首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dissolved total carbohydrate (TCHO), polysaccharide (PCHO), monosaccharide (MCHO) and organic carbon (DOC) were determined at 3-h intervals over 5 diel cycles in the mixed layer of the northwestern Caribbean Sea while following a drogued buoy. These data have been compared to populations of phototrophic (PNAN) and heterotrophic (HNAN) nanoplankton (2–20 m diameter) and heterotrophic bacteria (HBAC) (0.2–2.0 m diameter) estimated by epifluorescence counts, as well as to CO2, phosphate, chlorophyll a and phaeopigment data determined simultaneously. Two different types of apparent diel dissolved carbohydrate (CHO) patterns were found. On 3 d when no sustained net CO2 uptake was evident, TCHO and PCHO generally declined during the afternoon and early evening while MCHO tended to increase. On two other days when apparent sustained CO2 uptake occurred during the day, there were large evening TCHO and PCHO peaks with constant or declining MCHO levels. These accumulations probably resulted from the release of recently produced PCHO from phototrophs. As was found earlier in the Sargasso Sea, PNAN populations were inversely related to PCHO concentrations. The sample to sample fluctuations of PNAN also were inversely related to the apparent rates of change of TCHO and PCHO, possibly due to an inverse relation between the rates of PNAN cell division and CHO excretion. Fluctuations in HBAC populations were inversely correlated with PCHO dynamics and directly related to MCHO variations, possibly due to extracellular hydrolysis of PCHO to MCHO during periods of rapid bacterial growth as well as to net heterotrophic PCHO uptake. A direct relationship between HNAN and TCHO fluctuations suggests the importance of HNAN excretion in the release of dissolved organics. The combined PNAN and HBAC fluctuations accounted for a more significant fraction of the variance in the apparent rates of change of PCHO than did any single population parameter indicating that intimate interactions between the microbial plankton groups are important in the in-situ regulation of CHO dynamics. Total system net TCHO release and uptake rates for 5 d averaged 56 and 53 g C l-1 d-1 respectively, assuming that the observed fluctuations resulted from temporal planktonic processes in homogeneous water masses. While the data contain indications that this was the case, this assumption is not definitive.  相似文献   

2.
The concentrations of total dissolved carbohydrate (TCHO), monosaccharide (MCHO) and polysaccharide (PCHO) were followed over a total of ten diel cycles in a salt marsh and a 13 m3 seawater tank simulating an estuarine ecosystem. Their patterns are compared to those for total dissolved organic carbon (DOC), CO2, pH, O2, chlorophyll a, phaeopigments and solar radiation. During 5 of the 6 marsh studies, PCHO underwent periods of sustained accumulation starting in the late morning or early afternoon and continuing into the early evening. These periods possibly represent release of recently synthesized PCHO from phototrophs. similar patterns were not found in the tank although direct associations between TCHO and phaeopigment dynamics suggest that zooplankton excretion was an important source of dissolved carbohydrate. The numbers of planktonic bacteria determined in one tank study increased rapidly during a late morning PCHO pulse and varied inversely with PCHO throughout the afternoon and evening, indicating that they were able to respond rapidly and control natural substrate concentrations on a time scale of a few hours. MCHO fluctuated to a much lesser extent than PCHO at both locations with levels possibly maintained near the bacterial uptake threshold or in a closely regulated steady state. TCHO concentration changes over 2-to 3-h sampling intervals suggest very rapid net system release and uptake with summer rates frequently exceeding 30 g C l-1h-1 in the marsh and 20 g C l-1 h-1 in the tank.  相似文献   

