首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
为了解祁连山北麓降水酸碱度和电导率(EC)特征及其与气候因素的关系,对祁连山北麓永昌县2013年4月至2014年7月的降水样品的pH和EC进行了分析,并选取研究区典型的沙尘事件来分析探讨pH和EC在沙尘事件发生前后的变化情况。结果表明:祁连山北麓降水的pH为6.84~8.34,平均值为7.47,EC平均值为207.59μS/cm;研究区四季降水的EC表现为秋季冬季夏季春季,pH表现为秋季夏季春季冬季;pH与风速呈显著的正相关关系,EC与降水量和气温均呈显著的负相关关系;在沙尘事件发生前,pH会出现升高趋势,而EC表现出降低趋势。  相似文献   

2.
杭州市大气降雨化学组成特征及来源分析   总被引:10,自引:0,他引:10  
研究了2006-2008年杭州市大气降雨的化学组成及其来源,并与国内外的相关研究结果进行了比较.结果表明,总体来说,杭州市各月的降雨量相对均衡,月均降雨量为7.1~25.3 mm;降雨pH为3.99~5.64,雨量加权平均pH为4.50;降雨电导率为1.30~8.55 mS/m,雨量加权平均值为3.73 mS/m,降雨电导率与雨量、pH均呈负相关;夏季降雨中的水溶性离子平均浓度较低,雨量加权平均pH较高,而其他季节降雨中的水溶性离子平均浓度较高,雨量加权平均pH较低;其中SO2-4和NO-3是降雨中的主要水溶性阴离子,NH+4和Ca2+是降雨中的主要水溶性阳离子;SO2-4/NO-3(当量浓度比)为2.87,低于国内其他城市,降雨类型为硫酸型,但硝酸在降雨酸性中起的作用有增大趋势;降雨中水溶性阳离子总当量浓度/水溶性阴离子总当量浓度为1.11,低于国内外大部分城市;NH+4、Ca2+当量浓度之和与SO2-4、NO-3当量浓度之和之比为0.89,也低于国内外大部分城市,NH+4和Ca2+是主要的酸性中和物质;总体来说,杭州市降雨中各水溶性离子间的相关性均较好,但H+浓度与大部分离子的相关性不明显;杭州降雨中的化学组分主要来源于工业源和地壳源,此外部分来源于海盐粒子.  相似文献   

3.
使用天津市2013—2017年的连续臭氧观测数据,分析了天津市的臭氧污染特征,并使用基于排放清单处理模型(SMOKE)/中尺度气象模型(WRF)/多尺度空气质量模型(CAMx)的臭氧来源解析技术对天津市不同季节的臭氧来源情况进行研究。结果表明,天津市臭氧污染整体波动变化,年均浓度总体呈现先下跌后上升的趋势;天津市臭氧夏季浓度较高,春季、秋季浓度较低,冬季浓度最低。天津市臭氧污染区域性特征明显,区域输送贡献远大于本地贡献,本地臭氧来源贡献率仅占8%~20%。河北省、山东省、内蒙古自治区等地区污染物排放对天津市臭氧污染有较大贡献。天津市本地源对臭氧的贡献季节差异较大,其中工业源贡献较大,其在春季、秋季对臭氧贡献率分别为49%、43%。夏季天然源、工业源、交通源与电厂源对臭氧贡献率较为接近,均在20%~30%;冬季其他源(包括生物质燃烧源、居民燃烧源等)对臭氧贡献率最大,为54%。未来应根据臭氧污染来源的地域特征和季节特征采取不同臭氧污染防治策略。  相似文献   

