共查询到20条相似文献,搜索用时 15 毫秒
1.
Establishing aquatic restoration priorities using a watershed approach 总被引:11,自引:0,他引:11
Since the passage of the Clean Water Act in 1972, the United States has made great strides to reduce the threats to its rivers, lakes, and wetlands from pollution. However, despite our obvious successes, nearly half of the nation's surface water resources remain incapable of supporting basic aquatic values or maintaining water quality adequate for recreational swimming. The Clean Water Act established a significant federal presence in water quality regulation by controlling point and non-point sources of pollution. Point-sources of pollution were the major emphasis of the Act, but Section 208 specifically addressed non-point sources of pollution and designated silviculture and livestock grazing as sources of non-point pollution. Non-point source pollutants include runoff from agriculture, municipalities, timber harvesting, mining, and livestock grazing. Non-point source pollution now accounts for more than half of the United States water quality impairments. To successfully improve water quality, restoration practitioners must start with an understanding of what ecosystem processes are operating in the watershed and how they have been affected by outside variables. A watershed-based analysis template developed in the Pacific Northwest can be a valuable aid in developing that level of understanding. The watershed analysis technique identifies four ecosystem scales useful to identify stream restoration priorities: region, basin, watershed, and site. The watershed analysis technique is based on a set of technically rigorous and defensible procedures designed to provide information on what processes are active at the watershed scale, how those processes are distributed in time and space. They help describe what the current upland and riparian conditions of the watershed are and how these conditions in turn influence aquatic habitat and other beneficial uses. The analysis is organized as a set of six steps that direct an interdisciplinary team of specialists to examine the biotic and abiotic processes influencing aquatic habitat and species abundance. This process helps develop an understanding of the watershed within the context of the larger ecosystem. The understanding gained can then be used to identify and prioritize aquatic restoration activities at the appropriate temporal and spatial scale. The watershed approach prevents relying solely on site-level information, a common problem with historic restoration efforts. When the watershed analysis process was used in the Whitefish Mountains of northwest Montana, natural resource professionals were able to determine the dominant habitat forming processes important for native fishes and use that information to prioritize, plan, and implement the appropriate restoration activities at the watershed scale. Despite considerable investments of time and resources needed to complete an analysis at the watershed scale, the results can prevent the misdiagnosis of aquatic problems and help ensure that the objectives of aquatic restoration will be met. 相似文献
2.
Tirusew Asefa Nisai Wanakule Alison Adams 《Journal of the American Water Resources Association》2007,43(5):1245-1256
Abstract: In this paper, a field‐scale applicability of three forms of artificial neural network algorithms in forecasting short‐term ground‐water levels at specific control points is presented. These algorithms are the feed‐forward back propagation (FFBP), radial basis networks (RBN), and generalized regression networks (GRN). Ground‐water level predictions from these algorithms are in turn to be used in an Optimized Regional Operations Plan that prescribes scheduled wellfield production for the coming four weeks. These models are up against each other for their accuracy of ground‐water level predictions on lead times ranging from a week to four weeks, ease of implementation, and execution times (mainly training time). In total, 208 networks of each of the three algorithms were developed for the study. It is shown that although learning algorithms have emerged as a viable solution at field scale much larger than previously studied, no single algorithm performs consistently better than others on all the criteria. On average, FFBP networks are 20 and 26%, respectively, more accurate than RBN and GRN in forecasting one week ahead water levels and this advantage drops to 5 and 9% accuracy in forecasting four weeks ahead water levels, whereas GRN posted a training time that is only 5% of the training time taken by that of FFBP networks. This may suggest that in field‐scale applications one may have to trade between the type of algorithm to be used and the degree to which a given objective is honored. 相似文献
3.
4.
5.