3.
From February 24 to April 24, weekly samples were collected at fixed depths at one station in Lindåspollene, a land-locked Norwegian fjord. Adenosine triphosphate (ATP), chlorophyll a, phaeophytin, 14C assimilation, and respiratory activity [electron transport system (ETS) activity] were measured in the net- (>30 m) and nanoplankton. Netplankton contained on the average 48% of the total chlorophyll a and 56% of the ATP, but contributed only 7% to the total carbon assimilation and 11% to the ETS activity. The assimilation numbers for net- and nanoplankton ranged from 0 to 1.2 and from 1.5 to 13.2, respectively. At the oxygen/hydrogen sulphide interface, high concentrations of ATP, but not of chlorophyll a, were found in the nanoplankton fraction. Netplankton algae grew actively only in the first phase of the bloom, and nanoplankton predominated later, apparently due to low nutrient concentrations. During the bloom, Skeletonema costatum made up the main part of the biomass. The number of cells in the chains decreased throughout the bloom, possibly reflecting the lowered silicate content. It appeared that only nanoplankton were grazed by zooplankton, while netplankton sank to the bottom and represented input to the benthos.  相似文献   

4.
From November 1980 to February 1981 the concentration of oxygen dissolved in the surface mixed layer of the oligotrophic Caribbean Sea off Curaçao was quite constant (420.77±1.98 g at l-1). However, immediately following enclosure in 4500-1 plastic bags reaching to a depth of 5 m the oxygen concentration began to decrease, down to values below saturation (405 g at l-1) within 48 h. Autotrophic and heterotrophic nanoplankton cell numbers and algal pigments in bags remained constant or increased slightly during the first 24 h of enclosure. The rate of decrease in oxygen concentration in bags was significantly higher during daylight hours than in the night, which suggests that photo-oxidative processes were involved in the additional daytime loss of oxygen. The dramatic enclosure effect on the oxygen content of the water in the bags can be taken as evidence of the dependence of the oxygen concentration near the tropical ocean's surface on supply from below: in water freely circulating in the euphotic zone deviations from the mean oxygen concentration during a diurnal cycle were 0.47% at most, differential losses near the surface being counteracted through vertical exchange; while in water separated from the rest of the mixed layer in the plastic bags losses due to respiration of the enclosed plankton community plus an even greater loss, assigned to non-biological, photosensitized oxidation processes, were up to 10 g at O2 l-1 in 24 h. Although photo-oxidation is confined to the very surface the oxygen flux involved may be important enough to necessitate consideration of a photochemically induced loss factor in oxygen budget calculations, e.g. when primary production is to be estimated from diurnal oxygen curves.  相似文献   

5.
Suspended particulate matter was comprehensively investigated from 6 to 17 April 1986 in the lagoon of Tikehau atoll (15°00S; 148°10W). Dry weight (DW), particulate organic carbon (POC), adenosine triphosphate (ATP), and chlorophyll a were measured for five size-classes (0.2 to 0.8 m, 0.8 to 3 m, 3 to 35 m, 35 to 200 m, and 200 to 2000 m). Taxa were identified and counted for the whole plankton (both autotrophic and heterotrophic). Particles <3 m accounted for 81% of the total POC (192 mg m-3), and detritus comprised 82% of the total POM. Phytoplankton (cyanobacteria plus algae) accounted for 35% of the living carbon, 75% of which consisted of heterotrophic bacteria and cyanobacteria. The zooplankton biomass was composed of 31% nano-, 26% micro-, and 43% mesoplankton.  相似文献   

6.
The annual cycle of protozooplankton in the Kiel Bight   总被引:6,自引:0,他引:6  
Protozooplankton (heterotrophic dinoflagellates and ciliates) composition and biomass was studied in a 20-m water column in the Kiel Bight on 44 occasions between January 1973 and April 1974. Both groups attained comparable biomass maxima during spring and autumn (0.3 to 0.7 g C m-2 in the 20-m water column) and biomass levels were much lower in summer and lowest in winter. The spring protozooplankton maximum coincided with that of phytoplankton and during the rest of the year, protozooplankton stocks did not appear to be food limited as phytoplankton stocks were large throughout; many protozoans with ingested microplankton cells were observed, indicating that their potential food supply is not restricted to nanoplankton. Non-loricate organisms dominated biomass of the ciliates and tintinnids were of little importance. Tintinnids predominated in plankton samples concentrated by 20 m gauze indicating that most non-loricate ciliates, irrespective of size, were not retained. When phytoplankton sotcks were large (>3 g C m-2) but those of metazooplankton small, as in spring and autumn, protozooplankton were the major herbivores with biomass levels comparable to those attained in summer by metazooplankton ( 0.5 g C m-2). A highly significant negative correlation was found between protozooplankton and metazooplankton during the plankton growth season. Predation by the latter is thus an important factor regulating size of the protozooplankton population, although other factors also appear to be in operation. Loss rates of the pelagic system through sedimentation are highest in spring and autumn when protozooplankton dominate the grazing community and loss rates are much lower in summer when metazooplankton are the dominant herbivores. Apparently, the impact of protozooplankton grazing on the pelagic system is quite different to that of the metazooplankton.Publication No. 268 of the Joint Research Programme (SFB 95), Kiel University  相似文献   

