summer. The mean diameter of ripe spermatic sacs was 400 ± 91 (SD) μm, and the mean diameter of mature oocytes was 473 ± 37 (SD) μm. There were 30 spermatic sacs polyp?1 in males and 14 oocytes polyp?1 in females. Different phases of gametogenesis in female and male colonies were examined separately with respect to seasonal changes in bottom temperature and solar irradiance. The data suggest that the relatively constant temperatures in January–April are probably not related to oocyte maturation, but that rising temperatures in May could affect sperm maturation. Rapidly increasing solar irradiance in March may be the trigger for vitellogenesis and oocyte maturation, although the mechanism for this in anthozoans is not understood.  相似文献   

7.
In an attempt to describe the biochemical events associated with the main stages of the annual and reproductive cycles of the female dog cockle Glycymeris glycymeris L., we studied seasonal variations in the various stages of oocyte development of the ovaries, and the glycogen, total protein and total lipid content of five body tissues – adductor muscle, foot, tunic coat, visceral mass and mantle. From November 1991 to November 1994, microscopic examination of the ovaries and measurement of the tissue concentrations of glycogen, total proteins and total lipids in these five body tissues were made monthly on ten female dog cockles originating from the sea area around Douarnenez (south Brittany, France). Morphological studies revealed that in the population investigated the annual cycle is characterised by three major periods: a first period of vitellogenesis extending from February/March to April/May and preceding a spawning in spring; a second period of vitellogenesis extending from May/June to September/October and leading to either no spawning, a single autumnal spawning event, or to two spawning events in summer and autumn; and a third period extending from October/November to February/March and characterised by a high level of oocyte lysis. In the muscular body tissues of the dog cockle, i.e. the adductor muscles, the foot and the tunic coat (the muscular envelope containing the visceral mass), the concentrations of glycogen, total proteins and total lipids underwent very similar variations during the annual cycle. During each stage of vitellogenesis, a typical glycogen–protein–lipid sequence was observed in the muscular tissues that was characterised firstly by a peak of glycogen concentration 2 to 3 mo before spawning, followed by a peak in total proteins 1 mo before spawning, and finally by a peak in lipid content just before spawning. A similar glycogen–protein–lipid sequence was also recorded in the first half of the winter period. However, these events were followed by general atresia affecting all oocytes in the gonad. Maximum energetic value of biochemical constituents in females coincided with peaks in lipid content in the visceral mass and mantle. These biochemical events occurred principally immediately before and at the end of oocyte lysis (December/January). A drop in the total energetic value, affecting mainly the visceral mass and the mantle, was recorded each year during the period January to March, coinciding with the period of shell growth in this species. Our data clearly indicate that in female G. glycymeris all muscular tissues contribute to the storage of glycogen and proteins, and suggest that glycogen may be the source of energy triggering vitellogenesis. Biochemical and microscopic observations revealed that oocyte development takes place during the first half of winter, but that these oocytes undergo atresia in December/January. The metabolites produced from oocyte lysis could contribute to somatic growth, which occurs in late winter. Received: 3 March 1997 / Accepted: 23 July 1997  相似文献   

8.
Stereological methods applied to reproductive cycle of Tapes rhomboides   总被引:2,自引:0,他引:2  
A population of Tapes rhomboides (Pennant) in the Bay of St. Malo, France, was studied for one and a half years (July 1984–October 1985) to determine spawning frequency and fecundity under natural conditions, using the techniques of qualitative histological staging, condition index calculation and quantitative stereology. Spawning took place twice a year, in late May and in July/September. There was an extended winter resting period. Gonad development and oocyte production were positively correlated with female body size. The annual fecundity in a 40 mm clam was about 5x105. Stereological techniques provided accurate information on oocyte dynamics within a gonad and the relationship with atretic processes. Each oocyte generation from the onset of the cycle to the winter resting stage was spawned eventually if conditions were suitable, or the oocytes were resorbed. Atresia of oocytes was seen throughout the reproductive period, but especially after the spring spawning and at the end of the summer.  相似文献   

9.
The deep-sea pennatulacean coral Anthoptilum grandiflorum exhibits a cosmopolitan distribution and was recently determined to serve as habitat for other invertebrates and fish larvae in the northwest Atlantic. Colonies collected at bathyal depths between 2006 and 2010 in eastern Canada were analysed to determine their fecundity and characterize spatial and temporal trends in their reproductive cycle. Anthoptilum grandiflorum is a gonochoric broadcast spawner with a sex ratio that does not differ significantly from equality (although one hermaphrodite colony was observed). In male colonies, all the spermatocysts synthesized become mature over the annual cycle, while only ~21 % of the initial production of oocytes reaches maturity in female colonies. Female potential fecundity based on mature oocytes just before spawning was on average 13 oocytes polyp?1; male potential fecundity was 48 spermatocysts polyp?1. The spawning period of A. grandiflorum differs between geographic regions, from April (in southern Newfoundland) to July (in Labrador), closely following regional spring phytoplankton blooms after accounting for the deposition of planktic detritus. Release of oocytes by a live colony held in the laboratory was recorded in April 2011, coincident with field data for similar latitudes. Seawater temperatures at the time of spawning were around 3.6–4.8 °C in all regions and in the laboratory. Early stages of gametogenesis were detected in colonies collected shortly after the spawning season, and early and late growth stages occurred successively until December. Mature colonies were observed between April and July (depending on latitude). The diameter of mature oocytes (~1,100 μm maximum diameter) is consistent with lecithotrophic larval development.  相似文献   