4.
2008年冬、春季在宝鸡市4个不同功能区采集PM10样品,探讨了PM10中水溶性物质的化学组成、时空分布特征以及来源。结果表明,冬、春季PM10的平均质量浓度分别为(402±100)、(410±160)μg/m3,无明显季节差异,冬季以交通干道区的PM10浓度为最高,而春季则以商贸区的PM10浓度为最高;冬、春季PM10中水溶性有机碳(WSOC)浓度最高值均出现在商贸区,最低值则分别出现在背景点和交通干道区,水溶性无机碳(WSIC)浓度最高值分别出现在交通干道区和商贸区,最低值均出现在背景点;冬、春季PM10中所含大多数无机离子浓度不存在显著空间差异,但不同功能区PM10中无机离子所占质量分数差异较明显;冬、春季PM10中的水溶性物质质量浓度分别为207、151μg/m3,在PM10中所占质量分数分别为51%和40%,其中,冬、春季水溶性物质浓度最高的分别为居民区和商贸区;冬季PM10中WSOC浓度与SO24-、NO3-浓度有较好的相关性,说明冬季PM10中WSOC的主要组分为二次有机气溶胶,而春季PM10中WSOC浓度与SO42-、NO3-浓度的相关性相对较差,这是由于一次有机气溶胶对WSOC的贡献率较冬季显著增大;宝鸡市与北京市大气PM10浓度、PM10中的SO42-、NO3-、NH4+浓度最为接近;广州市大气PM10中的SO42-所占质量分数(14%)要高于北方城市(宝鸡市和北京市均为9%)。  相似文献   

5.
利用连云港酸雨观测资料和颗粒物浓度数据,分析了2008—2016年该地区酸雨的变化特征,同时讨论了酸雨发生前污染物浓度及其源地分布特点。结果表明:(1)统计时段内,连云港南、北部年均酸雨日数分别为33.2、21.3d;酸雨的年均pH分别为4.35和4.46,均达到强酸雨等级;8—9月酸雨日数最多,1月最少,但冬季酸雨频率较高。(2)连云港南、北部酸雨发生前平均连续无降水日数分别为2.8、4.0d,且连续性降水的酸雨酸性并不会因为前一天有降水而明显减弱。(3)酸雨开始前,南部地区大气中SO2平均质量浓度达27.6μg/m3,为北部地区的两倍。基于拉格朗日混合单粒子轨迹(HYSPLIT)模式的后向轨迹聚类分析表明,西北和偏南两种路径在连云港南、北两地强酸雨发生前气团轨迹中占比较大,均达60%以上,其源地分别对应华北和长三角两个工业集中、SO2等污染物排放高的地区。  相似文献   

6.
太原市降水化学特征及来源分析   总被引:3,自引:0,他引:3  
本研究采集了2012年3—11月间35场太原降水样品,探讨了pH值、电导率和水溶性化学组成特征。结果表明,降水pH加权平均值为5.27;电导率平均值为98.8μS/cm,表明大气污染显著;SO2-4(471.8μeq/L)、NO-3(93.6μeq/L)、Ca2+(477.4μeq/L)和NH+4(133.4μeq/L)是太原降水的主导离子,4种离子占总离子浓度的85%。SO2-4/NO-3当量浓度比为4.38,比太原市1986年的比值(19.02)下降了77%。太原降水的酸性仍以SO2-4主导,但NO-3比例大幅上升。降水离子相关性分析和气团后向轨迹表明太原市大气污染物主要来自自身排污企业(热电厂、钢铁厂等)污染物的扩散以及省内焦化企业污染物的输送等小尺度区域内。太原市硫的湿沉降量为1.93 t/(km2·a);氮湿沉降量为1.54 t/(km2·a),其中铵态氮和硝态氮分别为1.28 t/(km2·a)和0.26 t/(km2·a);钙为5.87 t/(km2·a)。  相似文献   

7.
广州地区酸雨状况及其影响因素探讨   总被引:1,自引:0,他引:1  
对广州地区降水酸度、酸雨频率的年际变化进行了研究,发现近十几年来广州地区的酸雨污染有所减缓,但2001-2003年有恶化的趋势.为探究原因,追溯主要酸雨污染物来源,并对各酸雨污染物进行综合评价,结论表明,广州地区的大气环境已从过去的以SO2为主的煤烟型污染转变为以NOX为主的氧化型污染.还讨论了广州地区气象条件对酸雨形成的影响.  相似文献   

