首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between sperm characteristics and reproductive success was examined in male herring, Clupea harengus L. Males were categorised as being first-time or repeat spawners on the basis of their age; they were also grouped according to whether their sperm were immediately active and exhibited forward motion on contact with seawater (FM) or had little or only vibratory motion (VM). Unlike the Pacific herring C. pallasii Valencienes, Atlantic herring sperm is usually motile on contact with seawater. The age, weight and gonadosomatic index (testes mass as a percentage of somatic mass = GSI) were measured and used as characteristics for individual fish. Sperm traits measured were (1) adenosine triphosphate (ATP) concentration, (2) sperm count, (3) duration of sperm motility. Reproductive success for each male was estimated from the fertilisation rate and from the length of larvae at hatching. Fertilisation rates for all fish were generally >80%. The ATP concentration of non-activated spermatozoa was negatively correlated with fertilisation rate. Among repeat spawners, fish with higher GSIs produced larvae that were larger at hatching. Although VM sperm fertilised eggs at rates equivalent to fertilisation by FM sperm, the larvae produced by VM sperm were significantly smaller at hatching. Larval length tended to increase in parallel with the duration of sperm motility, but the relationship was not significant in these tests. The results did not indicate any age or size pattern to spawning readiness in male herring. Sperm that are not yet ready to be shed are not fully motile on contact with seawater, but are still capable of fertilising eggs that hatch successfully. There is likely to be a progression of males which come into spawning readiness within a spawning shoal; therefore it is possible that paternal influences would result in a progressive decrease in larval size over the spawning period in winter-spawning Celtic Sea herring. Received: 22 November 1997 / Accepted: 8 June 1998  相似文献   

2.
Ocean acidification is not happening in isolation but against a background of chronic low-level pollution for most coastal marine environments. The reproductive and larval stages of marine invertebrates can be highly sensitive to the impacts of both environmental pollutants and ocean acidification, but very little is currently known regarding the potential impacts of combined contaminant and high CO2 exposures on the health of marine organisms. Ocean acidification research to date has focused heavily on the responses of calcifying marine invertebrate larvae and algae, and as such the polychaetes as a group, despite their ecological importance, remain understudied. Here, we investigate the effects of elevated seawater CO2 (pH range 8.1–7.4, plus an extreme pH of 7.2 in the sperm motility experiments), in combination with the environmental pollutant copper (0.002 μM), on the early life history stages of the intertidal polychaete Pomatoceros lamarckii from two populations. P. lamarckii sperm appear to be robust to elevated seawater CO2. Whilst all three of the sperm motility end points measured showed a response to elevated CO2, these responses were small and not linear. The percentage of motile sperm and sperm curvilinear velocity were significantly reduced in the lower pH treatments of 7.4 and 7.2, whereas sperm straight-line velocity (VSL) was mostly unaffected except for an increased VSL at pH 8.0. Fertilisation success was investigated using two populations from the South West (UK), one from Torquay and one from Plymouth Sound. Fertilisation success was slightly but significantly reduced at the 7.6 and 7.4 pH treatments for both populations (a 9.0 % reduction in fertilisation success from pH 8.1 to 7.4 for Torquay), but with a greater effect observed in the population from Plymouth Sound (a 13.33 % reduction in fertilisation success). No additional impact of 0.002 μM copper exposure on fertilisation success was found. Larval survival was found to be much more sensitive to elevated CO2 than sperm function or fertilisation, and a significant interaction with copper exposure was observed. These results demonstrate the potential for polychaete larvae to be affected by predicted ocean acidification conditions and that chronic coastal pollutants, such as copper, have the potential to alter larval susceptibility to ocean acidification conditions.  相似文献   