Katrin Bieger Jeffrey G. Arnold Hendrik Rathjens Michael J. White David D. Bosch Peter M. Allen Martin Volk Raghavan Srinivasan 《Journal of the American Water Resources Association》2017,53(1):115-130
SWAT+ is a completely restructured version of the Soil and Water Assessment Tool (SWAT) that was developed to face present and future challenges in water resources modeling and management and to meet the needs of the worldwide user community. It is expected to improve code development and maintenance; support data availability, analysis, and visualization; and enhance the model's capabilities in terms of the spatial representation of elements and processes within watersheds. The most important change is the implementation of landscape units and flow and pollutant routing across the landscape. Also, SWAT+ offers more flexibility than SWAT in defining management schedules, routing constituents, and connecting managed flow systems to the natural stream network. To test the basic hydrologic function of SWAT+, it was applied to the Little River Experimental Watershed (Georgia) without enhanced overland routing and compared with previous models. SWAT+ gave similar results and inaccuracies as these models did for streamflow and water balance. Taking full advantage of the new capabilities of SWAT+ regarding watershed discretization and landscape and river interactions is expected to improve simulations in future studies. While many capabilities of SWAT have already been enhanced in SWAT+ and new capabilities have been added, the model will continue to evolve in response to advancements in scientific knowledge and the demands of the growing worldwide user community. Editor's note: This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series. 相似文献
6.
Kristen L. Bouska Timothy J. Stoebner 《Journal of the American Water Resources Association》2015,51(3):734-745
Over the past century, channelization, agricultural tiling, and land use changes have resulted in significant stream channel degradation of the Cache River in southern Illinois. With the increasing interest in restoration of the watershed's bottomland forests and swamps, we sought to characterize geomorphic change over the past 110 years to inform restoration and management. A previously surveyed stretch of river was resurveyed in the fall of 2011, following a record flood in the spring of that year. Results suggest that the slope of the channel in this section of the river has increased 345% between 1903 and 1972 (p < 0.01), but has not changed significantly since (p = 0.12). Within that same time period, bank heights increased between 1 and 7 m and bed elevation decreased between 1 and 5 m. Changes in resurveyed cross sections appear to be primarily due to recent flood scour. It appears as though early 20th Century stream channel modifications had immediate effects on the geomorphology of the channel; however, channel geometry is now at or near equilibrium. This case study of the Cache River watershed demonstrates how and why successful restoration will require integration of geomorphic processes of the system. 相似文献
7.
Thomas J. Myers Sherman Swanson 《Journal of the American Water Resources Association》1996,32(2):253-265
ABSTRACT: Detailed studies of long-term management impacts on rangeland streams are few because of the cost of obtaining detailed data replicated in time. This study uses government agency aquatic habitat, stream morphologic, and ocular stability data to assess land management impacts over four years on three stream reaches of an important rangeland watershed in northwestern Nevada. Aquatic habitat improved as riparian vegetation reestablished itself with decreased and better controlled livestock grazing. However, sediment from livestock disturbances and road crossings and very low stream flows limited the rate of change. Stream type limited the change of pool variables and width/depth ratio, which are linked to gradient and entrenchment. Coarse woody debris removal due to previous management limited pool recovery. Various critical-element ocular stability estimates represented changes with time and differences among reaches very well. Ocular stability variables tracked the quantitative habitat and morphologic variables well enough to recommend that ocular surveys be used to monitor changes with time between more intensive aquatic surveys. 相似文献
8.
Joshua M. Peschel Patricia K. Haan Ronald E. Lacey 《Journal of the American Water Resources Association》2006,42(5):1371-1389
ABSTRACT: Soils represent a fundamental abiotic parameter in defining the characteristics of an ecosystem. The U.S. Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) produces the most detailed digital spatial soil datasets that are publicly available. The Soil Survey Geographic (SSURGO) database contains basic attributes for the continuous coverage of soils across the United States. In its standard format, the SSURGO database is incompatible for use within the ArcView Soil and Water Assessment Tool (SWAT). A modified version of the State Soil and Geographic (STATSGO) database is the template soils dataset used by ArcView SWAT. This paper presents the methodology and development of a SSURGO database preprocessor extension for the ArcView SWAT model. A case study for the Upper Sabinal River Watershed near Uvalde, Texas, is given. Results indicate that hydro‐logic output parameter differences occur when comparing the STATSGO and SSURGO database information in the ArcView SWAT model under identical modeling conditions. Specifically, the SSURGO model produced a greater daily mean water yield with evapotranspiration and surface runoff being found consistently lower across the watershed. The most likely causes assigned to this phenomenon were higher percolation and resulting ground water return flow values due to significantly larger saturated hydraulic conductivity values associated with the SSURGO 2.x database. 相似文献
9.