10.
Reproductive biology in two species of deep-sea squids   总被引:2,自引:0,他引:2  
Deep-sea squids, Moroteuthis ingens and Gonatus antarcticus, were collected in the slope waters off the Falkland Islands and their reproductive systems preserved and investigated onshore. Changes in oocyte length-frequencies at maturation and spawning, and their fecundity were studied. These squids, as well as many other species, are characterised by a synchronous oocyte growth and ovulation. Oviducts are not used for ripe egg accumulation and consequently the universal scale of Lipinski (1979) cannot be applied to assign female maturity. M. ingens spawns near the bottom; its fecundity is 168–297 thousand eggs. Maximum egg size is 1.8–2.7 mm. G. antarcticus spawns midwater; its fecundity is 10–25 thousand eggs. Egg size is 3.2–3.3 mm. In M. ingens spawning takes place in the austral autumn and winter, in G. antarcticus—in austral winter. Our data and the literature data show that the so-called “synchronous ovulation” probably occurs in all deepwater squids. This pattern is very rare among fish, but is quite common among benthic octopods that brood their egg masses.  相似文献   

11.
The reproductive cycle of the large brooding seastar Leptasterias polaris Müller and Troschel was examined over an 18-month period in the St. Lawrence Estuary, Québec, Canada. There is a distinct annual cycle with spawning over several months in the autumn. The female has an unusual cycle in that the ovary only slightly decreases in size during spawning, and the size structure of the oocyte population is remarkably stable throughout the year. The major annual change observed in the oocyte population is the development of a small number of 600-to 800- oocytes prior to spawning and their loss during spawning. This stability, combined with the lack of evidence of phagocytosis, suggests that oocyte development takes place over many years. By contrast, the developmental cycle of the testis is similar to that of most echinoderms. The large reservoir of oocytes probably guarantees a steady annual recruitment, and brooding during the winter probably minimizes metabolic costs for the female and ensures the release of the juveniles when conditions are favourable in the spring and summer.  相似文献   

12.
The gonosomatic or gonadosomatic index [GSI=(ovary weight/fish weight)×100] has been widely used in fisheries science and experimental reproductive studies as a simple, low-cost measure of reproductive condition. However, its properties have not been fully evaluated, and several pitfalls, such as size-dependence and changes in ovarian allometry, may invalidate its use. In the present study, we examined ovarian allometry and the appropriateness of GSI for assessing ovarian activity in the Mediterranean sardine Sardina pilchardus. The analysis was based on a large sample of histologically scored females collected over an annual cycle in the eastern Mediterranean (Aegean and Ionian Seas). First, we examined GSI dependence on fish size by comparing ovary weight–on–fish weight relationships in different stages of oocyte development. The effects of recent spawning (incidence of postovulatory follicles) and intensity of follicular atresia were also addressed. In a subsequent step of the analysis, we applied generalized linear models (GLMs) to analyze the relationship between GSI and histological stage, taking into account the parallel effects of additional factors related to geographical region, month of capture, fish length and energetic reserves (fat stage, hepatosomatic index—HSI). Ovarian growth was isometric in all stages of oocyte development and states of atresia, but altered to positive allometric at the stage of oocyte hydration. Oocyte growth and intensity of atresia significantly affected GSI. Fish length, geographical region, month of capture, fat stage and HSI did not substantially affect GSI, further strengthening the appropriateness of the index for the Mediterranean sardine. Finally, we provide first evidence, based mainly on available (but yet limited) published information for other fish species, that: (1) the pattern of ovarian allometry may not be altered by fecundity variations and (2) the pattern of ovarian allometry may reflect the pattern of oocyte growth (i.e. isometric vs. allometric ovarian growth could reflect group-synchronous vs. -asynchronous oocyte development). Alternatively, the pattern of ovarian allometry could reflect the presence or absence of size dependency in the relative fecundity (eggs per gram of body weight) and/or egg size. The isometric ovarian growth in the Mediterranean sardine could be attributed to the lack of such size-dependent effects.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