3.
Fertilisation kinetics theory suggests that, when sperm are limiting, the larger eggs of broadcast-spawning marine organisms ought to be fertilised more frequently than smaller eggs, because they provide a bigger target for searching sperm. Whilst this effect has been demonstrated within species, it is not known if this pattern holds among species. We tested whether a large difference in egg size between congeneric seastars with contrasting planktotrophic and lecithotrophic modes of development results in differences in the likelihood of eggs being fertilised in sperm-limiting situations. Measurement of egg sizes and sperm swimming speeds led to the prediction that the sperm–egg collision rate constant for Patiriella calcar (420-µm-diameter egg) should be nine times greater than for P. regularis (140-µm-diameter egg). Although the eggs of P. calcar should be fertilised at greater rates in low sperm concentrations, they were not. When gametes were allowed to mix for 10 s, the hypothesis that P. calcar eggs required less sperm than P. regularis to ensure 50% of eggs were fertilised was rejected. When gametes were mixed for 5 min, P. regularis eggs were more frequently fertilised, but the difference was not statistically significant. We conclude there must be a difference between these species in the likelihood that when a sperm finds a conspecific egg it can successfully fertilise. This apparent uncoupling of egg size and likelihood of fertilisation suggests that fertilisation is not a major constraint on the evolution of egg size in these seastars.Communicated by G.F. Humphrey, Sydney  相似文献   

4.
We demonstrated that environmentally relevant levels of UVA and UVB can reduce sperm motility (UVA: by 38–58%; UVB: by 42–85%; P < 0.05) and subsequently fertilisation success (UVA: by 38–72%; UVB: by 91–98%; P < 0.05) of urchins (Anthocidaris crassispina) in a dose-dependent manner, implicating that recruitment of urchin populations might be reduced by UVR (ultraviolet radiation) prevailing in their natural habitats. Concomitantly, reactive oxygen species (ROS) production was enhanced by UVA and UVB in a dose-dependent manner (UVA: by 1.3-fold; UVB: by 6.6–7.3-fold; P < 0.05), and the increase in ROS resulted in an increase in lipid peroxidation (LPO) in urchin sperm (UVA: by 4.2–7.2-fold; UVB: by 2.3–2.7-fold; P < 0.05). This study demonstrated that ROS production and oxidative damages enhanced by UVR may account for the observed declines in sperm motility and fertilisation, and suggests that levels of UVR prevailing in the environment may pose a significant threat to the reproductive success of natural populations of urchins spawning in shallow waters.  相似文献   

5.
Ocean acidification, as a result of increased atmospheric CO2, is predicted to lower the pH of seawater to between pH 7.6 and 7.8 over the next 100 years. The greatest changes are expected in polar waters. Our research aimed to examine how echinoid larvae are affected by lower pH, and if effects are more pronounced in polar species. We examined the effects of lowered pH on larvae from tropical (Tripneustes gratilla), temperate (Pseudechinus huttoni, Evechinus chloroticus), and a polar species (Sterechinus neumayeri) in a series of laboratory experiments. Larvae were reared in a range of lower pH seawater (pH 6.0, 6.5, 7.0, 7.5, 7.7, 7.8 and ambient), adjusted by bubbling CO2 gas. The effect of pH on somatic and skeletal growth, calcification index, development and survival were quantified, while SEM examination of the larval skeleton provided information on the effects of seawater pH on the fine-scale skeletal morphology. Lowering pH resulted in a decrease in survival in all species, but only below pH 7.0. The size of larvae were reduced at lowered pH, but the external morphology (shape) was unaffected. Calcification of the larval skeleton was significantly reduced (13.8–36.9% lower) under lowered pH, with the exception of the Antarctic species, which showed no significant difference. SEM examination revealed a degradation of the larval skeletons of Pseudechinus and Evechinus when grown in reduced pH. Sterechinus and Tripneustes showed no apparent difference in the skeletal fine structure under lowered pH. The study confirms the need to look beyond mortality as a single endpoint when considering the effects of ocean acidification that may occur through the 21st century, and instead, look for a suite of more subtle changes, which may indirectly affect the functioning of larval stages.  相似文献   