8.
前 言 酸雨是大气污染物的一种特殊形式。据全国酸雨普查,西南地区是我国的强酸雨区。1982年至1985年贵州省酸雨监测结果表明:贵州省中部的贵阳市、遵义市、安顺市、都匀市是我省酸雨污染最为严重的核心区域。 安顺市酸雨监测工作始于一九八二年。在冬、春、夏、秋四季的2、5、8、11月份,采集每次降水样品,测其pH值,并分析了部分样品中 SO_4~(2-)、NO_3~-、NH_4~+、Ca~(2+)等离子的含量。1983年10月本站参予了贵州  相似文献   

9.
天津市灰霾评价等级指标体系研究   总被引:2,自引:0,他引:2  
根据天津市2003—2007年灰霾日的污染物浓度和气象资料,应用主成分分析方法得出影响灰霾的5个主要因子(SO2、相对湿度、总云量、PM10和风速)。对相对湿度、总云量和风速3个气象因子的历史资料进行频数统计分析,并建立了各气象因子的等级划分标准。利用灰色聚类法构建了天津市灰霾评价的等级指标体系,灰霾等级划分结果表明,天津市轻度灰霾和重度灰霾出现天数相对较少,均以中度灰霾为主;轻度灰霾大多出现在春季和夏季;重度灰霾主要出现在冬季,春季出现的比例最小;综合评价分析,冬季灰霾污染程度最为严重。  相似文献   

10.
天津市大气能见度与空气污染物关系分析及控制措施   总被引:1,自引:0,他引:1  
利用天津市1990—2004年大气能见度观测资料及天津市2002—2004年空气污染物监测数据,统计分析了天津市大气能见度变化特征及其与空气污染物的关系。结果表明,天津市20世纪90年代大气能见度处于波动下降趋势,2000—2003年大气能见度整体水平有所改善,到2004年空气质量迅速提高。统计数据说明,在非采暖季的春季,天津市大气能见度的下降与PM10浓度有较大相关性;在夏季,与相对湿度有较大相关性;在采暖季(冬季),与SO2和NOX等空气污染物浓度有密切关系。同时,提出改善城市大气能见度的4个措施:(1)制定长期的大气能见度控制策略;(2)合理改善能源结构;(3)加强城市裸露土地的治理;(4)城市交通采用清洁能源。  相似文献   

11.
Concentrations of different chlorinated compounds were measured in mussels incubated in two polluted watercourses, a river (the River Kymijoki) and a lake (Lake Vanaja) for four weeks in summer 1995. The sum concentrations of polychlorinated phenols (PCP) and biphenyls (PCB) were both about 1 μg/g lipid weight (lw) in Lake Vanaja mussels, while in the River Kymijoki mussels PCPs were non-detectable and PCBs were measured 120 ng/g lIw. The concentrations of toxic polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) congeners ranged between <17 and 370 pg/g Iw in Lake Vanaja mussels and between <38 and 11,000 pg/g lw in the River Kymijoki mussels. Polychlorinated diphenyl ethers (PCDE) were detected in the mussels incubated in the River Kymijoki (0.4–1.1 ng/g Iw), but not in those incubated in Lake Vanaja. Polychlorinated phenoxyanisoles (PCPA) were measured 33 ng/g lw and polychlorinated phenoxyphenols (PCPP) 300 ng/g lw in the mussels incubated in the River Kymijoki. PCPAs were also detected in reference samples, which were sediment and pike from the River Kymijoki and Baltic salmon, seal and white-tailed sea eagle.  相似文献   

12.
Book review     
The Pesticide Manual ‐ A World Compendium, 8th Edition, C.R. Worthing, Editor and S.B. Walker, Assistant Editor, British Crop Protection Council, BCPC Publications Sales, Bear Farm, Binfield, Bracknell, Berkshire RG12 5QE, England. 1987, 1100 pp., UK £50; Overseas £56. ISBN 0–948404–01–9.  相似文献   

