首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
胺化麻黄废渣生物吸附剂对水中阳离子染料的吸附   总被引:1,自引:0,他引:1  
以麻黄废渣为原料,采用环氧氯丙烷和二乙烯三胺对其进行化学改性,得到麻黄废渣的改性产物。将其应用到中性红和亚甲基蓝2种染料模拟废水的吸附实验,并研究了p H值、吸附剂用量、吸附时间等因素对吸附的影响。结果表明,在p H值为5.5,吸附温度为25℃的条件下,用4 g/L的胺化麻黄废渣生物吸附剂吸附初始浓度为1 000 mg/L的中性红溶液0.5 h,去除率为99.89%;用10 g/L的胺化麻黄废渣生物吸附剂吸附初始浓度为500 mg/L的亚甲基蓝溶液1 h,去除率为99.38%。改性吸附剂对中性红和亚甲基蓝的吸附可以用准二级动力学方程描述,吸附等温线符合Langmuir和Freundlich模型,根据Langmuir方程,25℃时胺化麻黄废渣生物吸附剂对中性红和亚甲基蓝的最大吸附量分别为362.3 mg/g和152.7 mg/g。实验结果显示,胺化麻黄废渣生物吸附剂是一种吸附性能优异的吸附剂,用于处理染料废水有较好的应用前景。  相似文献   

2.
改性甘蔗渣吸附废水中低浓度Cu2+的研究   总被引:1,自引:0,他引:1  
利用离子液氯化-1-己基-3-甲基咪唑对甘蔗渣进行改性,利用改性甘蔗渣吸附去除模拟废水中低浓度的Cu2+,并对比了较优条件下甘蔗渣改性前后的Cu2+吸附性能.结果表明,溶液pH、改性甘蔗渣投加量、吸附时间对改性甘蔗渣吸附Cu2+均有一定的影响,较佳的溶液pH为5.41、改性甘蔗渣投加量为0.30 g、吸附时间为130 min;吸附温度升高Cu2+吸附率反而降低,因此选择在室温下进行吸附反应为宜;在以上较优条件下,改性甘蔗渣和甘蔗渣的Cu2+吸附率分别为83.20%和53.83%,前者的Cu2+吸附率提高了30.35%.  相似文献   

3.
采用自制木粉/壳聚糖接枝丙烯酸-丙烯酰胺吸附树脂R1、R2、R3对二元金属离子Cu2 +/pb2和Zn2+/pb2+溶液中的吸附性能进行了较系统考察.pb2+离子溶液中存在竞争离子Cu2+、Zn2+时,随竞争离子浓度增加,3种吸附树脂R1、R2、R3对pb2+的吸附量明显下降,而竞争离子吸附量显著增加.二元溶液中各金属离子浓度相同时,3种树脂对竞争离子Cu2+、Zn2+的吸附量大于对pb2+的吸附量;各溶液中分别加入NaCl及NaNO3、尿素后,对pb2+离子的吸附量下降迅速.随吸附树脂用量增加,竞争离子Cu2+、Zn2+的吸附量逐渐减小,pb2+的吸附量在吸附树脂用量0.10 g/L(Zn2 +/pb2+溶液)或0.15 g/L(Cu2+/pb2+溶液)时出现最大值.溶液pH值对树脂吸附性能有显著影响.3.0<pH<5.O时,3种树脂对竞争离子和pb2+的吸附量快速增大;5< pH <9时,树脂对竞争离子和pb2+的吸附量基本不变;9<pH<ll时,树脂对pb2+的吸附量减小,而对竞争离子的吸附量或增大或减小.  相似文献   

4.
采用农林废弃物花生壳、大豆壳、柚子皮对重金属离子Cr3+、Cu2+和Ni2+进行吸附研究,探讨反应时间、吸附剂用量、pH、重金属离子初始浓度以及温度对吸附的影响.结果表明:柚子皮对Cr3+、Cu2+、Ni2+的吸附效果优于花生壳和大豆壳,其在20℃、pH 5.00、10.0 mg/kg条件下,反应360 min,Cr3+、Cu2+、Ni2+的吸附率分别可达83.20%、84.50%、59.10%;花生壳、大豆壳和柚子皮对Ni2+的吸附率远低于Cr3+和Cu2+;花生壳、大豆壳和柚子皮对Cr3+、Cu2+、Ni2+的吸附动力学可以用准二级动力学方程描述;吸附率随初始重金属离子浓度增加而降低,其吸附等温线可以用Langmuir方程描述;在一定范围内,吸附率随吸附剂用量增加而增加;溶液初始pH在2~5时,吸附率随pH增大而增加;Cu2、Ni2+的吸附量随温度的上升而逐渐减少,但Cr3+的吸附量随着温度的上升而略增加.  相似文献   

