首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bivalves are important in shallow marine habitats, not at least being the major food resource for seaducks such as the common scoter (Melanitta nigra), thousands of which are wintering on the Western Coastal Banks, near the Belgian-French border (North Sea). Next to this ecological importance, fishable stocks of one of these bivalves, Spisula subtruncata, occur in the area. This study aimed at investigating S. subtruncata’s spatial distribution, population dynamics and productivity and its implications for a sustainable Spisula fishery in seaduck wintering areas. The spatial distribution of S. subtruncata was studied in 1994 and 1997 in two areas of the Belgian Western Coastal Banks. The population dynamics and production were investigated by monthly sampling of two stations between April 1995 and April 1996 and a seasonal sampling between April 1996 and April 1998. Spisula subtruncata had a patchy distribution in the deeper (6 m), fine sandy (200 ± 20 μm) sediments of the Abra alba community, mainly found in the western most part of the Western Coastal Banks. In August 1995, an overwhelming and successful recruitment was observed in this area: local densities were as high as 150,000 ind m−2. Minor, non-successful recruitments were detected in August 1996 and 1997. Due to space limitation, high densities of S. subtruncata are hypothesized to be responsible for the occurrence of aberrant shapes as observed from August 1996 onwards. Growth was described by a seasonally oscillating version of the von Bertalanffy growth function (VBGF): a growth stop was observed from late autumn till early spring. The VBGF parameters K (growth constant) and L (asymptotic length) were estimated at 0.7–0.9 and 31–33 mm. A combination of length and individual biomass increment showed: (1) a faster length increment of smaller individuals during the second growing period (catching-up phenomenon), (2) a constant length combined with a decreasing individual biomass during the suboptimal winter periods (except for the first winter, when the individual biomass slightly increased), (3) a positive relationship between the individual biomass decrease and the seawater temperature during the winter periods, and (4) a strong increase of the individual biomass in early spring (April 1997 and 1998) because of gametogenesis, followed by a decrease because of spawning (August 1997). The extremely high total production of the 1995 year class in the tidal gully (Potje) during the study period was estimated at approximately 1,500 g ash-free dry weight (ADW) m−2 or 600 g ADW m−2 on average per year. Shellfisheries for S. subtruncata within seaduck wintering areas, such as the Western Coastal Banks, should be carefully deliberated since (1) an important food resource for the seaducks will decrease, (2) the ecologically most diverse and rich macrobenthic A. alba community will be heavily affected, and (3) the recovery of Spisula populations after depletion is expected to be erratic.  相似文献   

2.
The sabellid polychaete Sabellastarte spectabilis (Grube 1878) was collected at approximately monthly intervals from January 2002 to December 2003 from intertidal and subtidal reefs near the Hawaii Institute of Marine Biology in Kane’ohe Bay, Hawaii, USA (21°N, 157°W). Gametogenesis and spawning periodicity were investigated using histological techniques and induction of spawning trials. Worms were characterized into four discrete reproductive stages based on histological evidence: (1) No evidence of reproductive activity in the coelom (sex cannot be determined), (2) Only coelomocytes present in the coelom (sex cannot be determined), (3) Some gametes present in the coelom (sex can be determined) and (4) Coelom densely packed with gametes (sex can be determined). The small hermaphroditic portion of the population was not used in this study. Stage 4 worms were present over an extended period of time (females, March–December and males, March–November) indicating a potentially broad reproductive season. No correlation between day length and maturation stages in S. spectabilis was detected. However, the statistical model Y = ([394.26 × X] − [7.793 × X 2]) − 4960.781 where Y the % frequency of Stage 4 worms and X the mean monthly water temperature explained 44% of the variation between water temperature and % frequency of Stage 4 worms. Maturation appeared to coincide with water temperatures of 24–25°C (March–September) after which there is a reduction in the % frequency of stage 4 individuals. Induction of spawning trials conducted between May and January showed the month of October with a significantly higher percent success than any other month investigated. According to all available information (e.g., natural spawning in water tables, histological data, induction of spawning trials, correlation of maturation stages with observed changes in average monthly water temperature.), there is an apparent peak in reproductive activity (spawning) within a broad maturational season, which may be influenced by water temperature.  相似文献   