6.
 To determine how fertilisation varied with sperm concentration for two species of scallop, Chlamys (Equichlamys) bifrons (Lamarck) and C. asperrima (Lamarck), we performed a simple series of sperm dilution experiments, and measured egg size and sperm swimming speeds. C. bifrons eggs were much larger (average diam=116.5 μm), and sperm swimming speeds faster (209.8 μm s−1), than C. asperrima (71.2 μm, 166.0 μm s−1). In both species, maximum fertilisation occurred at an ambient sperm concentration of around 100 sperm μl−1; the maximum proportion of eggs fertilised was less than 0.70 in the C. bifrons experiments, but nearer 1.0 with C. asperrima. At high sperm concentrations (>100 sperm μl−1), fertilisation decreased (presumably due to polyspermy) with increasing sperm concentration, but decreased more rapidly in C. bifrons than C. asperrima. A polyspermy-adjusted fertilisation kinetics model could be fitted to the experimental data, but unique parameter estimates could not be determined. Received: 7 October 1999 / Accepted: 8 July 2000  相似文献   

7.
 Early development of the Antarctic sea urchin Sterechinus neumayeri was examined under two differ-ent culture regimes: one to simulate development near-bottom (“demersal development”) and the other to simulate the development of embryos in the water column (“pelagic development”). When embryos of both treatments reached the hatching blastula stage at 5 d post-fertilization (−1.5 °C), the blastulae that had undergone demersal development evidenced significant differences (by ANOVA or suitable non-parametric comparison) in the following: a thicker blastoderm layer (12%, P < 0.001), higher ash-free dry weights (19%, P < 0.01), lower mass-specific respiration rates (50%, P < 0.001), higher incorporation rates of 35S-methionine into protein (23%, P < 0.003), and a differential pattern of protein synthesis. When embryos developed demersally, they remained in the jelly-coat material released with the eggs at spawning. Quantitative isolation of this jelly-coat material in S. neumayeri demonstrated that it contained a significant amount of organic matter, 115 ng ash-free dry mass per egg, equivalent to 17% of the egg's initial organic mass. Uptake of external nutrients during embryogenesis may be a significant component of the physiological energetics of this polar invertebrate by allowing the utilization of jelly-coat material released by a female during spawning. Received: 21 April 1999 / Accepted: 5 June 2000  相似文献   

8.
Some theoretical models of sperm competition make the assumption that in fish species with external fertilisation, sperm length relates positively to swimming speed at the expense of sperm longevity. Few studies have tested this assumption. We used the three-spined stickleback, Gasterosteus aculeatus L., to study functional sperm morphology. In this study, the relationship between males’ mean sperm length and fertilisation rate was investigated in vitro in a non-competitive situation. Fertilisation at different time points after sperm release was taken into account, and sperm morphology was quantified from scanning electron microscopy images. The time series of artificial fertilisations demonstrated that males which produced sperm with a longer tail fertilised faster, but their sperm had a shorter lifespan (or activity period). It was further suggested that males that produced sperm with a larger midpiece had greater fertilisation chances later on in the fertilisation process. Thus, in sticklebacks, there exists functional variation in sperm morphology, and sperm tail length is traded off against sperm longevity (or activity).  相似文献   

9.
P. Harrison  S. Ward 《Marine Biology》2001,139(6):1057-1068
Spawned gametes were collected from colonies of Acropora longicyathus at One Tree Island and Goniastrea aspera at Magnetic Island, Great Barrier Reef, Australia, for use in fertilisation trials. Mean fertilisation rates were significantly reduced compared with controls (P<0.003), when gametes from the branching coral A. longicyathus were exposed to elevated ammonium concentrations at 1 µM and above in one cross (60-64% reduction), and at 100 µM in another cross (16% reduction). Mean fertilisation success of A. longicyathus gametes was also significantly reduced compared with controls in both crosses (P=0.000) at concentrations of 1 µM phosphate and above (35-75% reduction), and at 1 µM ammonium plus 1 µM phosphate and all higher concentrations (68-74% reduction). Similarly, the mean percentage of regular embryos that were developing normally was significantly reduced in most nutrient treatments compared with controls (P=0.000). Fertilisation trials using gametes from the brain coral G. aspera resulted in a significantly lower percentage of regular embryos (P=0.001) and a significantly higher percentage of deformed embryos (P=0.001) developing after exposure to elevated nutrient treatments compared with controls. Mean fertilisation rates for this species were only significantly reduced (P=0.034) in the 50 µM ammonium plus phosphate treatment in one cross (8% reduction), compared with the control. Therefore, ammonium and phosphate enrichment significantly impairs fertilisation success and embryo development in scleractinian reef corals.  相似文献   