5.
以柠檬酸对荞麦壳进行化学改性,改性后荞麦壳吸附剂对Cu2+的吸附量增加。研究了不同pH、吸附剂投入量、浓度和时间对吸附效果的影响。在pH值为5.5,Cu2+初始浓度50 mg/L,吸附剂投入量为1 g,吸附时间为120 min的条件下,Cu2+的吸附量达到较大值。通过用改性荞麦壳吸附剂对Cu2+的热力学吸附过程的分析,结果表明,改性荞麦壳吸附剂符合Langmuir吸附等温模式,改性荞麦壳吸附剂对Cu2+的吸附存在化学吸附,改性荞麦壳的最大吸附量可以达2.26 mg/g。研究改性荞麦壳吸附剂吸附Cu2+的动力学特性,吸附动力学行为可用准二级速率方程进行很好的描述,准二级吸附速率常数随温度升高而增大。准一级速率方程和颗粒扩散模型可以较好地描述吸附初始阶段,Cu2+浓度较高,颗粒内扩散;吸附后期,Cu2+浓度较低,受到颗粒外扩散的控制。总之,整个吸附过程可能是多种动力学机理共同作用的结果。  相似文献   

6.
以生物膜中提取的细菌藻酸盐为原料制备藻酸钙为吸附剂,对水溶液中的Cu2+进行了吸附动力学研究.试验结果表明,吸附时间、溶液初始pH和吸附剂投加量对藻酸钙吸附Cu2+影响显著.当溶液初始pH为4.0、Cu2+初始质量浓度为100 mg/L、吸附剂投加量为0.7 g/L时,藻酸钙对Cu2+的平衡吸附量为56.15 mg/g.水溶液中Cu2+在藻酸钙上的吸附动力学过程可用准二级动力学方程来模拟.吸附等温线研究表明,藻酸钙吸附Cu2+的过程可用Langmuir和Freundlich模型来描述.100 mmol/L 乙二胺四乙酸(EDTA)可有效解吸95.6%的Cu2+,实现Cu2+的回收与吸附剂的重复利用.  相似文献   

7.
改性油页岩灰渣对水中镉离子的吸附性能   总被引:2,自引:0,他引:2  
采用酸碱化改性方法对油页岩灰渣进行改性,确定最佳酸碱化方案,并研究了环境因素对改性油页岩灰渣吸附镉离子的影响。实验研究结果表明,油页岩灰渣经50%的HNO3和20%的NaOH处理时,对镉离子的吸附能力最强。在吸附温度为30℃,初始溶液pH为6~7条件下,0.6 g的改性油页岩灰渣对50 mg/L Cd2+溶液50 mL,吸附150 min时,其吸附率达到86%以上。在实验条件下,改性油页岩灰渣对Cd2+的吸附符合Langmuir和Freundlich等温吸附方程,相关系数分别为0.9626和0.9944,其对Cd2+的理论饱和吸附量达到7.91 mg/g。改性油页岩灰渣对Cd2+的吸附主要归因于离子交换和表面吸附作用。  相似文献   

8.
微波强化有机改性膨润土对磷的吸附特性研究   总被引:5,自引:2,他引:3  
利用十六烷基三甲基溴化铵(CTMAB)在微波辐射条件下对浙江临安膨润土进行改性,制得有机改性膨润土,利用其含磷模拟废水进行处理,考察了不同的工艺条件如有机改性剂用量、微波辐射强度、辐照时间、吸附时间、改性膨润土投加量、pH值对废水中磷去除效果的影响。结果表明:在有机改性剂用量为3 mmol/g,微波辐照强度为96 W/g,微波辐照时间8 min为最佳制备条件。改性膨润土用量为12 mg/L,反应时间为15 min,溶液pH为7及常温条件下,改性膨润土对浓度为50 mg/L的含磷废水去除率达到97.3%,吸附符合Freundlich吸附等温方程。  相似文献   

