首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 866 毫秒
1.
There is a severe fluoride problem in Nawa tehsil of Nagaur district. Villagers are suffering from dental fluorosis and skeletal fluorosis. So an extensive geochemical study of 27 villages of eastern, south-eastern and southern zone of Nawa tehsil was done. Total 46 ground water samples were collected and analyzed for various physicochemical parameters as well as fluoride content. The ground water samples collected in clean polyethylene plastic containers were analyzed for pH, electrical conductivity, total dissolved salts, calcium, magnesium, total hardness, chloride and alkalinity. The fluoride concentration in the three different zones ranged from 0.64 to 14.62 mg l(-1) where 13.04% samples were found within permissible limit while 86.96% had fluoride beyond permissible limit (> 1.5 mg l(-1)). It was found that among the three different zones south-eastern zone was under serious fluoride contamination where fluoride concentration ranged between 1.10 to 14.62 mg l(-1). In the eastern zone fluoride concentration was recorded from 1.52 to 5.13 mg l(-1) whereas in the southern zone it was found between 0.64 to 3.63 mg l(-1).  相似文献   

2.
Investigation was conducted for 12 months in two water bodies, S1 with optimum water quality and S2 receiving sewage water. The water quality parameters were assessed in relation to the impact on the stress sensitive physiological parameters of fish Labeo rohita. While optimum levels of transparency, dissolved oxygen, unionised ammonia, alkalinity and hardness in S1 reflected in minimum variation of the physiological parameters of L. rohita but suboptimal levels of DO (nil-18.0 mg/l) and CO2 (nil-16.0 mg/l) observed diurnally and unionised ammonia (0.11-0.42 mg/l) found throughout the experimental period, resulted in significant variation in plasma cortisol (90.0-377.0 ng/ml), cholesterol (89.6-285.0 mg/dl) and condition factor (0.7-1.3) in L. rohita. The results are of significance for fish aquatic habitat management.  相似文献   

3.
The coastal saline soils, Kharlands, have great potential for their use in aquaculture. This study has been taken up to understand the limnology of the ponds in Kharland area for assessing their prawn culture potential. This study was carried out during September, 1999 to August, 2001. Each Kharland pond has an area of 0.045 hectare. During the study, depth of pond water was 47.7 to 120.0 cm, temperature varied from 25.7 to 34.5 degrees C; transparency from nil to 65.0 cm; specific conductivity from 1.78 to 94.5 microS.cm(-1); total dissolved solids from 0.89 to 27.55 ppt; pH 5.42 to 8.25; dissolved oxygen 1.6 to 8 mg.l(-1); free carbon dioxide 10.00 to 44.00 mg.l(-1); total alkalinity 5.00 to 142.00 mg.l(-1); salinity 0.45 to 39.55 ppt; total hardness 245.00 to 5945.00; calcium 56.05 to 1827.6; magnesium 110.74 to 4507.75 mg.l(-1); dissolved organic matter 1.45 to 9.68 mg.l(-1); ammonia 1.00-8.00 microg.l(-1); nitrite nil to 20.00 micro l(-1) and nitrate 7.5 to 17.5 microg.l(-1). These Kharland ponds are unique in physio-chemical characteristics during their seasonal cycle. From July to October, these ponds have nearly freshwater while from November to May pond water becomes saline. Thus, there is a great possibility of taking up monoculture of both the freshwater and brackish water prawns as well as polyculture of prawns and fishes in the Kharland ponds.  相似文献   

4.
Lake and river water is the prime source for drinking, irrigation and other domestic purposes. Bellandur Lake is one of the major Lakes of Bangalore city. The addition of effluents from urbanized Bangalore city has changed the characteristics of the Lake from being a natural ecologically healthy Lake to an artificial reservoir of domestic sewage and industrial effluents. The DO of the Bellandur Lake water ranged from 3.8-6.3 mg/l. The Bellandur lake water BOD ranged from 89-99 mg/l due to absorption of pollutants by aquatic flora in lake system. If the present state of affairs continues for long, the Bellandur Lake may soon become an ecologically inactive Lake.  相似文献   

5.
The fluoride concentration in ground water was determined in ten villages of Rohtak district of Haryana state (India). The fluoride concentration in the underground water of these villages varied from 0.034-2.09 mg/l. Various other water quality parameters, viz., pH, electrical conductivity, total dissolved salts, total hardness, total alkalinity sodium, potassium, calcium, magnesium, carbonate, bicarbonate, chloride and sulfate were also measured. A systematic calculation of correlation coefficients among different physicochemical parameters indicated considerable variations among the analyzed samples with respect to their chemical composition. Majority of the samples do not comply with Indian as well as WHO standards for most of the water quality parameters measured. Overall water quality was found unsatisfactory for drinking purposes. Fluoride content was higher than permissible limit in 50% samples.  相似文献   