3.
Hosts of avian brood parasites use a variety of defenses based on egg recognition to reduce the costs of parasitism; the most important of which is rejecting the parasitic eggs. Two basic recognition mechanisms are possible: “true recognition”, whereby hosts recognize their own eggs irrespective of their relative frequency in the clutch, and minority recognition (or “recognition by discordancy”), whereby hosts respond to the minority egg type. The mechanism of recognition has been experimentally studied in a handful of species parasitized by interspecific brood parasites, but the mechanism used in defenses against conspecific brood parasitism is unknown. I experimentally determined the mechanism of egg recognition in American coots (Fulica americana), a species with high levels of conspecific brood parasitism, egg recognition, and rejection. I swapped eggs between pairs of nests to alter frequencies of host and “parasite” eggs and then used two criteria for recognition: egg rejection and nonrandom incubation positions in the clutch. Eight of 12 nests (66%) given equal frequencies of host and parasite eggs showed evidence of true recognition. In contrast, only one of eight (12.5%) nests where host eggs were in the minority showed evidence of recognition by discordancy. The nonrandom incubation positions of parasitic eggs indicates that birds sometimes recognize parasitic eggs without rejecting them and provides a means of assessing recognition on a per nest basis in species with large clutches. Adaptive recognition without rejection may also be an important evolutionary stepping stone to the evolution of egg rejection in some taxa.  相似文献   

4.
The euphausiids Thysanoessa inermis (Kroyer 1846), Thysanoessa spinifera (Holmes 1900), and Euphausia pacifica (Hansen 1911) are key pelagic grazers and also important prey for many commercial fish species in the Gulf of Alaska (GOA). To understand the role of the euphausiids in material flows in this ecosystem their growth rates were examined using the instantaneous growth rate (IGR) technique on the northern GOA shelf from March through October in 2001–2004. The highest mean molting increments (over 5% of uropod length increase per molt) were observed during the phytoplankton bloom on the inner shelf in late spring for coastal T. inermis, and on the outer shelf in summer for T. spinifera and more oceanic E. pacifica, suggesting tight coupling with food availability. The molting rates were higher in summer and lower in spring, for all species and were strongly influenced by temperature. Mean inter-molt periods calculated from the molting rates, ranged from 11 days at 5°C to 6 days at 8°C, and were in agreement with those measured directly during long-term laboratory incubations. Growth rate estimates depended on euphausiid size, and were close to 0 in early spring, reaching maximum values in May (0.123 mm day−1 or 0.023 day−1 for T. inermis) and July (0.091 mm day−1 or 0.031 day−1 for T. spinifera). The growth rates for E. pacifica remained below 0.07 mm day−1 (0.016 day−1) throughout the season. The relationship between T. inermis weight specific growth rate (adjusted to 5°C) and ambient chlorophyll-a concentration fit a Michaelis–Menten curve (r 2 = 0.48) with food saturated growth rate of 0.032 day−1 with half saturation occurring at 1.65 mg chl-a m−3, but such relationships were not significant for T. spinifera or E. pacifica.  相似文献   

5.
Herring (Clupea harengus pallasi) spawning sites in Puget Sound, Washington overlap spatially and temporally with blooms of Alexandrium catenella, a toxic dinoflagellate species responsible for paralytic shellfish poisoning. Consequently, newly hatched herring larvae may be regularly exposed to the suite of dissolved paralytic shellfish toxins that are released into the water column from toxic cells during blooms. To date, virtually nothing is known about the impacts of these neurotoxins on early developmental stages of marine fish. In the present study, herring larvae at three ages, 0 days post hatch (dph), 4 dph, and 11 dph, were exposed to dissolved saxitoxin (STX) in 24-h and multi-day exposures. All larvae were examined for sensorimotor function (i.e. spontaneous swimming behavior and touch response). Significant reductions in spontaneous and touch-activated swimming behavior occurred within 1 h of exposure. EC50s at 1 h of exposure were 1,500, 840, and 700 μg STX equiv. l−1 for larvae introduced to STX at 0, 4, and 11 dph, respectively. This progressive age-specific increase in STX-induced paralysis suggests that older larvae were more sensitive to the toxin than younger larvae. Interestingly, herring larvae at all ages exhibited a significant degree of neurobehavioral recovery within 4–24 h of continuous exposure relative to the 1-h time point. This recovery of normal motor behaviors was not observed in previous studies with freshwater zebrafish (Danio rerio) larvae under the same continuous exposure conditions, suggesting that an adaptive detoxification or toxin sequestration mechanism may have evolved in some species of marine fish larvae. Our data reveal that (1) dissolved STX is bioavailable to marine finfish larvae, (2) the toxin is a paralytic agent with potencies that differ between developmental stages, and (3) STX-induced sensorimotor inhibition occurs rapidly but is transient in marine larvae. Collectively, these results suggest that dissolved algal toxins may have important sublethal effects on marine fish populations.  相似文献   