John M. Bartholow 《Journal of the American Water Resources Association》2010,46(5):892-906
Bartholow, John M., 2010. Constructing an Interdisciplinary Flow Regime Recommendation. Journal of the American Water Resources Association (JAWRA) 1-15. DOI: 10.1111/j.1752-1688.2010.00461.x Abstract: It is generally agreed that river rehabilitation most often relies on restoring a more natural flow regime, but credibly defining the desired regime can be problematic. I combined four distinct methods to develop and refine month-by-month and event-based flow recommendations to protect and partially restore the ecological integrity of the Cache la Poudre River through Fort Collins, Colorado. A statistical hydrologic approach was used to summarize the river’s natural flow regime and set provisional monthly flow targets at levels that were historically exceeded 75% of the time. These preliminary monthly targets were supplemented using results from three Poudre-specific disciplinary studies. A substrate maintenance flow model was used to better define the high flows needed to flush accumulated sediment from the river’s channel and help sustain the riparian zone in this snowmelt-dominated river. A hydraulic/habitat model and a water temperature model were both used to better define the minimum flows necessary to maintain a thriving cool water fishery. The result is a range of recommended monthly flows and daily flow guidance illustrating the advantage of combining a wide range of available disciplinary information, supplemented by judgment based on ecological principles and a general understanding of river ecosystems, in a highly altered, working river. 相似文献
10.
Anne Chin Daniel L. Harris Todd H. Trice Jeffrey L. Given 《Journal of the American Water Resources Association》2002,38(6):1521-1531
ABSTRACT: In Yegua Creek, a principal tributary of the Brazos River in Texas, surveys of a 19 km channel reach downstream of Somerville Dam show that channel capacity decreased by an average of 65 percent in a 34 year period following dam closure. The decrease corresponds with an approximately 85 percent reduction in annual flood peaks. Channel depth has changed the most, decreasing by an average of 61 percent. Channel width remained stable with an average decrease of only 9 percent, reflecting cohesive bank materials along with the growth of riparian vegetation resulting from increased low flows during dry summer months. Although large changes in stream channel geometry are not uncommon downstream of dams, such pronounced reductions in channel capacity could have long‐term implications for sediment delivery through the system. 相似文献
11.
Thomas J. Myers Sherman Swanson 《Journal of the American Water Resources Association》1991,27(4):667-677
ABSTRACT: The quality of stream habitat varies for a variety of natural and anthropogenic reasons not identified by a condition index. However, many people use condition indices to indicate management needs or even direction. To better sort natural from livestock influences, stream types and levels of ungulate bank damage were regulated to estimates of aquatic habitat condition index and stream width parameters in a large existing stream inventory data base. Pool/riffle ratio, pool structure, stream bottom materials, soil stability, and vegetation type varied significantly with stream type. Pool/riffle ratio, soil and vegetation stability varied significantly with ungulate bank damage level. Soil and vegetation stability were highly cross-correlated. Riparian area width did not vary significantly with either stream type or ungulate bank damage. Variation among stream types indicates that riparian management and monitoring should be stream type and reach specific. 相似文献
12.
Lizhu Wang John Lyons Paul Kanehl 《Journal of the American Water Resources Association》2002,38(3):663-680
ABSTRACT: We evaluated the effectiveness of watershed‐scale implementations of best‐management practices (BMPs) for improving habitat and fish attributes in two coldwater stream systems in Wisconsin. We sampled physical habitat, water temperature, and fish communities in multiple paired treatment and reference streams before and after upland (barnyard runoff controls, manure storage, contour plowing, reduced tillage) and riparian (stream bank fencing, sloping, limited rip‐rapping) BMP installation in the treatment subwatersheds. In Spring Creek, BMPs significantly improved overall stream habitat quality, bank stability, instream cover for fish, abundance of cool‐ and coldwater fishes, and abundance of all fishes. Improvements were most pronounced at sites with riparian BMPs. Water temperatures were consistently cold enough to support coldwater fishes such as trout (Salmonidae) and sculpins (Cottidae) even before BMP installation. We observed the first‐time occurrence of naturally reproduced brown trout (Salmo trutta) in Spring Creek, indicating that the stream condition had been improved to be able to partially sustain a trout population. In Eagle Creek and its tributary Joos Creek, limited riparian BMPs led to localized gains in overall habitat quality, bank stability, and water depth. However, because few upland BMPs were installed in the subwatershed there were no improvements in water temperature or the quality of the fish community. Temperatures remained marginal for coldwater fish throughout the study. Our results demonstrate that riparian BMPs can improve habitat conditions in Wisconsin streams, but cannot restore coldwater fish communities if there is insufficient upland BMP implementation. Our approach of studying multiple paired treatment and reference streams before and after BMP implementation proved effective in detecting the response of stream ecosystems to watershed management activities. 相似文献
13.