6.
The fluoride concentration in ground water was determined in Sankarankovil block of Tirunelveli district of Tamilnadu (India) where it is the only source of drinking water. Various other water quality parameters such as pH, electrical conductivity total hardness and total alkalinity as well as calcium, magnesium, carbonate, bicarbonate and chloride concentrations were also measured. A systematic calculation of correlation coefficient among different physico-chemical parameters was performed. The analytical results indicated considerable variations among the analyzed samples with respect to their chemical composition. Majority of the samples do not comply with Indian as well as WHO water quality standards. The fluoride concentration in the ground water of these villages varied from 0.66 to 3.84 mg l(-1), causes dental fluorosis among people especially children of these villages. The high and low fluoride containing areas were located using isopleth mapping technique. Overall water quality was found unsatisfactory for drinking purposes without any prior treatment except at few locations out of 50 villages.  相似文献   

7.
广州市流花湖表层底泥磷的形态与生物可利用性   总被引:4,自引:0,他引:4  
应用经改进的Psenner连续提取法对广州市流花湖表层底泥中的磷进行了连续提取和测定。结果表明,流花湖底泥中总磷含量在1.28~2.15 mg/g,流花湖总磷含量最高在L2点,最低在L3点。湖泊表层底泥总磷主要由金属氧化物结合态磷、有机磷和钙结合态磷组成,可还原态磷和弱吸附态磷仅占很少部分。不同形态磷的含量顺序是金属氧化物结合态磷NaOH-P>有机磷Org-P>钙结合态磷HCl-P>可还原态磷BD-P>弱吸附态磷NH4Cl-P。底泥中生物可利用性磷的含量达0.76~1.00 mg/g,平均含量为0.91 mg/g,占总磷的45.47%~64.71%。说明流花湖底泥的磷有较好的生物可利用性,将为水体藻类大量繁殖提供潜在的有利条件,因此在湖泊治理恢复过程中,应该采样有效的措施来控制底泥磷的内源释放。  相似文献   

8.
Lake Uluabat, known for its scenic beauty and richness of aquatic life, is situated in Marmara Region, Bursa (Turkey). On account of its importance, lake Uluabat was designated by the Ministry of Environment as a Ramsar site in 1998. Physical, chemical and microbiological parameters of the aquatic ecosystem in lake Uluabat were measured monthly at five stations from February 2003 to January 2004. The results showed that lake Uluabat can be classified as Class I with respect to temperature (16.36 +/- 7.47 degrees C), nitrate nitrogen (0.63 +/- 0.50 mgl(-1)), sodium (9.64 +/- 2.78 mgl(-1)), chloride (20.45 +/- 4.59 mgl(-1)), sulphate (54.80 +/- 29.97 mgl(-1)); as Class II with respect to dissolved oxygen (7.62 +/- 1.99 mgl(-1)), ammonium nitrogen (0.52 +/- 0.49 mgl(-1)), chemical oxygen demand (35.74 +/- 10.66 mgl(-1)), total coliform (2027 MPN100 ml(-1) (average value)); as Class III with respect to pH (8.69 +/- 0.16) and as Class IV with respect to total nitrogen (84.94 +/- 66.13 mgl(-1)), total phosphorus (1.11 +/- 3.01 mgl(-1)), biochemical oxygen demand (21.21 +/- 6.60 mgl(-1)) according to TWPCR (Turkey Water Pollution Control Regulation). The nutrient content of lake waterapparently indicated that lake had an eutrophic characteristic. Phosphorus was determined as a limiting factor in lake. The measured hardness values (140.94 +/- 14.61 CaCO3 mgl(-1)) indicated that lake water was classified as soft/hard during the study period. Eutrophic characteristic of the lake and contaminant accumulation in water will probably affect the future use of the lake. Therefore, pollution parameters must be regularly monitored and evaluated according to aquatic living and local regulations.  相似文献   