6.
While qualitative observations of jellyfish intraguild predation abound in the literature, there are only few rate measurements of these interactions. We quantified predation rates among two common jellyfish in northern boreal waters, Cyanea capillata and its prey Aurelia aurita, both of which also feed on crustacean zooplankton and fish larvae. A series of incubation experiments using a wide range of prey concentrations (0.38–3.8 m−3) in large containers (2.6 m3) was carried out. By replenishing the prey continuously as they were captured we maintained a nearly constant prey concentrations. Ingestion rates increased linearly up to prey concentrations of 1.92 m−3, yielding maximum clearance rates of ∼2.37 ± 0.39 m3 predator−1 h−1 for C. capillata predators 16 ± 2.3 cm in diameter. Mean ingestion rate at saturated prey concentrations (1.92–3.85 m−3) was 4.01 ± 0.78 prey predator−1 h−1. Behavioral observations suggested that predators did not alter their swimming behavior during meals, and thus that feeding rates were generally handling limited rather than encounter limited. Predators captured more prey than needed, and semi-digested prey was often discarded when fresh prey was encountered.  相似文献   

7.
Great scallop, Pecten maximus, and blue mussel, Mytilus edulis, clearance rate (CR) responses to low natural seston concentrations were investigated in the laboratory to study (1) short-term CR variations in individual bivalves exposed to a single low seston diet, and (2) seasonal variations in average CR responses of bivalve cohorts to natural environmental variations. On a short temporal scale, mean CR response of both species to 0.06 μg L−1 chlorophyll a (Chl a) and 0.23 mg L−1 suspended particulate matter (SPM) remained constant despite large intra-individual fluctuations in CR. In the seasonal study, cohorts of each species were exposed to four seston treatments consisting of ambient and diluted natural seston that ranged in mean concentration from 0.15 to 0.43 mg L−1 SPM, 0.01 to 0.88 μg L−1 Chl a, 36 to 131 μg L−1 particulate organic carbon and 0.019 to 0.330 mm3 L−1 particle volume. Although food abundance in all treatments was low, the nutritional quality of the seston was relatively high (e.g., mean particulate organic content ranged from 68 to 75%). Under these low seston conditions, a high percentage of P. maximus (81–98%) and M. edulis (67–97%) actively cleared particles at mean rates between 9 and 12 and between 4 and 6 L g−1 h−1, respectively. For both species, minimum mean CR values were obtained for animals exposed to the lowest seston concentrations. Within treatments, P. maximus showed a greater degree of seasonality in CR than M. edulis, which fed at a relatively constant rate despite seasonal changes in food and temperature. P. maximus showed a non-linear CR response to increasing Chl a levels, with rates increasing to a maximum at approximately 0.4 μg L−1 Chl a and then decreasing as food quantity continued to increase. Mean CR of M. edulis also peaked at a similar concentration, but remained high and stable as the food supply continued to increase and as temperatures varied between 4.6 and 19.6°C. The results show that P. maximus and M. edulis from a low seston environment, do not stop suspension-feeding at very low seston quantities; a result that contradicts previous conclusions on the suspension-feeding behavior of bivalve mollusks and which is pertinent to interpreting the biogeographic distribution of bivalve mollusks and site suitability for aquaculture.  相似文献   