7.
Some experiments on phosphate assimilation by coastal marine plankton   总被引:2,自引:0,他引:2  
A study of phosphate assimilation by coastal marine plankton revealed that both phytoplankton and microheterotrophs incorporated radioactive phosphorus (33P). Size fractionation of the particulate matter (using 1 m pore diameter Nucleopore® membrane filters), antibiotic treatment (using garamycin), and independent estimaties of photoautotrophic (14CO2 uptake) and heterotrophic (3H-glucose uptake) activities were employed to separate phyto- and bacterioplankton phosphate uptake. Results indicated that phytoplankton 33P-uptake was best estimated by the fraction of particulate matter retained on the 1 m membrane filters. Usually, less than 10% of the phytoplankton (based on chlorophyll a measurements) passed the 1 m pore-diameter filters, whereas about 90% of the heterotrophic activity passed. At least 50% of the 33P-uptake was associated with the <1 m fraction. It may be possible to resolve the phytoplankton and bacterial contributions to 33P-uptake by comparing the percent of total 33P-uptake with the percent of total 3H-glucose uptake associated with the >1 m fraction.  相似文献   

8.
An investigation was undertaken to determine the distribution and activity of the heterotrophic microplankton associated with particles from a Georgia salt marshestuarine ecosystem to the western edge of the Sargasso Sea. Heterotrophic activity was determined by the uptake of 14C-glucose. More than 80% of the activity was associated with detritus greater than 3 m in creek, river and coastal (within 4 km of shore) waters. In the Gulf Stream, approximately 80% of the heterotrophic activity was in the fraction less than 3 m. In the estuary, total heterotrophic activity fluctuated with the tides; the greatest activity occurred near low ebb tide at all locations. The lowest activity was measured at slack low and high tides. In creek water most of the heterotrophic activity was associated with particles between 14 and 180 m, whereas in coastal waters (less than 4 km from shore) most of the activity was in the fraction greater than 180 m.Contribution No. 331 from the University of Georgia Marine Institute, Sapelo Island, Georgia 31327, USA.  相似文献   

9.
The abundance of microzooplankton and their grazing impact on phytoplankton were studied using the dilution technique from May 1990 to November 1991 in northern Hiroshima Bay, a typical eutrophic area in the Seto Inland Sea. Microzooplankton, dominated in number by tintinnid ciliates, were abundant from June to September when chlorophyll-a concentrations were high. Maximum density of microzooplankton ranged from 3.8×103 to 25.4×103 ind l-1. During the period of investigation, mean microzooplankton density and mean chlorophyll-a concentration of the <20-m fraction increased toward the inner region of the bay. The microzooplankton grazing on phytoplankton increased from summer to early autumn, and decreased from late autumn to winter. At an offshore station, the annual means of the daily grazing loss for total chlorophyll-a and the chlorophyll-a of the <20-m fraction were 12 and 15% of the initial standing stock, respectively. At an estuarine station, the microzooplankton grazed 19 and 29% of the total and <20-m initial standing stock, respectively. The quantity of grazed chlorophyll-a correlated positively and linearly with the potential production of chlorophyll-a at both stations. The quantity of chlorophyll-a grazed by microzooplankton and the potential production of chlorophyll-a were nearly equivalent in the <20-m fraction at the estuarine station. This suggests that the microzooplankton assemblage was able to consume almost all the nanoplankton newly produced in the eutrophic estuary.  相似文献   