10.
We examined the response of the tropical sand dollar Arachnoides placenta to reduced seawater pH in experiments spanning ca. 50 % of the planktonic larval duration. A. placenta inhabits intertidal sandy beaches where we observed a minimum in situ pH range 0.06 pH units (pH 8.10–8.16). The responses of gametes and larvae to seawater pH were tested in vitro in ambient (pH 8.14, pCO2 = 525.7 μatm, total alkalinity = 2,651 μmol kg soln?1) and three reduced pH seawater treatments (7.8–7.0). Percentage fertilisation decreased significantly with decreasing pH across a range of sperm/egg ratios (4:1 up to 4,000:1). A. placenta reached the advanced pluteus stage in 4 days, and during this time, we saw no difference in survival rate of larvae between the ambient (67 %) and pH 7.79 (72 %) treatments. Four-day survival was, however, reduced to 44 and 11 % in the pH 7.65 and 7.12 treatments, respectively. Larval development and morphometrics varied among pH treatments. Embryos reared in pH 7.12 exhibited arrested development. Larvae reared at pH 7.65 showed delayed development and greater mortality compared with those reared at pH 7.79 and 8.14. When larval morphometrics are compared among larvae of the same size, differences in larval width and total arm length between pH treatments disappear. These results suggest that variation in larval size among the three highest pH treatments at a given time are likely the result of slower development and apparent shrinkage of surviving larvae and not direct changes in larval shape. There were no differences in the percentage inorganic content (a proxy for calcification) in larvae reared in either an ambient or a pH 7.7 treatment. The responses of fertilisation and development to decreased pH/increased pCO2 in A. placenta are within the range of those reported for other intertidal and subtidal echinoid species from colder latitudes.  相似文献   

11.
Females mating with multiple males may obtain direct benefits such as nuptial gifts or paternal care or indirect (i.e. genetic) benefits resulting in higher-quality offspring. While direct benefits are easily identified, it is difficult to determine indirect benefits, and it is hence largely unclear how they are obtained. This is particularly true in species with external fertilisation, where females seem to have little control over fertilisation. In cichlids, most maternal mouthbrooders show sequential multiple mating, where females visit several males for egg deposition. Genetic data revealed that multiple paternity of eggs and young in the mouth of females is common, but behavioural data of female spawning decisions are missing. Here, we test four hypotheses to explain female multiple mating in the maternally mouthbrooding cichlid, Ophthalmotilapia ventralis: (1) fertilisation insurance, (2) genetic bet-hedging, (3) female choice and (4) ‘sperm shopping’ (i.e. induction of sperm competition resulting in sexually selected sperm). Detailed observations of spawning behaviour in the field combined with histological analyses of the male reproductive organs suggest that fertilisation insurance, genetic bet-hedging and pre-mating female choice are unlikely to explain the sequential female multiple mating in O. ventralis. Instead, cryptic female choice by sperm shopping, i.e. post-mating sexual selection, is most compatible with our data and might be the major ultimate cause of multiple mating in females of this species and of mouthbrooding cichlids with maternal care in general. Our study provides new insight into ultimate causes of sequential polyandry in species with external fertilisation, as hitherto post-mating sexual selection by cryptic female choice has been assumed to be incompatible with external fertilisation mechanisms except by components of the ovarian fluid.  相似文献   