8.
The great fecundity and very high larval mortality of most marine invertebrates and fish make possible substantial variance in the number of offspring contributed by adults to subsequent generations. The reproductive success of such organisms may thus resemble a sweepstakes lottery, in which a minority of progenitors succeeds in replacing an entire population, while the majority fails to procreate. One specific prediction of this hypothesis, that genetic diversity of newly settled cohorts should be less than that of the adult population, is tested in the present study. Microsatellite DNA markers were examined in naturally spawned juvenile European flat oysters Ostrea edulis (L.), collected over a 12-day period in 1993 from the western Mediterranean Sea, near Sète, France (43°32′N, 3°56′E) and grown out for a period of up to 10 months. Variation in these juveniles was compared to that in a pooled sample of adults collected in 1994 from two locations (Thau Lagoon and Port St. Louis) that had statistically homogeneous allelic frequencies. Though nearly twice as large as the pooled adult sample, the juvenile sample had only 60% of the adult allelic diversity. Analyses of linkage disequilibrium and kinship, as well as estimation of the effective number of parents, suggested that 10–20 adults produced this juvenile cohort. This observation supports the hypothesis of sweepstakes reproductive success and suggests that partial inbreeding may occur even in species with large populations and dispersing planktonic larvae. Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

9.
The maternally inherited bacterium Wolbachia pipientis generates strong reproductive incompatibilities between uninfected females and infected males (cytoplasmic incompatibility), significantly reducing both female and male reproductive success. Such fitness costs are thought to place selective pressure on hosts to evolve pre-copulatory preferences for mating with compatible mates, thereby enabling them to avoid the reproductive incompatibilities associated with Wolbachia. Therefore, uninfected females are predicted to prefer mating with uninfected males, whereas infected males are predicted to prefer mating with infected females. Despite these predictions, previous investigations of pre-copulatory mate preferences in Wolbachia-manipulated Drosophila have not found evidence of female preference for uninfected or compatible males. However, none of these studies utilised a design where focal individuals are provided with a simple choice in a relatively non-competitive situation. We examined both female and male pre-copulatory mate preference based on mate infection status in Drosophila simulans and D. melanogaster using simple choice assays involving between 30–50 replicates per treatment. Although we found no evidence of female pre-copulatory mate preferences in either species, male D. simulans exhibited some preference for mating with females of the same infection status. However, this preference was not evident when we repeated the experiment to confirm this finding. Consequently, we conclude that neither male nor female D. melanogaster and D. simulans exhibit significant Wolbachia-associated pre-copulatory mate preferences.  相似文献   

10.
Masato Owada 《Marine Biology》2007,150(5):853-860
The functional morphology of the shell of rock-boring mytilids (especially Leiosolenus and Lithophaga) is analyzed and compared with that of several epifaunal and semi-infaunal mytilids. Semi-infaunal species are generally intermediate between epifaunal and rock-boring ones both in terms of shell form and the magnitude of forces pulling the shells against the substratum. A molecular phylogenetic analyses using 18s rDNA sequence data strongly suggests that Leiosolenus and Lithophaga are monophyletic genera but that the so-called Lithophaginae (or Leiosolenus plus Lithophaga) is a paraphyletic group. The common cylindrical shell form of rock-boring species, which is here called “lithophagiform” as a third functional mytilid clade, may be due to convergence, as is the case with ‘mytiliform’ and ‘modioliform’.  相似文献   

11.
Phylogenetic analyses have demonstrated that nonfeeding larvae have evolved from feeding larvae many times among marine invertebrates. In light of this observation, it is surprising that an intermediate strategy, a larva that can feed but is provisioned with enough energy to metamorphose without acquiring exogenous food (i.e., facultative planktotrophy), is rare. A hypothesis for the lack of facultative planktotrophic species among marine invertebrates is that the transition from feeding to nonfeeding is rapid due to this intermediate stage being evolutionarily unstable. Evidence that would support this hypothesis is if species with facultative planktotrophy have reduced food assimilation when compared with obligate planktotrophs. We studied a species with facultative planktotrophic larvae, Clypeaster rosaceus, that is very near the boundary between facultative and obligatory planktotrophy, to answer two questions: (1) does feeding during the larval stage result in energy gains in larval or juvenile stages and (2) if not, are larvae capable of assimilating exogenous food at all. Our measurements of energetics in larval and juvenile stages show that C. rosaceus larvae accumulate very little if any energy when fed, but stable isotope data indicate that larvae are able to assimilate some food. Our results are consistent with similar studies on facultative planktotrophic larvae suggesting poor food assimilation and rapid loss of larval feeding after a population evolves the ability to reach metamorphosis without feeding (lecithotrophy).  相似文献   