13.
Gail K. Davoren 《Marine Biology》2013,160(12):3043-3058
Investigations of distributional and density patterns of marine predators often reveal areas where high abundances of one or many species overlap in space and time (‘biological hotspots’); however, mechanisms underlying hotspot formation are often unclear, leading to difficulties determining spatial and temporal boundaries of protected areas. On the northeast Newfoundland coast, I previously described annually persistent aggregations of a key forage fish species, capelin (Mallotus villosus): (1) two pre- and post-spawning staging areas in deep (>150 m) bathymetric channels, (2) a cluster of four persistently used demersal spawning sites (17–40 m), and (3) a coastal migratory route (<50 m). Through at-sea surveys repeated over 8 years (2000–2003, 2007, and 2009–2011), I show that the majority of predator hotspots identified were spatially associated with (i.e., within 10 km) these persistent capelin areas for breeding seabirds (common murre: 85.2 ± 4.6 %; northern gannet: 66.9 ± 6.6 %), overwintering seabirds (great and sooty shearwaters: 88.0 ± 6.9 %), and baleen whales (humpback, minke, and fin whales: 86.8 ± 8.6 %). Most predator hotspots were closer to the spawning (3.8–14.0 km) relative to the staging areas (13.1–27.6 km), especially for murres and shearwaters. Interspecific differences were attributed to variation in maximum dive depths and dietary preferences. Predators only aggregated within the spawning area, while capelin were spawning, suggesting that interannual variation in association with predator and capelin hotspots was attributed to variation in survey timing relative to capelin spawning. As these areas of persistent capelin are bound by static bathymetric and large-scale oceanographic features and can be delimited in time based on the capelin spawning period, they may be important candidate areas for protection.  相似文献   

14.
The reproductive ecology of the zooxanthellate reef coral Pavona clavus was investigated at several sites in Costa Rica, Panamá, and the Galápagos Islands (Ecuador) over the period 1985–2009. Pavona clavus displayed stable gonochorism as only five hermaphrodites were found in 590 samples. At four of five locations, sex ratios were skewed toward female dominance; however, at Saboga Island (Panamá) male colonies predominated. In Panamá, sexual maturity was observed in an estimated eight-year-old female colony, and several colonies of 10–20 years of age demonstrated gametogenesis. Sexual activity was observed at all study sites, but gamete development occurred in only 14–31% of colonies sampled sporadically. Seasonality of gametogenic activity occurred predominantly during the warm/wet season, June to August, at mainland sites (Caño Island, Costa Rica, and Gulfs of Chiriquí and Panamá, Panamá). This pattern was repeated in the Galápagos Islands, but mainly from March to May when seasonally high sea temperatures and rainfall prevailed there. Histological sampling and field observations indicated that spawning was centered around the full moon, most frequently on lunar day 17, and near sunset (1,800 h). Mean fecundity (mature ova cm?2 live tissue) estimates were significantly different for two sites and ranged from ~1,780 (Saboga Island, Gulf of Panamá, seasonally upwelling) to ~4,280 (Uva Is, Gulf of Chiriquí, non-upwelling). Assuming three annual spawning events colony?1 (August, September, October), extrapolation of minimum and maximum fecundities yield 5,340 and 12,840 ova cm?2 year?1. Seasonal, lunar, and diel spawning patterns in nine zooxanthellate species at Uva Island indicate asynchronous coral community spawning.  相似文献   

15.
Between 2002 and 2008, samples of the cold-water scleractinian coral Lophelia pertusa were collected from the Trondheim Fjord in Norway to examine reproductive periodicity. Collections were made from three locations: Tautra, (63°35.36′N, 10°31.23′E at 40–70 m), Stokkbergneset (63°28.18′N, 09°54.73′E at 110–500 m), and Røberg (63°28.88′N, 09°59.50′E at 250 m). Populations of L. pertusa from the Trondheim Fjord initiated oogenesis in January and spawning occurred from late January to early March the following year. Gametogenic cycles of the female L. pertusa samples overlapped by approximately 2 months, with oogonia visible in January, but this was not evident in the males. This paper provides the most complete gametogenic cycle to date and spawning observations for this important structure-forming species. The results from fjord populations are compared with published and preliminary data from other regions and are discussed in the context of regional differences in physical and biological variables, particularly food supply. Differences in gametogenic cycles within a single species provide a rare opportunity (especially in deep-sea species) to examine potential drivers of reproduction.  相似文献   