9.
富营养化水体中藻类生长限制因素的确定及其应用   总被引:10,自引:1,他引:10  
尹澄清  兰智文 《环境化学》1993,12(5):380-386
在富化营养化的巢湖,围隔实验结果表明磷和其它营养元素不是水体藻类的生长限制因素、藻类生长的正磷酸盐阈值浓度为0.019mg/l,它低于巢湖实际浓度。湖水的矿物性浊度很高,净生产力在一米水深以下呈现负值,数据表明学强在大数时间是藻类生长的限制因素。在巢湖治理过程中,需大幅降低流域内的磷负荷,使湖水平均溶解态总磷浓度从目前的0.049ml/l降到0.019mg/l以下。因此巢湖在治理和恢复是一个缓慢的  相似文献   

10.
Monthly changes in water quality parameters (physicochemical) of a rain fed lake (Bilikere) in Mysore city, were investigated for two calendar years (2002 and 2003) to assess the suitability of this lake for pisciculture. Although there were monthly fluctuations in water temperature, total suspended solids (TSS), dissolved oxygen (DO), nitrite and ammonia, they were within the desirable limits. On the other hand, total alkalinity and hydrogen sulphide throughout the study period and pH for a major part, were higher than the desirable limits. Other parameters viz; turbidity, biological oxygen demand (BOD), phosphate, and nitrate in a few months were higher than the desirable limits for waters used for fish culture. The high levels of these factors are due to the entry of agricultural run off and occasional flow of sewage into the lake. In addition dense algal growth was noticed at times of the year which is caused by surge in nutrients level whenever there was a rainfall. Since, the lake has a great aquacultural potential, it is suggested that control of nutrient load that enters the lake occasionally, might help the lake to continue its mesotrophic status.  相似文献   

11.
A cost function for neutralizing acidic surface waters by base addition (liming) is derived based upon constrained cost minimization. The model is estimated using a sample of 547 acidic Adirondack lakes with total costs projected for neutralizing each lake to one of six possible target alkalinity levels. Empirical findings indicate that relatively accurate forecasts of lake neutralization costs can be obtained given target alkalinity levels and various limnological characteristics. The results provide a model for predicting lake neutralization costs which can potentially be used in evaluating the relative merits of alternative strategies for reducing acidic deposition damages.  相似文献   

12.
An initial reclamation of the Young Dong coal mine site, located in northeastern South Korea, was completed in 1995. Despite the filling of the adit with limestone, acid rock drainage (ARD) enters Young Dong tributary and is then discharged to Imgok Creek. This ARD carries an average of 500 mg CaCO(3)/l of mineral acidity, primarily as Fe(II) and Al. Before spring runoff, the flow of Imgok Creek is 3.3-4 times greater than that of the tributary and has an alkalinity of 100 mg CaCO(3)/l, which is sufficient to eliminate the mineral acidity and raise the pH to about 6.5. From April through September 2008, there were at least two periods of high surface flow that affects the flow of ARD from the adit. Flow of ARD reaches 2.8 m(3)/min during spring runoff. This raised the concentrations of Fe and Al in the confluence with Imgok Creek. However, by 2 km downstream the pH of the Imgok Creek is 6.5 and only dissolved Fe is above the Korean drinking water criteria (0.30 mg/l). This suggests only a minor impact of Young Dong Creek water on Imgok Creek. Acid digestion of the sediments in Imgok Creek and Young Dong Tributary reveals considerable abundances of heavy metals, which could have a long-term impact on water quality. However, several water-based leaching tests, which better simulate the bioavailable metals pool, released only Al, Fe, Mn, and Zn at concentrations exceeding the criteria for drinking water or aquatic life.  相似文献   

13.
The inland freshwater resources are being increasingly subjected to heavy stress as a result of indiscriminate dumping of industrial wastes, domestic sewage and agricultural run-off causing deterioration of the water quality and adverse impact on aquatic biota. Pesticides drained to the aquatic environment are primarily of agricultural origin. Phosphamidon (widely used organophosphate pesticide in paddy field) significantly reduced dissolved oxygen (DO) at 1.8 mg/l exposure and reduced alkalinity at 0.9 and 1.8 mg/l. Hardness also reduced gradually but not significantly. Free carbondioxide was increased significantly at 1.8 mg/l of the insecticide compared to control. The insecticide had no influence on pH and temperature. There was maximum reduction of phytoplankton and zooplankton population at 1.8 mg/l of phosphamidon. Though gradual reduction of plankton community was also noticed at different lower concentrations of pesticides but in case of phytoplankton an abrupt reduction (about 50% of the control) was observed. The normal behaviour and feeding rate of air breathing teleost, Channa punctatus was also hampered. Therefore, phosphamidon even at low concentrations may create disorders in the aquatic ecosystem.  相似文献   