12.
Field studies were conducted in Johnson Key Basin, Florida Bay, USA from September 2002 through September 2004 to examine physiological, ecological, and behavioral characteristics of the gulf toadfish, Opsanus beta (Goode and Bean in Proc US Natl Mes 3:333–345, 1880), in relation to nitrogen metabolism, habitat usage, and spawning. Fish collected 5 cm above sediments in experimental shelters (epibenthic) were compared with those collected by throw traps which were found on or burrowing within sediments. The relationship between microhabitat ammonia and urea excretion, as determined by the enzymatic activity of glutamine synthetase (GS), was examined. The hypothesis tested was that O. beta occupying epibenthic nests were less ureotelic with lower GS activities than non-nesting individuals on/in sediments, due to a decreased environmental ammonia burden. Porewater total ammonia (T Amm) concentrations at a sediment depth of 5 cm, i.e., the approximate depth of burrowing toadfish, ranged from 0 to 106.5 μmol N l−1 while the pH ranged from 7.48 to 9.14. There was a weak but significant correlation between environmental ammonia (NH3) concentration and hepatic GS activity for epibenthic toadfish (P < 0.001, r 2 = 0.10), but not for burrowing toadfish. Mean urea-N and T Amm concentrations within shelters occupied by toadfish (n = 281) were 9.8 ± 0.83 μmol N l−1 and 13.0 ± 0.7 μmol N l−1, respectively. As predicted, hepatic GS activity was significantly lower in epibenthic toadfish captured in shelters (4.40 ± 0.24 μmol min−1 g−1; n = 281) as compared to individuals on/in sediments (6.61 ± 0.47 μmol min−1 g−1; n = 128). Glutamine synthetase activity generally peaked in March (spawning season) and was lowest in July. Gender differences in hepatic and branchial GS activity were also found during the spawning season, which is attributable to the fact that males brood and guard offspring in their epibenthic nests while females often rest on or burrow into the sediments. Finally, hepatic and branchial GS appeared to have different patterns of enzymatic activity suggesting functional differences in gene expression.  相似文献   

13.
Skeletochronological analysis of Kemp’s ridley (Lepidochelys kempii) and loggerhead (Caretta caretta) sea turtle humeri and scleral ossicles was conducted to (1) describe the characteristics of scleral ossicles in these species, (2) determine whether the scleral ossicles contain annually deposited skeletal growth marks and (3) evaluate the potential for skeletochronological analysis of ossicles to obtain age data for size classes and species of sea turtles whose humeri exhibit prohibitive amounts of growth mark resorption. Humeri, entire eyes, and/or individual scleral ossicles were collected from stranded, dead sea turtles that were found along the coasts of Florida, North Carolina, Virginia, and Texas, USA. Samples were taken from a total of 77 neritic, juvenile Kemp’s ridleys ranging from 21.1 to 56.8 cm straightline carapace length (SCL), as well as two Kemp’s ridley hatchlings. For loggerheads, samples were obtained from 65 neritic juvenile and adult turtles ranging from 44.7 to 103.6 cm SCL and ten hatchlings. Examination of the ossicles revealed the presence of marks similar in appearance to those found in humeri. The number of marks in the ossicles and humeri of individual juvenile Kemp’s ridleys for which both structures were collected (n = 55) was equivalent, strongly indicating that the marks are annual. However, in large juvenile and adult loggerhead turtles (n = 65), some significant resorption of early growth marks was observed, suggesting that although ossicles might be useful for skeletochronological analysis of small juveniles, they may not provide a reasonable alternative to humeri for obtaining age estimates for older loggerhead sea turtles.  相似文献   