ABSTRACT: We analyzed data from riffle and snag habitats for 39 small cold water streams with different levels of watershed urbanization in Wisconsin and Minnesota to evaluate the influences of urban land use and instream habitat on macroinvertebrate communities. Multivariate analysis indicated that stream temperature and amount of urban land use in the watersheds were the most influential factors determining macroinvertebrate assemblages. The amount of watershed urbanization was nonlinearly and negatively correlated with percentages of Ephemeroptera‐Plecoptera‐Trichoptera (EPT) abundance, EPT taxa, filterers, and scrapers and positively correlated with Hilsenhoff biotic index. High quality macroinvertebrate index values were possible if effective imperviousness was less than 7 percent of the watershed area. Beyond this level of imperviousness, index values tended to be consistently poor. Land uses in the riparian area were equal or more influential relative to land use elsewhere in the watershed, although riparian area consisted of only a small portion of the entire watershed area. Our study implies that it is extremely important to restrict watershed impervious land use and protect stream riparian areas for reducing human degradation on stream quality in low level urbanizing watersheds. Stream temperature may be one of the major factors through which human activities degrade cold‐water streams, and management efforts that can maintain a natural thermal regime will help preserve stream quality. 相似文献
14.
Ashu Jain Lindell E. Ormsbee 《Journal of the American Water Resources Association》2004,40(6):1617-1630
ABSTRACT: This paper presents the findings of a study aimed at evaluating the available techniques for estimating missing fecal coliform (FC) data on a temporal basis. The techniques investigated include: linear and nonlinear regression analysis and interpolation functions, and the use of artificial neural networks (ANNs). In all, seven interpolation, two regression, and one ANN model structures were investigated. This paper also investigates the validity of a hypothesis that estimating missing FC data by developing different models using different data corresponding to different dynamics associated with different trends in the FC data may result in a better model performance. The FC data (counts/100 ml) derived from the North Fork of the Kentucky River in Kentucky were employed to calibrate and validate various models. The performance of various models was evaluated using a wide variety of standard statistical measures. The results obtained in this study are able to demonstrate that the ANNs can be preferred over the conventional techniques in estimating missing FC data in a watershed. The regression technique was not found suitable in estimating missing FC data on a temporal basis. Further, it has been found that it is possible to achieve a better model performance by first decomposing the whole data set into different categories corresponding to different dynamics and then developing separate models for separate categories rather than developing a single model for the composite data set. 相似文献
15.
16.
John Van Sickle 《Journal of the American Water Resources Association》2003,39(3):717-726
ABSTRACT: Bivariate correlation analysis has been widely used to explore relationships between stream and watershed attributes that have all been measured on the same set of watersheds or sampling locations. Researchers routinely test H0: ρ= 0 for each correlation in a large table and then go on to discuss only those that are declared “significant.” Such test results are inaccurate because no allowance is made for multiple testing, and also because the tests are not mutually independent. This paper reviews the Bonferroni approach to controlling the overall error rate in multiple testing and shows how the approach becomes impractical for large correlation tables. The Hotelling/Williams test is introduced for comparing two dependent correlations that share a variable, and numerical constraints for two such correlations are illustrated. References are also given for testing other hypothesized patterns among dependent correlations, and links to dependent correlation software are provided. The methods are illustrated for watershed and stream variables sampled in 23 small agricultural watersheds of the Willamette Valley, Oregon. 相似文献
17.