13.
Organochlorine compounds in a three-step terrestrial food chain   总被引:1,自引:0,他引:1  
The concentrations of 15 organochlorine chemicals (PCBs and pesticides) were studied in a Central European oak wood food chain system: Great tit (Parus major), caterpillars (Tortrix viridana, Operophtera brumata, Erannis defoliaria), and oak-leaves (Quercus robur). Juvenile tits receive organochlorines from the mother via egg transfer and, eventually to a greater extent, from the caterpillar food source during nestling period. The concentrations of PCB 153 (2,2′,4,4′,5,5′-hexachlorobiphenyl, the most abundant in this study) was found in leaf material at ca. 1 ng/g, in caterpillars 10 ng/g, and in bird eggs 170 ng/g on an average and on a dry mass basis.  相似文献   

14.
Abstract

The active ingredients in commercial formulations of malathion, oxamyl, carbaryl, diazinon, and chlorpyrifos diluted to “spray tank”; concentrations with buffered distilled or natural water of pH 4–9 were stable for at least 24 hr. Formulations of trichlorfon were not stable at pH 7 or above but disappearance rates were slower than for the pure chemical in homogeneous solution. Cupric ion was observed to be an effective catalyst for the hydrolysis of a variety of pure organophosphorus insecticides but did not catalyze hydrolysis of the active ingredients of the formulations examined. Increasing the dilution of the formulation increased the susceptibility of malathion, oxamyl, and carbaryl to hydrolysis.  相似文献   

15.
Abstract

The pH‐disappearance rate profiles were determined at ca. 25°C for 24 insecticides at 4 or 5 pH values over the range 4.5 to 8.0 in sterile phosphate buffers prepared in water‐ethanol (99: 1 v/v). Half‐lives measured at pH 8 were generally smaller than at lower pH values. Changes in half lives between pH 8.0 and 4.5 were largest (>1000x) for the aryl carbamates, carbofuran and carbaryl, the oxime carbamate, oxamyl, and the organophosphorus insecticide, trichlorfon. In contrast, half lives of phorate, terbufos, heptachlor, fensulfothion and aldicarb were affected only slightly by pH changes. Under the experimental conditions described half lives at pH8 varied from 1–2 days for trichlorfon and oxamyl to >1 year for fensulfothion and cyper‐methrin. Insecticide persistence on alumina (acid, neutral and basic), mineral soils amended with aluminum sulfate or calcium hydroxide to different pH values and four natural soils of different pH was examined. No correlation was observed between the measured pH of these solids and the rate of disappearance of selected insecticides applied to them. These observations demonstrate the difficulty of extrapolating the pH dependent disappearance behaviour observed in homogeneous solution to partially solid heterogeneous systems such as soil.  相似文献   

16.
The ability of two biodegradable surfactants, polyoxyethylene (20) sorbitan monooleate (Tween 80) and sodium dihexyl sulfosuccinate (Aerosol MA), to recover a representative dense non-aqueous-phase liquid (DNAPL), trichloroethene (TCE), from heterogeneous porous media was evaluated through a combination of batch and aquifer cell experiments. An aqueous solution containing 3.3% Aerosol MA, 8% 2-propanol and 6 g/l CaCl(2) yielded a weight solubilization ratio (WSR) of 1.21 g TCE/g surfactant, with a corresponding liquid-liquid interfacial tension (IFT) of 0.19 dyn/cm. Flushing of aquifer cells containing a TCE-DNAPL source zone with approximately two pore volumes of the AMA formulation resulted in substantial (>30%) mobilization of TCE-DNAPL. However, a TCE mass recovery of 81% was achieved when the aqueous-phase flow rate was sufficient to displace the mobile TCE-DNAPL toward the effluent well. Aqueous solutions of Tween 80 exhibited a greater capacity to solubilize TCE (WSR=1.74 g TCE/g surfactant) and exerted markedly less reduction in IFT (10.4 dyn/cm). These data contradict an accepted empirical correlation used to estimate IFT values from solubilization capacity, and indicate a unique capacity of T80 to form concentrated TCE emulsions. Flushing of aquifer cells with less than 2.5 pore volumes of a 4% T80 solution achieved TCE mass recoveries ranging from 66 to 85%, with only slight TCE-DNAPL mobilization (<5%) occurring when the total trapping number exceeded 2 x 10(-5). These findings demonstrate the ability of Tween 80 and Aerosol MA solutions to efficiently recover TCE from a heterogeneous DNAPL source zone, and the utility of the total trapping number as a design parameter for a priori prediction of DNAPL mobilization and bank angle formation when flushing with low-IFT solutions. Given their potential to stimulate microbial reductive dechlorination at low concentrations, these surfactants are well-suited for remedial action plans that couple aggressive mass removal followed by enhanced bioremediation to treat chlorinated solvent source zones.  相似文献   