10.
Changes in the phosphorus components of the particulate matter in seawater were studied in the eutrophicated waters of Mikawa Bay, Japan, during summer 1981. The contents of particulate phosphorus and hot-water extractable intracellular phosphorus displayed remarkable changes associated with phytoplankton blooms caused by wind-induced or upwelling-associated nutrient enrichment from the bottom water layers. Nanoplankton <10 m accounted for much of the particulate phosphorus (70 to 79% in June and July, and 44 to 78% in August and September); the contribution of large-sized phytoplankton >25 m varied from 9 to 49%, the peak values being attained under red-tide conditions. The capacity for phosphorus storage in cells was low in nanoplankton cells, high in large phytoplankton species. Differences in rates of phosphorus storage and growth between nanoplankton and large phytoplankton accounted for fluctuations in particulate phosphorus which were closely associated with fluctuations in phytoplankton blooms in Mikaw Bay.  相似文献   

11.
The relationships between netplankton and nanoplankton assimilation numbers, temperature, and major nutrient concentrations were studied and evaluated in the context of seasonal patterns in the biomass of these phytoplankton size fractions. Netplankton and nanoplankton blooms typically occur during late winter (2° to 8°C) and summer (18° to 24°C), respectively. Variations in nanoplankton and netplankton assimilation numbers were not statistically related to the development or collapse of specific blooms based on weekly sampling, but assimilation numbers were higher during the bloom periods than during transition periods of rapid temperature change (8° to 18°C). Differences in the assimilation numbers between size fractions could account for the dominance of the nanoplankton fraction during the summer bloom period but not for the dominance of netplankton during the winter bloom period. Nanoplankton and netplankton assimilation numbers were exponential functions of temperature between 8° and 24°C and 8° and 20°C, respectively. Below 8°C the assimilation numbers of both fractions were higher than expected on the basis of temperature. Above 20°C netplankton assimilation numbers declined with temperature. Netplankton and nanoplankton assimilation numbers were occasionally correlated with dissolved inorganic nitrogen concentrations from less than 1.0 to more than 15 g-at l-1. Under these conditions, nanoplankton growth rates (calculated from assimilation number and carbon:chlorophyll) were higher and increased more rapidly with dissolved inorganic nitrogen than netplankton growth rates.  相似文献   

12.
The heterotrophic phase of plankton succession in the Japan Sea   总被引:7,自引:0,他引:7  
The vertical structure, composition and productivity of a plankton community was studied in the Japan Sea in June, 1972 during a period of thermocline formation; the parameters measured were: phytoplankton production and biomass; number, biomass, and production of planktonic bacteria; biomass of phagotrophic flagellates, ciliates and remaining microzooplankton. The concentration of micro- and mesozooplankton attained a basic maximum in a layer near the upper part of the thermocline. The biomass and calculated production of the heterotrophic part of the community exceeded considerably the amount of primary production. The heterotrophic phase of the seasonal succession of a plankton community in a temperate sea is described, when heterotrophic metabolism and production predominate. Heterotrophs at this stage use mostly energy from organic matter accumulated during the previous spring phytoplankton bloom.  相似文献   

13.
From July to September 1982 feeding experiments were conducted with 138-mm fork length Atlantic menhaden Brevoortia tyrannus (Latrobe) (Pisces: Clupeidae) to determine their particle size-specific feeding abilities. Monoculture clearing-rate experiments showed that the minimum size of particles filtered, the minimum size threshold, for 138-mm fish is 7 to 9 m. Filtration efficiency for three species of phytoplankton below the minimum size threshold. Pseudoisochrysis paradoxa, Monochrysis lutheri, and Isochrysis galbana, averaged 1.0% (n=14). Tetraselmis suecica, Prorocentrum minimum, and 2-celled Skeleionema costatum, phytoplankton which are larger than the minimum size threshold and smaller than the 20-m upper limit for nanoplankton, were filtered at efficiencies averaging 21% (n=24). S. costatum chains of 3 to 6 cells, prey particles exceeding the size limits of nanoplankton, were filtered at average efficiencies ranging from 22 to 84%. The mean filtration efficiency for Artemia sp. nauplii (San Francisco Bay Brand) of 36% (n=7) was lower than for smaller phytoplankton prey. The presence of detritus at concentrations usually encountered in nature enhanced filtering efficiency and lowered minimum size thresholds at which phytoplankton were retained. For small food particles, filtering efficiency decreased as swimming speed of the menhaden increased. As menhaden grow, their feeding tepertoire shifts to larger planktonic organisms.Contribution No. 1201 Virginia Institute of Marine Science  相似文献   