9.
季铵化改性木屑纤维素的制备及对氟离子的吸附研究   总被引:1,自引:0,他引:1  
以3-氯-2-羟丙基三甲基氯化铵(CTA)为醚化剂,对木屑纤维素进行了季铵化改性.探讨了季铵化改性木屑纤维素用量、pH、吸附温度、氟离子初始浓度和吸附时间对氟离子静态吸附率的影响,以及流速对氟离子动态吸附率的影响.结果表明:(1)静态吸附最佳工艺条件:季铵化改性木屑纤维素用量为3.0 g/L,pH为4.0~6.0,吸附温度为25 ℃,吸附时间为120 min.在此最佳工艺条件下,季铵化改性木屑纤维素对100 mL 50.00 mg/L氟离子溶液的吸附率最高可达90.11%.(2)在pH为5.0、25 ℃的条件下,将50.00 mg/L氟离子溶液以5 mL/min的流速流经装有3.0 g/L季铵化改性木屑纤维素的吸附柱,吸附率可达97.95%.(3)季铵化改性木屑纤维素对溶液中氟离子的吸附过程为放热过程,在吸附过程中存在着化学吸附.(4)木屑来源丰富、价格价廉,季铵化改性木屑纤维素对溶液中氟离子的吸附效果好,且吸附工艺简单、易于实现工业化,具有良好的应用前景.  相似文献   

10.
采用均匀设计的实验方法,研究了2种核桃果皮炭粉(提取水溶性混合物和未提取水溶性混合物的核桃皮炭粉)对Cr、Cu和Cd等重金属离子的吸附最优条件以及对3种离子吸附的影响因素。结果表明,核桃皮炭粉对Cr(Ⅵ)、Cd2+和Cu2+的吸附最优条件为:pH=4,温度为60℃,浓度为150μg/mL,吸附剂用量为2.4 g,时间为120 min;pH=4.5,温度为30℃,浓度为180μg/mL,吸附剂用量为5.4 g,时间为60 min;pH=5,温度为80℃,浓度为210μg/mL,吸附剂用量为0.4 g,时间为100 min;pH和Cr(Ⅵ)浓度增大,不利于2种吸附剂对Cr(Ⅵ)的吸附;pH和温度增大,不利于2种吸附剂对Cu2+的吸附;温度和吸附剂用量增加,有利于2种吸附剂对Cd2+的吸附。未提取水溶性混合物比提取水溶性混合物的核桃果皮炭粉对3种金属的吸附显著。2种吸附剂的吸附率均表现为Cr>Cd>Cu。  相似文献   

11.
Concentrations of different chlorinated compounds were measured in mussels incubated in two polluted watercourses, a river (the River Kymijoki) and a lake (Lake Vanaja) for four weeks in summer 1995. The sum concentrations of polychlorinated phenols (PCP) and biphenyls (PCB) were both about 1 μg/g lipid weight (lw) in Lake Vanaja mussels, while in the River Kymijoki mussels PCPs were non-detectable and PCBs were measured 120 ng/g lIw. The concentrations of toxic polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) congeners ranged between <17 and 370 pg/g Iw in Lake Vanaja mussels and between <38 and 11,000 pg/g lw in the River Kymijoki mussels. Polychlorinated diphenyl ethers (PCDE) were detected in the mussels incubated in the River Kymijoki (0.4–1.1 ng/g Iw), but not in those incubated in Lake Vanaja. Polychlorinated phenoxyanisoles (PCPA) were measured 33 ng/g lw and polychlorinated phenoxyphenols (PCPP) 300 ng/g lw in the mussels incubated in the River Kymijoki. PCPAs were also detected in reference samples, which were sediment and pike from the River Kymijoki and Baltic salmon, seal and white-tailed sea eagle.  相似文献   