17.
Abstract

One of the dominant tree species growing within and around the eastern portion of Los Alamos National Laboratory (LANL), Los Alamos, NM, lands is the pinon pine (Pinus edulis). Pinon pine is used for firewood, fence posts, and building materials and is a source of nuts for food—the seeds are consumed by a wide variety of animals and are also gathered by people in the area and eaten raw or roasted. This study investigated the (1) concentration of 3H, 137Cs, 90Sr, totU, 238Pu, 239, 240Pu, and241 Am in soils (0‐ to 12‐in. [31 cm] depth underneath the tree), pinon pine shoots (PPS), and pinon pine nuts (PPN) collected from LANL lands and regional background (BG) locations, (2) committed effective dose equivalent (CEDE) from the ingestion of nuts, and (3) soil to PPS to PPN concentration ratios (CRs). Most radionuclides, with the exception of 3H in soils, were not significantly higher (p < 0.10) in soils, PPS, and PPN collected from LANL as compared to BG locations, and concentrations of most radionuclides in PPN from LANL have decreased over time. The maximum net CEDE (the CEDE plus two sigma minus BG) at the most conservative ingestion rate (10 lb [4.5 kg]) was 0.0018 mrem (0.018 μSv); this is far below the International Commission on Radiological Protection (all pathway) permissible dose limit of 100 mrem (1000 μSv). Soil‐to‐nut CRs for most radionuclides were within the range of default values in the literature for common fruits and vegetables.  相似文献   

18.
Degradation and sorption/desorption are important processes affecting the leaching of pesticides through soil. This research characterized the degradation and sorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine) in Drummer (silty clay loam) and Exeter (sandy loam) surface soils and their corresponding subsurface soils using sequential extraction methods over 400 days. By the end of the incubation, approximately 55% of imidacloprid applied at a rate of 1.0 mg kg?1 degraded in the Exeter sandy loam surface and subsurface soils, compared to 40% of applied imidacloprid within 300 days in Drummer surface and subsurface soils. At the 0.1 mg kg?1 application rate, dissipation was slower for all four soils. Water-extractable imidacloprid in Exeter surface soil decreased from 98% of applied at day 1 to > 70% of the imidacloprid remaining after 400 d, as compared to 55% in the Drummer surface soil at day 1 and 12% at day 400. These data suggest that imidacloprid was bioavailable to degrading soil microorganisms and sorption/desorption was not the limiting factor for biodegradation. In subsurface soils > 40% of 14C-benzoic acid was mineralized over 21 days, demonstrating an active microbial community. In contrast, cumulative 14CO2 was less than 1.5% of applied 14C-imidacloprid in all soils over 400 d. Qualitative differences in the microbial communities appear to limit the degradation of imidacloprid in the subsurface soils.  相似文献   

19.
Abstract

Five organophosphorous insecticides: Leptophos, EPN, Cyano‐fenphos, trichloronate and salithion proved to cause irreversible ataxia not only to chicken but also to mice and sheep. TOCP was included as a reference. Cyanofenphos blocked the catecholamine B‐receptor binding activity with 3H‐norepinephrine at a level similar to that of the specific inhibitor propranolol in the mouse heart preparation. In the lamb heart preparation, the B‐receptor was more sensitive to Leptophos, salithion and TOCP than to propranolol. The six compounds and their oxons were screened for their in‐vitro inhibition to monamine oxidase (MAO), acetyl cholinesterase (AChE) and neurotoxic esterase (NTE) in the brain of either mouse, lamb or chicken. It is believed that their AChE inhibition stands for their acute toxicity, while NTE inhibition is responsible for their paralytic ataxia.  相似文献   