14.
Photosynthetic parameters for netplankton (>22 m) and nanoplankton (<22 m) varied over similar ranges but exhibited different seasonal and geographic patterns of variation. Nanoplankton a was relatively constant (0.06 mg C [mg Chl · h]-1 [E m-2 s-1]-1), but P m B (mg C [mg Chl · d]-1) was an exponential function of temperature independent of nutrient concentration and vertical stability in the euphotic zone. The temperature function gives a P m B of 24 at 25°C for nanoplankton growing in an estuarine environment characterized by high nutrient concentrations and a shallow, stratified euphotic zone. Variations in netplankton a and P m B were less predictable and were not correlated with temperature, nutrients or vertical stability. Chain forming diatoms with small cells were able to achieve high (0.10 to 0.15) and P m B (20 to 24) that were 3 to 5 times higher than large-celled diatoms and dinoflagellates were able to achieve.  相似文献   

15.
Amino acid uptake and respiration by marine heterotrophs   总被引:5,自引:0,他引:5  
The concentration and turnover of dissolved free amino acids were measured in samples from 25 and 100 m on three occasions at a station 6 miles off the California (USA) coast. Individual amino acid concentrations varied from undetectable (<0.05 g/l) to 3 g/l, the total amino acid concentration from 1.8 to 8.5 g/l. The greater concentration of total amino acids was always found at 25 m. The predominant amino acids were serine, lysine, aspartate, glutamate and alanine; reliable analyses could not be made for glycine because of a high blank. For the 10 individual amino acids studied, the rate of heterotrophic turnover ranged from undetectable to 1.2 g/l day-1; serine, aspartate, alanine and glutamate showed the highest rates. In samples from 25 m, the rates were 15 to 20 times higher than those taken from 100 m. The total calculated flux of the amino acids studied varied from 0.015 to 3.2 g/l day-1 and amounted to 1–10% of photosynthetic carbon dioxide fixation.  相似文献   

16.
Orthophosphate uptake by a natural estuarine phytoplankton population was estimated using two methods: (1) 32P uptake experiments in which filters of different pore sizes were used to separate plankton size-fractions; (2) 33P autoradiography of phytoplankton cells. Results of the first method showed that plankton cells larger than 5 m were responsible for 2% of the total orthophosphate uptake rate. 98% of the total uptake rate occurred in plankton composed mostly of bacteria, which passed the 5 m screen and were retained by the 0.45 m pore-size filter. There was no orthophosphate absorption by particulates in a biologically inhibited control containing iodoacetic acid. Orthophosphate uptake rates of individual phytoplankton species were obtained using 33P autoradiography. The sum of these individual rates was very close to the estimated rate of uptake by particulates larger than 5 m in the 32P labelling experiment. Generally, smaller cells were found to have a faster uptake rate per m3 biomass than larger cells. Although the nannoplankton constituted only about 21% of the total algal biomass, the rate of phosphate uptake by the nannoplankton was 75% of the total phytoplankton uptake rate. Results of the plankton autoradiography showed that the phosphate uptake rate per unit biomass is a power function of the surface: volume ratio of a cell; the relationship is expressed by the equation Y=2x10-11 X 1.7, where Y is gP m-3 h-1 and X is the surface: volume ratio. These results lend support to the hypothesis that smaller cells have a competitive advantage by having faster nutrient uptake rates.  相似文献   