14.
The paper assesses health of the tropical urban Robertson Lake, Jabalpur which receives domestic sewage from neighboring human inhabitation and is infested with water hyacinth. Peak density of this macrophyte was 12.5 t dw ha(-1). The water-column was anaerobic (0.6 to 1.9 mg O2 L(-1)), neutral in pH, and enriched with inorganic carbon (23.5 to 37.1 mg L(-1)), NH4-N (0.48 to 2.96 mg L(-1)), and organic nitrogen and phosphorus. Density of heterotrophic bacteria was high (6.8 to 15x10(5) cfu ml(-1)) along with that of total coliforms and fecal bacteria. Species diversity of phytoplankton and submerged macrophytes was very low. Growing stands of water hyacinth could store up to 613 g C m(-2), 23.5 g N m(-2) and 5.5 g P m(-2) and released them during decomposition. The release of nutrients was 3-4 times faster than the uptake. Water hyacinth stabilized water quality and provided substantial support to bacterial density, which in turn contributed significantly to its growth and nutrient dynamics. Turnover of water hyacinth was only 70-80%, adding approximately 175 t humus in the lake. The results denote poor health of the lake, characterized by low species diversity, fast shallowing, dominance of detritus food--webs, and the water unsuitable for human consumption.  相似文献   

15.
草、藻型湖泊水体生态及理化特性的实验对比   总被引:4,自引:0,他引:4  
2006年9月,根据营养水平和种植水草的差异设计了6个浅水湖泊模拟系统,实验用水草为菹草(Potamogeton crispusLinn.)和马来眼子菜(Potamogeton malaianus-Miq).在15个月实验期间,通过多次监测各系统的景观外貌和水质,对草、藻型湖泊生态及理化特性的差异进行研究,得出以下结论:(1)草、藻型系统分别对应清水和浊水2种状态,景观外貌差异很大.(2)水草可使湖泊系统维持在清水状态,在一定条件下,甚至可使富营养化湖泊维持在清水状态;但是水草腐烂分解等也可使水质迅速恶化,甚至引起湖泊草、藻状态的转变;关键在于,对于不断变化的环境条件,系统内水草能否健康生长.(3)由于营养和生产力水平低,贫营养系统的水质指标随时间变化较小,草、藻型系统间的差异不明显,DO变化范围分别为8.1~14.4 mg·L~(-1)、7.5~11.6 mg·L~(-1),pH 8.71~9.89、8.25~9.22,TP 0.006~0.012 mg·L~(-1)、0.006~0.053 mg·L~(-1),TN 0.11~0.71 mg·L~(-1)、0.10~0.83 mg·L~(-1),NH_4~+-N 0.01~0.17 mg·L~(-1)、0.01~0.26 mg·L~(-1),PO_4~(3-)-P 0.002~0.012 mg·L~(-1)、0.000~0.008mg·L~(-1).(4)由于水草和藻类的大量生长等,中营养与富营养系统湖水的DO、pH、水温和NH_4~+-N的日变化明显,日变化曲线呈“⌒”形,且具有季节性变化规律;由于水草向底泥中输氧气等原因,与藻型湖泊相比,草型湖泊水中TP、TN和NH_4~+-N的浓度较低,PO_4~(3-)-P浓度较高,草、藻型系统的TP均值分别为0.16、0.51 mg·L~(-1),TN 1.30、8.32 mg·L~(-1),NH_4~+-N 0.19、0.43mg·L~(-1),PO_4~(3-)-P 0.07、0.01 mg·L~(-1).  相似文献   

16.
Some physico-chemical parameters of Kaljani River were studied in and around Alipurduar municipality. The principal characteristics of Kaljani River are high TSS, Mg-hardness, COD, and Phosphate 'P' Comparison of water quality parameters of the two rivers demonstrated higher range of alkalinity, ammonia 'N' content and chloride content in Torsa than Kaljani. River Kaljani showed higher COD range than Torsa. Mean BOD value of both these rivers ranged between 0.93-1.65 mg/l. Overall TDS content of Kaljani was found to be lower than Torsa. Maximum phosphate 'P' content was observed at the downstream of both the rivers.  相似文献   

17.
Ostracods are small crustaceans found in aquatic habitats and the present paper deals with the role of water quality index on their population diversity and seasonal fluctuations in the four lakes of Mysore city The present investigation was carried out from July 2004 to June 2005. The study revealed highest water quality index and population density of ostracods during summer and least during winter Dalvoi lake recorded higher waterquality index (125.04), population density (60 l(-1)) but lower species diversity (2 species) of ostracods, whereas Kamana lake recorded lowest water quality index (63.49), population density (40 l(-1)) and highest species diversity (6 species) of ostracods. Increase in the water quality index indicates increase in the pollution load. As water quality index (WQI) increases, population density of ostracods increases but species diversity decreases.  相似文献   