14.
This study reports the first multi-year observations on the reproductive patterns for an Antarctic predator/scavenger, Odontaster validus (Koehler 1912). Seastars were collected monthly from a shallow site (15–20 m depth) near the British Antarctic Survey (BAS) Rothera Research Station (Adelaide Island, 67°34′S 68°08′W) from July 1997 to January 2001. Reproductive condition, oocyte size frequencies and spermatogenesis were examined in at least ten seastars each month using histological and image analysis techniques. Gonad indices (GI) and pyloric caeca indices (PI) were also examined in the same samples. Female and male GIs varied seasonally, in parallel with a reduction in the proportion of large oocytes and mature sperm in the gonad in August to mid-October following winter spawning. Despite there being remarkable consistency in the timing of spawning from year to year, differences in the reproductive condition of individuals were apparent. Patterns in the digestive tissues also varied with season, peaking in December and reaching a minimum in February in two of the three study years. This weaker annual pattern may partly reflect the varied diet of this predator/scavenger species, which is not directly dependant on the timing and magnitude of the annual phytoplankton bloom. Pooled oocyte size distributions and residual analysis suggested that oogenesis progressed over 18–24 months, with the largest of the two size classes (maximum diameter = 183 μm) being spawned annually. This pattern of oocyte growth and spawning was previously reported in the early 1960s for an O. validus population from McMurdo Sound, which lies south of Rothera by 10° latitude. The extremely catholic diet of this predator/scavenger suggests the reproductive patterns of the seastar will be less susceptible to changes in food supply compared to polar suspension feeders or deposit feeders. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Using previously published histological data on multiple, monthly samples of Sardina pilchardus collected in the central Aegean and Ionian Seas (September 1999–August 2000, and November 2000–February 2001), the Mediterranean sardine was treated as a case study to investigate the biological characteristics of ephemeral spawning aggregations in multiple-spawning clupeoids. Actively spawning (Day0) females in the Mediterranean sardine, i.e., the daily class of spawners caught a few hours prior, during, or after the spawning act, were shown to separate spatially from late (Day1+) spawners and non-spawning females, taking with them a large proportion of conspecific males which were also in advanced spawning condition and in better somatic condition compared to the remaining population. In addition, information from 28 stocks of multiple-spawning clupeoids from a wide range of geographic locations, belonging to 14 species and 2 families (Engraulidae and Clupeidae), was reviewed and analyzed pertinent to the formation of ephemeral spawning aggregations. Results from the latter analysis indicated similar patterns of spatial segregation of Day0 spawners in the reviewed clupeoid stocks as in the Mediterranean Sardine, which strongly suggested that the formation of ephemeral spawning aggregations is a common behavioral trait among multiple-spawning clupeoids. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Echinoderms are major predators of anemones in temperate ecosystems. The fate of two algae, zooxanthellae and zoochlorellae, after their host anemone (Anthopleura elegantissima Brandt) was consumed by the leather star Dermasterias imbricata Grube was determined in experiments conducted in July and August 2004. Productivity, photosynthetic pigments, and mitotic index (percent of cells dividing) were used as indicators of algal health; algae released after leather stars consumed their host were compared with algae freshly isolated from anemones. Two types of waste products contained algae: pellets resulting from extraoral digestion, and feces. Zooxanthellae and zoochlorellae isolated from these waste products were photosynthetic, although to different extents. For algae from feces and pellets, light-saturated photosynthetic rates (P max) were 85 and 13%, respectively, of P max of freshly isolated zooxanthellae; and were 20 and 46%, respectively, for zoochlorellae. The photosynthetic pigments and mitotic index (percent of dividing cells) were not altered by the feeding activities of the leather star. These results show that algae released by seastar predation on their hosts remain viable, and are hence available for establishing symbioses in A. elegantissima and other potential hosts.  相似文献   

17.
Seasonal lipid dynamics of various developmental stages were investigated in Pseudocalanus minutus and Oithona similis. For P. minutus, the dominance of 16:1(n−7), 16:4(n−3) and 20:5(n−3) fatty acids indicated a diatom-based nutrition in spring, whereas 22:6(n−3), 16:0, 18:2(n−6) and 18:1(n−9) pointed to a flagellate-based diet during the rest of the year as well as omnivorous/carnivorous low-level feeding during winter. The shorter-chain fatty alcohols 14:0 and 16:0 prevailed, also reflecting biosynthetic processes typical of omnivores or carnivores. Altogether, the lipid signatures characterized P. minutus as an opportunistic feeder. In contrast, O. similis had consistently high amounts of the 18:1(n−9) fatty acid in all stages and during all seasons pointing to a generally omnivorous/carnivorous/detritivorous diet. Furthermore, the fatty alcohol 20:1(n−9) reached high percentages especially in adult females and males, and feeding on Calanus faecal pellets is suggested. Fatty alcohols, as wax ester moieties, revealed significant seasonal variations in O. similis and a seasonal trend towards wax ester accumulation in autumn in P. minutus. P. minutus utilized its lipid deposits for development in the copepodite stages III and IV and for gonad maturation in CV and females during the dark season. However, CVs and females depended on the spring phytoplankton bloom for final maturation processes and reproduction. O. similis fueled gonad maturation and egg production for reproduction in June by wax esters, whereas reproduction in August/September co-occurred with the accumulation of new depot lipids. Both species revealed significantly higher wax ester levels in deeper (>50 m) as compared to surface (0–50 m) dwelling individuals related to a descent prior to overwintering.  相似文献   