17.
Temporal changes in abundance and biomass of picophytoplankton, heterotrophic pico-eukaryotes, and nanoplankton assemblages were investigated along a transect crossing the Adriatic Sea, from the Italian to the Croatian coast. This 15-months (June 1999-August 2000) investigation allowed comparing microbial parameters during summer 1999 (year without mucilage) and summer 2000 when a major mucilage event occurred. Pico- and nanoplankton assemblages displayed significant differences between the 2 summer periods. The main differences can be summarized as: (i) presence of cyanobacterial blooms (up to 108 cells l-1) in summer 2000, absent in summer 1999; (ii) an increasing fraction of heterotrophic pico-eukaryotes (up to 5.0 × 106 cells l-1) and heterotrophic nanoplankton (size 2-5 µm) during mucilage event; (iii) a reduced abundance of small-sized (2-3 µm) phototrophic nanoplankton in summer 2000. Changes in community structure were signals of changes in trophic condition of the system, which resulted in a competitive advantage for small sized pico- and nanoheterotrophs. Data presented here indicated that mucilage events are associated with changes in microbial community structure and functioning in ambient water and induced the amplification of 3-step microbial food chain. The potential use of the heterotrophic pico-eukaryotes for describing alterations of the trophic pathways during mucilage events is discussed.  相似文献   

18.
The distribution of phosphate, nitrate and silicate values obtained from 300 samples and of biomass determined by displacement volume in about 1,900 vertical plankton hauls (65, 200 and 330 m) collected from 8 oceanographic station during 1974–1975 in the Gulf of Aqaba (Elat) are summarized and illustrated by crosssections. Generally, the Gulf is poor in nutrients and the data indicate that it is filled with upper (150 m) Red Sea waters, flowing in over the sill of Tiran. Nutrient content of the upper and deep waters immediately outside the sill are well within the known range of those in the northern Red Sea. Biomass values are relatively low in the Gulf are generally similar to those reported from the northern Red Sea. Both nutrients and biomass values display seasonal and bathymetric variations in the Gulf and outside the sill.  相似文献   

19.
Bottle incubations were conducted in March, July/August and October 1992. to measure the daily rations (R) and objectively characterize the diets of the calanoid copepodsEucalanus elongatus, Undinula vulgaris, Centropages velificatus andTemora stylifera from the west Florida continental shelf. Daily rations,R, were clustered around two, order-of-magnitude different means, 1.3 and 11.2% of body C d–1, representative of quiescent and active feeding modes, respectively. The food concentration at which the transition from quiescent to active mode occurred was influenced by food particle size. In the quiescent mode, diets were dominated by nanoplankton, whereas no food type dominated the diet in the active mode. Selective feeding, defined as a statistically significant difference between the frequency distributions of foods in the diet and environment, occurred in both quiescent and active copepods. However, what appeared to be selective feeding in quiescent copepods could be explained by processes that passively modified the distribution of the diet relative to that of the food supply. Conversely, selective feeding in active copepods apparently resulted from foraging for particles >5 m in diameter in food environments dominated by nanoplankton (<5 m).  相似文献   

20.
A dual-isotope method was developed to measure grazing rates and food preferences of individual species of heterotrophic dinoflagellates from natural populations, collected from the Slope, Gulf Stream, and Sargasso Sea and from a transect from Iceland to New England, in 1983. The isotope method measures the grazing rates of microzooplankton which cannot be separated in natural populations on the basis of size. Tritiated-thymidine and 14C-bicarbonate were used to label natural heterotrophic and autotrophic food, respectively. Nine oceanic dinoflagellate species in the genera Protoperidinium, Podolampas, and Diplopsalis fed on both heterotrophic and autotrophic food particles with clearance rates of 0.4 to 8.0 l cell-1 h-1, based on 3H incorporation, and 0.0 to 28.3 l cell-1 h-1, based on 14C incorporation. Two dinoflagellate species, Protoperidinium ovatum and Podolampas palmipes, fed only on 3H-labelled food particles. Several species of dinoflagellates fed on bacteria (<1 m) which had been prelabelled with 3H-thymidine. The clearance rates of heterotrophic dinoflagellates and ciliates were similar and within the range of tintinnid ciliate clearance rates reported in the literature. As heterotrophic dinoflagellates and ciliates can have comparable abundances in oceanic waters, we conclude that heterotrophic dinoflagellates may have an equally important impact as microheterotrophic grazers of phytoplankton and bacteria in oceanic waters.Partially supported by a grant from the National Science Foundation, OCE-81-17744  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号