16.
We studied the spatial variability in the size at first maturity and the reproductive cycle of Paracentrotus lividus in Galicia, contributing key information for the exploitation and management of this resource. The size at maturity varied between 20.4 (±1.2 SE) mm and 27.9 ± 1.2 mm and was smaller in areas of low population density where sea urchins do not form patches. Using a nonlinear model, we analysed the effect of depth, body size, sex and population density on the temporal pattern of the gonad index. The maximum and minimum indices were obtained at 4 m depth in the months before and after the spring spawning, respectively. The depth also affected the cycle phase, and the sea urchins at 4 m depth spawned 9.4 ± 3.0 days later than the sea urchins at 8 m depth and 20.5 ± 3.0 days later than those at 12 m depth. Moreover, the sea urchins living in patches showed a slight increase in gonad size as a consequence of the better-quality habitat. This shows that there is no intraspecific competition in this area despite the high population densities reached (18.5 kg m?2).  相似文献   

17.
This study analyzed the reproduction and growth of freshwater prawn, Palaemon paucidens De Haan 1844 from Suk-dang lake(Korea). The analysis of the sex ratio showed a higher proportion of males than that of females. The average size of the eggs was 6.12 (+/-0.55) mm3 in the non-eyed stage (stageA) and 7.20 (+/-0.86)mm3 in the eyed stage (stage B). The reproductive output (RO) calculated with the dried-body weight of an incubating female and the weight of the eggs in dried condition was 26.97% (n = 17) of the average females weight. Incubating prawn appeared in April, and the gonadosomatic indices(GSI) showed the highest value during three months from January to March. Based on the month when there was a high proportion of incubating females with a high GSI, the estimated spawning season of P. paucidens was April. The maturity of the female was evaluated by the development of the ovaries and the existence of eggs. The average body length when 50% of the females in the group reached maturity was 8.55 (+/-2.74) mm. The analysis of the length-frequency distribution showed that the life span of P. paucidens ranged from 12 to 13 months. Females mature faster than males.  相似文献   

18.
I. Yano 《Marine Biology》1988,99(4):547-553
Female kuruma prawns (Penaeus japonicus Bate) with undeveloped, early developing, developing, nearly ripe and ripe ovaries, were collected from Ise Bay, Japan, in 1984. Oocyte development of the kuruma prawn was classified into ten stages according to morphological characters, namely: (1) synapsis stage, (2) chromatin nucleolus stage, (3) early perinucleolus stage, (4) late perinucleolus stage, (5) oil globule Stage I, (6) oil globule Stage II, (7) yolkless stage, (8) yolk granule stage, (9) prematuration stage, and (10) maturation stage. The synapsis stage is a multiplication stage. The chromatin nucleolus stage, early and late perinucleolus stages are previtellogenesis and primary growth stages. Oil globule Stage I is an initial stage of primary vitellogenesis and secondary growth. Follicle cells on the oil globule Stage I oocytes expand rapidly and reach maximum size during oogenesis. Yolk granule stage oocytes are in the initial stages of secondary vitellogenesis. Strongly acidophilic yolk granules accumulate within basophilic vesicles of the cytoplasm. The yolk granules are first concentrated in the inner part of the cytoplasm, then gradually spread to the periphery. Cortical crypts, which are separated from the oocyte cytoplasm by the cytoplasmic membrane, are situated outside of oocyte cytoplasm. Germinal vesicle breakdown (GVBD) is initiated in the late phase of prematuration and continues until the late phase of maturation immediately prior to spawning. At the beginning of the maturation stage, the oocytes are ovulated, after which the nuclei further shrink and migrate out-wards. After ovulation, meiotic division of the ovarian oocyte progressed up to the metaphase of primary maturation division. Finally, the meiotic metaphase is visible just beneath the cytoplasmic membrane in the mature oocyte. Though ovulation is synchronous within the same ovary, GVBD is not completely synchronous. Ovulated mature oocytes have many club-shaped cortical crypts in the peripheral part of the cytoplasm and contain extensive accumulations of yolk granules dispersed throughout the cytoplasm. The apical end of the club-shaped cortical crypts and cytoplasmic membrane are coated by the vitellin envelope in the mature oocyte.  相似文献   

19.
20.
G. Sach 《Marine Biology》1975,31(2):157-160
In 1974, spawning polychaetes, Anaitides mucosa (Oersted, 1843), appeared in great numbers (up to 148 individuals/m2) at the surface of an intertidal flat in the German Waddensea from mid-February until 10th April. A. mucosa forms mucous bags which usually contain more than 10,000 green eggs. The eggs measure 113.4±5.4 μm in diameter, including the fructification membrane (18 measurements). Production if these egg bags was observed 5 times in nature and 4 times in the laboratory. Four to 17 males and 1 female form a ball of interlacing bodies. At the same time a mucous mass is secreted by the female — maybe also by the males — which increases to a diameter of as much as 2 cm within about 8 min. Eggs and sperm are shed into this mass of mucus. The worms appeared at the surface of the flat from early sunset until sunrise from about 3 h before to 1 h after low tide. Judging from observations of worms in the laboratory, it seems possible that the rhythm of sexual activity is controlled endogenously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号