20.
Background, Aims and Scope The global problem concerning contamination of the environment as a consequence of human activities is increasing. Most of the environmental contaminants are chemical by-products and heavy metals such as lead (Pb). Lead released into the environment makes its way into the air, soil and water. Lead contributes to a variety of health effects such as decline in mental, cognitive and physical health of the individual. An alternative way of reducing Pb concentration from the soil is through phytoremediation. Phytoremediation is an alternative method that uses plants to clean up a contaminated area. The objectives of this study were: (1) to determine the survival rate and vegetative characteristics of three grass species such as vetivergrass, cogongrass and carabaograss grown in soils with different Pb levels; and (2) to determine and compare the ability of the three grass species as potential phytoremediators in terms of Pb accumulation by plants. Methods The three test plants: vetivergrass (Vetiveria zizanioides L.); cogongrass (Imperata cylindrica L.); and carabaograss (Paspalum conjugatum L.) were grown in individual plastic bags containing soils with 75 mg kg−1 (37.5 kg ha−1) and 150 mg kg−1 (75 kg ha−1) of Pb, respectively. The Pb contents of the test plants and the soil were analyzed before and after experimental treatments using an atomic absorption spectrophotometer. This study was laid out following a 3 × 2 factorial experiment in a completely randomized design. Results On the vegetative characteristics of the test plants, vetivergrass registered the highest whole plant dry matter weight (33.85–39.39 Mg ha−1). Carabaograss had the lowest herbage mass production of 4.12 Mg ha−1 and 5.72 Mg ha−1 from soils added with 75 and 150 mg Pb kg−1, respectively. Vetivergrass also had the highest percent plant survival which meant it best tolerated the Pb contamination in soils. Vetivergrass registered the highest rate of Pb absorption (10.16 ± 2.81 mg kg−1). This was followed by cogongrass (2.34 ± 0.52 mg kg−1) and carabaograss with a mean Pb level of 0.49 ± 0.56 mg kg−1. Levels of Pb among the three grasses (shoots + roots) did not vary significantly with the amount of Pb added (75 and 150 mg kg−1) to the soil. Discussion Vetivergrass yielded the highest biomass; it also has the greatest amount of Pb absorbed (roots + shoots). This can be attributed to the highly extensive root system of vetivergrass with the presence of an enormous amount of root hairs. Extensive root system denotes more contact to nutrients in soils, therefore more likelihood of nutrient absorption and Pb uptake. The efficiency of plants as phytoremediators could be correlated with the plants’ total biomass. This implies that the higher the biomass, the greater the Pb uptake. Plants characteristically exhibit remarkable capacity to absorb what they need and exclude what they do not need. Some plants utilize exclusion mechanisms, where there is a reduced uptake by the roots or a restricted transport of the metals from root to shoots. Combination of high metal accumulation and high biomass production results in the most metal removal from the soil. Conclusions The present study indicated that vetivergrass possessed many beneficial characteristics to uptake Pb from contaminated soil. It was the most tolerant and could grow in soil contaminated with high Pb concentration. Cogongrass and carabaograss are also potential phytoremediators since they can absorb small amount of Pb in soils, although cogongrass is more tolerant to Pb-contaminated soil compared with carabaograss. The important implication of our findings is that vetivergrass can be used for phytoextraction on sites contaminated with high levels of heavy metals; particularly Pb. Recommendations and Perspectives High levels of Pb in localized areas are still a concern especially in urban areas with high levels of traffic, near Pb smelters, battery plants, or industrial facilities that burn fuel ending up in water and soils. The grasses used in the study, and particularly vetivergrass, can be used to phytoremediate urban soil with various contaminations by planting these grasses in lawns and public parks. ESS-Submission Editor: Dr. Willie Peijnenburg (wjgm.peijnenburg@rivm.nl)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号