Lizhu Wang John Lyons Paul Kanehl 《Journal of the American Water Resources Association》2006,42(4):1047-1062
ABSTRACT: Thirteen years of annual habitat and fish sampling were used to evaluate the response of a small warm water stream in eastern Wisconsin to agricultural best management practices (BMPs). Stream physical habitat and fish communities were sampled in multiple reference and treatment stations before, during, and after upland and riparian BMP implementation in the Otter Creek subwatershed of the Sheboygan River watershed. Habitat and fish community measures varied substantially among years, and varied more at stations that had low habitat diversity, reinforcing the notion that the detection of stream responses to BMP implementation requires long term sampling. Best management practices increased substrate size; reduced sediment depth, embeddedness, and bank erosion; and improved overall habitat quality at stations where a natural vegetative buffer existed or streambank fencing was installed as a riparian BMP. There were lesser improvements at locations where only upland BMPs were implemented. Despite the habitat changes, we could not detect significant improvements in fish communities. It is speculated that the species needed to improve the fish community, mainly pollution intolerant species, suckers (Castomidae), and darters (Percidae), had been largely eliminated from the Sheboygan River watershed by broadscale agricultural nonpoint source pollution and could not colonize Otter Creek, even though habitat conditions may have been suitable. 相似文献
18.
J. B. Murphey D. E. Wallace L. J. Lane 《Journal of the American Water Resources Association》1977,13(1):25-37
ABSTRACT: Critical design characteristics of ephermal runoff such as hydrograph rise time, duration, mean peak discharge, volume, peak-volume ratio, and maximum flood were related to physical basin parameters such as area, shape, slope, drainage density, basin relief, stream length, and combinations of these in intermontane watersheds representative of the Mexican Highland section of the Basin and Range Province. Parameters used were restricted to those easily obtainable from maps or aerial photographs. A parameter expressing basin shape and size was developed which proved to be as accurate a predictor as others used in existing prediction equations tested and was simpler and faster to derive. Simple prediction equations derived for hydrograph characteristics were all significant except for volume at the 5% level; three were significant at the 1% level. Relationships determined are applicable in semi-arid basins of the Southwest up to 60 square miles (155 km2) in area. 相似文献
19.
Chun‐Chieh Yang Chin S. Tan Shiv O. Prasher 《Journal of the American Water Resources Association》2000,36(3):609-618
ABSTRACT: Artificial neural network (ANN) models were developed to simulate fluctuations in midspan water table depths (WTD) given rainfall, potential evapotranspiration, and irrigation inputs on a Brookston clay loam in Woodslee, Ontario, having a dual‐purpose subsurface drainage/subirrigation setup. Water table depths and meteorologic data collected at this site from 1992 to 1994 and from 1996 to 1997 were used to train the ANNs. The ANNs were then used for real‐time control and time series simulations. The lowest root mean squared errors (RMSE) for the various ANNs were 60.6 mm for real‐time control simulation, and 88.4 mm for time‐series simulation of water table depths. It was possible to simulate WTD for the different modes of water table management in one network by incorporating an indicator for switching from one to the other. The ANN simulations were quite good even though the training data sets had irregular measurement intervals. With fewer input parameters and small network structures, ANNs still provided accurate results and required little time for training and execution. ANNs are therefore easier and faster to develop and run than conventional models and can contribute to the proper management of subsurface drainage and subirrigation systems. 相似文献
20.
Paul J. Kinzel Carl J. Legleiter Jonathan M. Nelson 《Journal of the American Water Resources Association》2013,49(1):183-204
Kinzel, Paul J., Carl J. Legleiter, and Jonathan M. Nelson, 2012. Mapping River Bathymetry with a Small Footprint Green LiDAR: Applications and Challenges. Journal of the American Water Resources Association (JAWRA) 1‐22. DOI: 10.1111/jawr.12008 Abstract: Airborne bathymetric Light Detection And Ranging (LiDAR) systems designed for coastal and marine surveys are increasingly sought after for high‐resolution mapping of fluvial systems. To evaluate the potential utility of bathymetric LiDAR for applications of this kind, we compared detailed surveys collected using wading and sonar techniques with measurements from the United States Geological Survey’s hybrid topographic/bathymetric Experimental Advanced Airborne Research LiDAR (EAARL). These comparisons, based upon data collected from the Trinity and Klamath Rivers, California, and the Colorado River, Colorado, demonstrated that environmental conditions and postprocessing algorithms can influence the accuracy and utility of these surveys and must be given consideration. These factors can lead to mapping errors that can have a direct bearing on derivative analyses such as hydraulic modeling and habitat assessment. We discuss the water and substrate characteristics of the sites, compare the conventional and remotely sensed river‐bed topographies, and investigate the laser waveforms reflected from submerged targets to provide an evaluation as to the suitability and accuracy of the EAARL system and associated processing algorithms for riverine mapping applications. 相似文献