18.
Field and laboratory experiments were conducted to study the loss of particles from agricultural fields, and the role of suspended particles in carrying pesticides in surface runoff and drainage water. Propiconazole, a widely used fungicide was applied to experimental fields located at Askim, SE-Norway. Samples from surface runoff and drainage water were collected and analyzed for sediment mass, pesticides, particulate and dissolved organic carbon through a whole year. The surface soil and the runoff material were characterized by its particle size distribution, organic carbon content in size fractions and its ability to bind propiconazole. The results show that (1) particle runoff mostly occurred during the rainfall event shortly after harrowing in autumn. The highest particle concentration observed in the surface runoff water was 4600 mg l(-1), and in the drainage water 1130 mg l(-1); (2) the erosion of surface soil is size selective. The runoff sediment contained finer particle/aggregates rich in organic matter compared to its original surface soil; (3) the distribution coefficient (Kd) of propiconazole was significantly higher in the runoff sediment than in the parent soil. According to our calculation, particle-bound propiconazole can represent up to 23% of the total amount of propiconazole in a water sample with a sediment concentration of 7600 mg l(-1), which will significantly influence the transport behavior of the pesticide.  相似文献   

19.
Watershed land use effects on lake water quality in Denmark   总被引:5,自引:0,他引:5  
Mitigating nutrient losses from anthropogenic nonpoint sources is today of particular importance for improving the water quality of numerous freshwater lakes worldwide. Several empirical relationships between land use and in-lake water quality variables have been developed, but they are often weak, which can in part be attributed to lack of detailed information about land use activities or point sources. We examined a comprehensive data set comprising land use data, point-source information, and in-lake water quality for 414 Danish lakes. By excluding point-source-influenced lakes (n = 210), the strength in relationship (R2) between in-lake total nitrogen (TN) and total phosphorus (TP) concentrations and the proportion of agricultural land use in the watershed increased markedly, from 10-12% to 39-42% for deep lakes and from 10-12% to 21-23% for shallow lakes, with the highest increase for TN. Relationships between TP and agricultural land use were even stronger for lakes with rivers in their watershed (55%) compared to lakes without (28%), indicating that rivers mediate a stronger linkage between landscape activity and lake water quality by providing a "delivery" mechanism for excess nutrients in the watershed. When examining the effect of different near-freshwater land zones in contrast to the entire watershed, relationships generally improved with size of zone (25, 50, 100, 200, and 400 m from the edge of lake and streams) but were by far strongest using the entire watershed. The proportion of agricultural land use in the entire watershed was best in explaining lake water quality, both relative to estimated nutrient surplus at agricultural field level and near-lake land use, which somewhat contrasts typical strategies of management policies that mainly target agricultural nutrient applications and implementation of near-water buffer zones. This study suggests that transport mechanisms within the whole catchment are important for the nutrient export to lakes. Hence, the whole watershed should be considered when managing nutrient loadings to lakes, and future policies should ideally target measures that reduce the proportion of cultivated land in the watershed to successfully improve lake water quality.  相似文献   

20.
Slope collapse will reduce the water exchange. Slope collapse will affect the spatial distribution of the water exchange. Precipitation have the most impact on the dynamics of the water exchange. Due to the increase in open pit mining, pit lakes have become common surface water features, posing a potential risk to subsurface aquifer. In this study, a pit lake–groundwater interaction model is built based on the general program MODFLOW with the LAK3 package. For the first time, the effects of lake-slope collapse and aquifer heterogeneity on pit lake–groundwater interactions are analyzed by dividing the lake into six water exchange zones based on the aquifer lithology and groundwater level. Our investigation and simulations reveal a total water exchange from groundwater to the lake of 349000 m3/a without collapse of the pit lake slope, while the total net water exchange under slope collapse conditions is 248000 m3/a (i.e., a reduction of 1.40-fold). The monthly net water exchange per unit width from groundwater to the lake reaches the largest in April, shifting to negative values in zone IV from June to August and in zone V in June and July. Moreover, the monthly net water exchange per unit width decreases from north to south, and the direction and magnitude of water exchange are found to depend on the hydraulic gradients between the lake and groundwater and the hydraulic conductivity of the slope collapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号