12.
The ability of two biodegradable surfactants, polyoxyethylene (20) sorbitan monooleate (Tween 80) and sodium dihexyl sulfosuccinate (Aerosol MA), to recover a representative dense non-aqueous-phase liquid (DNAPL), trichloroethene (TCE), from heterogeneous porous media was evaluated through a combination of batch and aquifer cell experiments. An aqueous solution containing 3.3% Aerosol MA, 8% 2-propanol and 6 g/l CaCl(2) yielded a weight solubilization ratio (WSR) of 1.21 g TCE/g surfactant, with a corresponding liquid-liquid interfacial tension (IFT) of 0.19 dyn/cm. Flushing of aquifer cells containing a TCE-DNAPL source zone with approximately two pore volumes of the AMA formulation resulted in substantial (>30%) mobilization of TCE-DNAPL. However, a TCE mass recovery of 81% was achieved when the aqueous-phase flow rate was sufficient to displace the mobile TCE-DNAPL toward the effluent well. Aqueous solutions of Tween 80 exhibited a greater capacity to solubilize TCE (WSR=1.74 g TCE/g surfactant) and exerted markedly less reduction in IFT (10.4 dyn/cm). These data contradict an accepted empirical correlation used to estimate IFT values from solubilization capacity, and indicate a unique capacity of T80 to form concentrated TCE emulsions. Flushing of aquifer cells with less than 2.5 pore volumes of a 4% T80 solution achieved TCE mass recoveries ranging from 66 to 85%, with only slight TCE-DNAPL mobilization (<5%) occurring when the total trapping number exceeded 2 x 10(-5). These findings demonstrate the ability of Tween 80 and Aerosol MA solutions to efficiently recover TCE from a heterogeneous DNAPL source zone, and the utility of the total trapping number as a design parameter for a priori prediction of DNAPL mobilization and bank angle formation when flushing with low-IFT solutions. Given their potential to stimulate microbial reductive dechlorination at low concentrations, these surfactants are well-suited for remedial action plans that couple aggressive mass removal followed by enhanced bioremediation to treat chlorinated solvent source zones.  相似文献   

13.
Book review     
The Pesticide Manual ‐ A World Compendium, 8th Edition, C.R. Worthing, Editor and S.B. Walker, Assistant Editor, British Crop Protection Council, BCPC Publications Sales, Bear Farm, Binfield, Bracknell, Berkshire RG12 5QE, England. 1987, 1100 pp., UK £50; Overseas £56. ISBN 0–948404–01–9.  相似文献   

14.
The occurrence of particle associated PAH and other mutagenic PAC was determined in 1996 in the street air of Copenhagen. In addition, particle extracts were tested for mutagenicity. The measurements were compared with previous measurements in 1992/1993. The levels had decreased in this period. The decrease was caused by an implementation of light diesel fuels for buses and the exchange of older petrol-driven passenger cars with catalystequipped new ones. About 65% of the reduction was caused by the application of the light diesel fuels. Under special conditions, chemical processes in the atmosphere produced many more mutagens than the direct emissions. The concentrations of S-PAC and N-PAC were 10 times lower than those of PAH, while the levels of oxy-PAH were in the same order of magnitude as those of PAH. Benzanthrone, an oxy-PAH, is proposed to be formed in the atmosphere in addition to direct emissions. Benzo(a)pyrene, often applied as an air quality criteria indicator, was photochemically degraded in the atmosphere. A strong increase in the mutagenic activities was observed to coincide with a depletion of benzo(a)pyrene.  相似文献   

15.
Abstract

The pH‐disappearance rate profiles were determined at ca. 25°C for 24 insecticides at 4 or 5 pH values over the range 4.5 to 8.0 in sterile phosphate buffers prepared in water‐ethanol (99: 1 v/v). Half‐lives measured at pH 8 were generally smaller than at lower pH values. Changes in half lives between pH 8.0 and 4.5 were largest (>1000x) for the aryl carbamates, carbofuran and carbaryl, the oxime carbamate, oxamyl, and the organophosphorus insecticide, trichlorfon. In contrast, half lives of phorate, terbufos, heptachlor, fensulfothion and aldicarb were affected only slightly by pH changes. Under the experimental conditions described half lives at pH8 varied from 1–2 days for trichlorfon and oxamyl to >1 year for fensulfothion and cyper‐methrin. Insecticide persistence on alumina (acid, neutral and basic), mineral soils amended with aluminum sulfate or calcium hydroxide to different pH values and four natural soils of different pH was examined. No correlation was observed between the measured pH of these solids and the rate of disappearance of selected insecticides applied to them. These observations demonstrate the difficulty of extrapolating the pH dependent disappearance behaviour observed in homogeneous solution to partially solid heterogeneous systems such as soil.  相似文献   