12.
L. S. Peck 《Marine Biology》1993,116(2):301-310
Embryonic and larval development were followed from fertilisation to settlement in the Antarctic heteronemertean Parborlasia corrugatus (McIntosh, 1876). The first cleavage occurred 10 to 15 h after fertilisation, and the second at 17 h. Larvae hatched at the gastrula stage, between 170 and 200 h post-fertilisation, and were 150 m in diameter. Early larval stages aggregated in dense groups near the surface of incubation vessels and were positively phototactic. Early pilidium larvae were recognisable 435 h post-fertilisation. They were 155×152 m in size, and possessed a complete apical tuft of cilia and a full marginal band of locomotory cilia. At this stage, the gust was visible through the body wall, and the mouth was open and was 40 m in diameter. Late pilidia, 222×193 m in size, were helmet-shaped. They had an apical tuft over 100 m long, and possessed a lobed marginal band of locomotory cilia. Pilidia were observed aggregating close to the bottom of incubation vessels 1200 to 1350 h (50 to 56 d) after fertilisation, and this was interpreted as settlement behaviour. At this stage, the apical tuft had been lost and they were highly contractile, being capable of compressing their bodies. However, neither developing juveniles within the larval envelope nor hatched juveniles were observed. Pilidia consumed the microalgae Tetraselmis suecica, Thalassiosira pseudonana and Isochrysis galbana. They also fed on particulate organic material < 1 m in size, as shown by the presence of material in the guts of larvae offered filtered extracts of algal cultures. There was some indication that larvae could use dissolved organic material, since pilidia held in seawater with organic material removed did not survive as long as those in filtered seawater or in filtered water with added amino acids. However, the only larvae to exhibit settlement behaviour in the feeding experiments were those offered Tetraselmis succica and Thalassiosira pseudonana, and these required a longer development time to reach this stage than pilidia in the standard cultures, where a mixed algal diet was offered.  相似文献   

13.
The sperm kinetics and fertilisation literature in marine invertebrates is heavily biased toward free-spawning species. Nonetheless, many species (e.g. cephalopods) transfer and/or fertilise gametes in confined external spaces or internally, creating very different selective pressures on sperm storage, sperm longevity and hence sperm competition. Here we report the results of an investigation into the effects of sperm age, water temperature and sperm concentration on sperm motility in the giant cuttlefish (Sepia apama). Significant positive correlations were found between percent motility and sperm concentration, and between sperm motile speed and sperm concentration. Mean percent motility of cuttlefish sperm suspension was still 9% eight hours after being released from the spermatophore and diluted into filtered seawater at 12°C (ambient field temperature during the spawning season). Sperm resuspended from spermatangia taken from (mated) females in the field were motile for up to 100 hours. When spermatophores were stored at 4°C motility was still observed in resuspended sperm after two months. Our results show that spermatangia and spermatophores can retain and release live sperm for long periods. The observed longevity of sperm in S. apama greatly increases the potential for sperm competition in this species.  相似文献   

14.
In the context of future scenarios of anthropogenic CO2 accumulation in marine surface waters, the present study addresses the effects of long-term hypercapnia on a Mediterranean fish, Sparus aurata. By equilibration with elevated CO2 levels seawater pH was lowered to a value of 7.3, close to the maximum pH drop expected in marine surface waters from atmospheric CO2 accumulation. Intra- and extracellular acid–base parameters as well as changes in enzyme profiles were studied in red and white muscles and the heart under both normocapnia and hypercapnia. The activities of pyruvate kinase (PK), lactate dehydrogenase (L-LDH), citrate synthase (CS), malate dehydrogenase and and 3-hydroxyacyl CoA dehydrogenase (HOAD) reflect the pathways and capacity of oxidative processes in metabolism. Long-term hypercapnia caused a transient reduction in blood plasma pH (pHe) as well as in intracellular pH (pHi). Compensation of the acidosis occurred through increased plasma and cellular bicarbonate levels. Changes in enzymatic activities, especially the increase in the activity of L-LDH, paralleled by a drop in CS activity in white and red muscles reflect a shift from aerobic to anaerobic pathways of substrate oxidation during long-term acclimation under hypercapnia. The present results suggest that moderate environmental hypercapnia changes the metabolic profile in tissues of S. aurata. Consequences for slow processes like growth and reproduction potential as well as potential harm at population, species and ecosystem levels require further investigation.  相似文献   