18.
Marja Koski 《Marine Biology》2007,151(5):1785-1798
Feeding, egg production, hatching success and early naupliar development of Calanus finmarchicus were measured in three north Norwegian fjords during a spring bloom dominated by diatoms and the haptophyte Phaeocystis pouchetii. Majority of the copepod diet consisted of diatoms, mainly Thalassiosira spp. and Chaetoceros spp., with clearance rates up to 10 ml ind−1 h−1 for individual algae species/groups. Egg production rates were high, ranging from ca 40 up to 90 eggs f−1 d−1, with a hatching success of 70–85%, and fast naupliar development through the first non-feeding stages. There was no correlation between the egg or nauplii production and diatom abundance, but the hatching success was slightly negatively correlated with diatom biomass. However, the overall high reproductive rates suggested that the main food items were not harmful for C. finmarchicus reproduction in the area, although direct chemical measurements were not conducted. The high population egg production (>1,20,000 eggs m−2 d−1) indicated that a large part of the annual reproduction took place during the investigation, which stresses the importance of diatom-dominated spring phytoplankton bloom for population recruitment of C. finmarchicus in these northern ecosystems.  相似文献   

19.
Migrating feeding aggregations (or fronts) of sea urchins can dramatically alter subtidal seascapes by destructively grazing macrophytes. While direct effects of urchin fronts on macrophytes (particularly kelps) are well documented, indirect effects on associated fauna are largely unknown. Secondary aggregations of predators and scavengers form around fronts of Strongylocentrotus droebachiensis in Nova Scotia. We recorded mean densities of the sea stars Asterias spp. (mainly A. rubens) and Henricia sanguinolenta of up to 11.6 and 1.7 individuals 0.25 m−2 along an urchin front over 1 year. For Asterias, mean density at the front was 7 and 15 times greater than in the kelp bed and adjacent barrens, respectively. There was strong concordance between locations of peak density of urchins and sea stars (Asterias r = 0.98; H. sanguinolenta r = 0.97) along transects across the kelp–barrens interface, indicating that sea star aggregations migrated along with the urchin front at rates of up to 2.5 m per month. Size–frequency distributions suggest that Asterias at the front were drawn from both the barrens (smaller individuals) and the kelp bed (larger individuals). These sea stars fed intensively on mussels on kelp holdfasts and in adjacent patches. Urchin grazing may precipitate aggregations of sea stars and other predators or scavengers by incidentally consuming or damaging mussels and other small invertebrates, and thereby releasing a strong odor cue. Consumption of protective holdfasts and turf algae by urchins could facilitate feeding by these consumers, which may obtain a substantial energy subsidy during destructive grazing events.  相似文献   

20.
Corals harbouring genetically mixed communities of endosymbiotic algae (Symbiodinium) often show distribution patterns in accordance with differences in light climate across an individual colony. However, the physiology of these genetically characterised communities is not well understood. Single stranded conformation polymorphism (SSCP) and real time quantitative polymerase chain reaction (qPCR) analyses were used to examine the genetic diversity of the Symbiodinium community in hospite across an individual colony of Acropora valida at the spatial scale of single polyps. The physiological characteristics of the polyps were examined prior to sampling with a combined O2 microelectrode with a fibre-optic microprobe (combined sensor diameter 50–100 μm) enabling simultaneous measurements of O2 concentration, gross photosynthesis rate and photosystem II (PSII) quantum yield at the coral surface as a function of increasing irradiances. Both sun- and shade-adapted polyps were found to harbour either Symbiodinium clade C types alone or clades A and C simultaneously. Polyps were grouped in two categories according to (1) their orientation towardps light, or (2) their symbiont community composition. Physiological differences were not detected between sun- and shade-adapted polyps, but O2 concentration at 1,100 μmol photons m−2 s−1 was higher in polyps that harboured both clades A and C symbionts than in polyps that harboured clade C only. These results suggest that the acclimatisation of zooxanthellae of individual polyps of an A. valida colony to ambient light levels may not be the only determinant of the photosynthetic capacity of zooxanthellae. Here, we found that photosynthetic capacity is also likely to have a strong genetic basis and differs between genetically distinct Symbiodinium types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号