16.
Organochlorine compounds in a three-step terrestrial food chain   总被引:1,自引:0,他引:1  
The concentrations of 15 organochlorine chemicals (PCBs and pesticides) were studied in a Central European oak wood food chain system: Great tit (Parus major), caterpillars (Tortrix viridana, Operophtera brumata, Erannis defoliaria), and oak-leaves (Quercus robur). Juvenile tits receive organochlorines from the mother via egg transfer and, eventually to a greater extent, from the caterpillar food source during nestling period. The concentrations of PCB 153 (2,2′,4,4′,5,5′-hexachlorobiphenyl, the most abundant in this study) was found in leaf material at ca. 1 ng/g, in caterpillars 10 ng/g, and in bird eggs 170 ng/g on an average and on a dry mass basis.  相似文献   

17.
Abstract

The active ingredients in commercial formulations of malathion, oxamyl, carbaryl, diazinon, and chlorpyrifos diluted to “spray tank”; concentrations with buffered distilled or natural water of pH 4–9 were stable for at least 24 hr. Formulations of trichlorfon were not stable at pH 7 or above but disappearance rates were slower than for the pure chemical in homogeneous solution. Cupric ion was observed to be an effective catalyst for the hydrolysis of a variety of pure organophosphorus insecticides but did not catalyze hydrolysis of the active ingredients of the formulations examined. Increasing the dilution of the formulation increased the susceptibility of malathion, oxamyl, and carbaryl to hydrolysis.  相似文献   

18.
Abstract

In the last decades, the use and misuse of pesticides in the agriculture have increased, having a severe impact on ecosystems and their fauna. Although the various effects of pesticides on biodiversity have been already documented in several studies, to our knowledge no consistent overview of the impact of pesticides in vertebrates, both terrestrial and aquatic, is available. In this review, we try to present a concise compilation of the teratogenic effects of pesticides on the different classes of vertebrates – mammals, birds, reptiles, amphibians and fish.  相似文献   

19.
Abstract

One of the dominant tree species growing within and around the eastern portion of Los Alamos National Laboratory (LANL), Los Alamos, NM, lands is the pinon pine (Pinus edulis). Pinon pine is used for firewood, fence posts, and building materials and is a source of nuts for food—the seeds are consumed by a wide variety of animals and are also gathered by people in the area and eaten raw or roasted. This study investigated the (1) concentration of 3H, 137Cs, 90Sr, totU, 238Pu, 239, 240Pu, and241 Am in soils (0‐ to 12‐in. [31 cm] depth underneath the tree), pinon pine shoots (PPS), and pinon pine nuts (PPN) collected from LANL lands and regional background (BG) locations, (2) committed effective dose equivalent (CEDE) from the ingestion of nuts, and (3) soil to PPS to PPN concentration ratios (CRs). Most radionuclides, with the exception of 3H in soils, were not significantly higher (p < 0.10) in soils, PPS, and PPN collected from LANL as compared to BG locations, and concentrations of most radionuclides in PPN from LANL have decreased over time. The maximum net CEDE (the CEDE plus two sigma minus BG) at the most conservative ingestion rate (10 lb [4.5 kg]) was 0.0018 mrem (0.018 μSv); this is far below the International Commission on Radiological Protection (all pathway) permissible dose limit of 100 mrem (1000 μSv). Soil‐to‐nut CRs for most radionuclides were within the range of default values in the literature for common fruits and vegetables.  相似文献   

20.
Degradation and sorption/desorption are important processes affecting the leaching of pesticides through soil. This research characterized the degradation and sorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine) in Drummer (silty clay loam) and Exeter (sandy loam) surface soils and their corresponding subsurface soils using sequential extraction methods over 400 days. By the end of the incubation, approximately 55% of imidacloprid applied at a rate of 1.0 mg kg?1 degraded in the Exeter sandy loam surface and subsurface soils, compared to 40% of applied imidacloprid within 300 days in Drummer surface and subsurface soils. At the 0.1 mg kg?1 application rate, dissipation was slower for all four soils. Water-extractable imidacloprid in Exeter surface soil decreased from 98% of applied at day 1 to > 70% of the imidacloprid remaining after 400 d, as compared to 55% in the Drummer surface soil at day 1 and 12% at day 400. These data suggest that imidacloprid was bioavailable to degrading soil microorganisms and sorption/desorption was not the limiting factor for biodegradation. In subsurface soils > 40% of 14C-benzoic acid was mineralized over 21 days, demonstrating an active microbial community. In contrast, cumulative 14CO2 was less than 1.5% of applied 14C-imidacloprid in all soils over 400 d. Qualitative differences in the microbial communities appear to limit the degradation of imidacloprid in the subsurface soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号