15.
Sperm competition is predicted to generate opposing selection pressures on males. On one hand, selection should favour ‘defensive’ adaptations that protect a male’s ejaculate from displacement, while, on the other hand, selection should favour ‘offensive’ adaptations that overcome paternity assurance mechanisms of rivals. Here, we use the sterile male technique to assess sperm precedence when a male dung beetle Onthophagus taurus mates in both a defensive (first male) and an offensive (second male) role. Significant variation in a male’s sperm precedence (both P 1 and P 2) was detected, and an individual’s defensive (P 1) and offensive (P 2) abilities were positively correlated. Thus, it appears that sexual selection simultaneously selects for ‘defensive’ and ‘offensive’ adaptations in O. taurus. We discuss a variety of male traits in O. taurus that potentially contribute to a male’s ability to be successful when mating in an ‘offensive’ and a ‘defensive’ role.  相似文献   

16.
Oceans are warming and becoming more acidic. While higher temperature and lower pH can have negative effects on fertilisation and development of marine invertebrates, warming may partially ameliorate the negative effect of lower pH. This study determined the effect of warming (3 °C) and decreased pH (0.3, 0.5, 1.1 units below ambient) on fertilisation and development in two populations of the sea urchin Centrostephanus rodgersii, one at its northern range limit (Coffs Harbour, New South Wales NSW, 30°27′S, 153°14′E) and the other one in New Zealand where the species may be a recent arrival (Mokohinau Islands, 35°56′S, 175°9′E). Both populations were sampled in August 2011. The two populations exhibited a differential response to temperature, while pH affected them similarly. Fertilisation was robust to pH levels forecast for 2100, and it was only slightly reduced at pH values forecast for 2300 (i.e. ≈5 and ≈8 % for the northern NSW and the New Zealand populations, respectively). Decreased pH (pH = 7.6) reduced the percentage of succeeding developmental stages. Progression through cleavage and hatching stages was faster at +3 °C in the New Zealand population but not in northern NSW urchins, while for the NSW population, there was a positive interaction between temperature and pH at hatching. Gastrulation was negatively affected by an extreme pH 7.0 treatment (60–80 % reduction) and least affected by increased temperature. The percentage of abnormal embryos at gastrulation increased significantly at +3 °C treatment in the northern NSW population. Predicted future increases in temperature may facilitate further expansion of the geographical range of C. rodgersii in New Zealand, with a minimal effect of concurrent reduced pH.  相似文献   

17.
The early development of Odontaster validus at McMurdo Sound, Antarctica, is indirect and includes equal cleavage, a convoluted blastula, a free-swimming coeloblastula, a gastrula, and a feeding bipinnaria larva. Development differs from that of other asteroids in two respects: (1) The developmental rate is extremely slow; blastulae form nearly 2 days after fertilization, gastrulation begins after 7 days, and the bipinnaria develops in about 40 to 55 days. The slow developmental rate appears to be only partly related to the low environmental temperature (-1.5°C). (2) The embryos and larvae are largely demersal. Such behavior may be an adaptation to keep the larvae out of antarctic surface waters, as does brooding in many other polar echinoderms.  相似文献   

18.
Oxygen and pH microelectrodes were used to investigate the microenvironment of the planktonic foraminifer Orbulina universa and its dinoflagellate endosymbionts. A diffusive boundary layer surrounds the foraminiferal shell and limits the O2 and proton transport from the shell to the ambient seawater and vice versa. Due to symbiont photosynthesis, high O2 concentrations of up to 206% air saturation and a pH of up to 8.8, i.e. 0.5 pH units above ambient seawater, were measured at the shell surface of the foraminifer at saturating irradiances. The respiration of the host–symbiont system in darkness decreased the O2 concentration at the shell surface to <70% of the oxygen content in the surrounding air-saturated water. The pH at the shell surface dropped to 7.9 in darkness. We measured a mean gross photosynthetic rate of 8.5 ± 4.0 nmol O2 h−1 foraminifer−1. The net photosynthesis averaged 5.3 ± 2.7 nmol O2 h−1. In the light, the calculated respiration rates reached 3.9 ± 1.9 nmol O2 h−1, whereas the dark respiration rates were significantly lower (1.7 ± 0.7 nmol O2 h−1). Experimental light–dark cycles demonstrated a very dynamic response of the symbionts to changing light conditions. Gross photosynthesis versus scalar irradiance curves (P vs E o curves) showed light saturation irradiances (E k) of 75 and 137 μmol photons m−2 s−1 in two O. universa specimens, respectively. No inhibition of photosynthesis was observed at irradiance levels up to 700 μmol photons m−2 s−1. The light compensation point of the symbiotic association was 50 μmol photons m−2 s−1. Radial profile measurements of scalar irradiance (E o) inside the foraminifera showed a slight increase at the shell surface up to 105% of the incident irradiance (E d). Received: 26 January 1998 / Accepted: 11 April 1998  相似文献   

19.
Laboratory experiments were undertaken to examine fertilization success in the intertidal prosobranch limpets Patella ulyssiponensis and Patella vulgata. Alkalization of eggs (10 min in pH 9.0 sea water) prior to fertilization trials improved fertilization rates greatly. Fertilization success was found to be a function of sperm concentration, gamete age and contact time. Sperm concentration needed for optimum fertilization success in vivo ranged between 105 and 107 sperm ml−1 for both species although at higher concentrations the number of normally developing trochophore larvae decreased. For P. vulgata, sperm longevity (at a concentration of 106 sperm ml−1) did not exceed 6 h, whereas eggs of both species were fertilizable for up to 12 h. Maximum fertilization success occurred after 15–30 min gamete contact time. The Vogel et al. (Math Biosci 58:189–216, 1982) fertilization kinetics model is developed to allow for non-complete fertilizations under optimal sperm concentrations, and a new parameter fitting technique is developed to improve estimates of fertilization success for short gamete contact times.  相似文献   

20.
Climate change driven ocean acidification and hypercapnia may have a negative impact on fertilization in marine organisms because of the narcotic effect these stressors exert on sperm. In contrast, warmer, less viscous water may have a positive influence on sperm swimming speed and so ocean warming may enhance fertilization. To address questions on future vulnerabilities we examined the interactive effects of near-future ocean warming and ocean acidification/hypercapnia on fertilization in intertidal and shallow subtidal echinoids (Heliocidaris erythrogramma, H. tuberculata, Tripneustes gratilla, Centrostephanus rodgersii), an asteroid (Patiriella regularis) and an abalone (Haliotis coccoradiata). Batches of eggs from multiple females were fertilized by sperm from multiple males in all combinations of three temperature and three \textpH/P\textCO2 {\text{pH}}/P_{{{\text{CO}}_{2} }} treatments. Experiments were placed in the setting of projected near-future conditions for southeast Australia, an ocean change hot spot. There was no significant effect of warming and acidification on the percentage of fertilization. These results indicate that fertilization in these species is robust to temperature and \textpH/P\textCO2 {\text{pH}}/P_{{{\text{CO}}_{2} }} fluctuation. This may reflect adaptation to the marked fluctuation in temperature and pH that characterises their shallow water coastal habitats. Efforts to identify potential impacts of ocean change to the life histories of coastal marine invertebrates are best to focus on more vulnerable embryonic and larval stages because of their long time in the water column where seawater chemistry and temperature have a major impact on development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号