首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Bacterial contamination accounts for more than 60% of the impairments included on the 2008 Texas 303(d) List. Many of these bacterial impairments are along the Texas Gulf Coast because coastal waters often are regulated for oyster harvesting, which have strict water quality standards. Under the Clean Water Act, each one of these impaired waterbodies requires a total maximum daily load (TMDL) study to be performed. A recent, statewide study recommended the development and application of simple modeling approaches to address the majority of Texas's bacteria TMDLs, including “… simple load duration curve, GIS [geographic information systems], and/or mass balance models.” We developed the TMDL Balance model in response to this recommendation. TMDL Balance is a steady state, mass balance, GIS‐based model for simulating pollutant loads and concentrations in coastal systems. The model uses plug‐flow reactor and continuously‐stirred tank reactor equations to route spatially distributed point and nonpoint source loads through a watershed via overland flow, non‐tidal flow, and tidal flow, decaying the loads via first‐order kinetics. In this paper, we explain the development of the watershed loading portion of the TMDL Balance model, demonstrating the methodology through a case study: computing bacterial loads in the Copano Bay watershed of southeast Texas. The application highlights an example of distributing bacterial sources spatially based on land use data.  相似文献   

2.
  总被引:1,自引:0,他引:1  
SWAT+ is a completely restructured version of the Soil and Water Assessment Tool (SWAT) that was developed to face present and future challenges in water resources modeling and management and to meet the needs of the worldwide user community. It is expected to improve code development and maintenance; support data availability, analysis, and visualization; and enhance the model's capabilities in terms of the spatial representation of elements and processes within watersheds. The most important change is the implementation of landscape units and flow and pollutant routing across the landscape. Also, SWAT+ offers more flexibility than SWAT in defining management schedules, routing constituents, and connecting managed flow systems to the natural stream network. To test the basic hydrologic function of SWAT+, it was applied to the Little River Experimental Watershed (Georgia) without enhanced overland routing and compared with previous models. SWAT+ gave similar results and inaccuracies as these models did for streamflow and water balance. Taking full advantage of the new capabilities of SWAT+ regarding watershed discretization and landscape and river interactions is expected to improve simulations in future studies. While many capabilities of SWAT have already been enhanced in SWAT+ and new capabilities have been added, the model will continue to evolve in response to advancements in scientific knowledge and the demands of the growing worldwide user community. Editor's note: This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

3.
Abstract: The constrained ordination method from quantitative ecology was utilized to assess the relationship between landscape patterns and nonpoint‐source (NPS) pollution for the purpose of identifying effective water‐quality improvement practices in Danjiangkou Reservoir (DJKR) basin, China. The soil and water assessment tool (SWAT) was applied to simulate NPS pollution and the Fragstats model was applied to calculate the landscape metrics. The study concluded that organic nutrients formed the main NPS pollutant in the DJKR basin and that most of the NPS pollution occurred along with soil loss. Based on partial redundancy analysis, the conclusion that landscape metrics were significantly correlated to NPS pollution indices was obtained. Specifically, the composition of LULC (land use/land cover) was the most effective factor to estimate NPS pollution. Dry cultivated land was identified as the main source of NPS pollution, and paddy fields were characterized with the most intensive soluble nutrients loss. In addition, the reason that fragmented and complex landscape patterns exacerbate NPS pollution was that natural landscape composed most of this area. Moreover, the fragmented natural landscape indicated intensive agricultural activities that were the crucial trigger for NPS pollution. Combined with the economic condition in China, Conversion of Cropland to Forests Program (CCFP) should be conducted selectively and gradually in the DJKR basin.  相似文献   

4.
    
The National Flood Interoperability Experiment (NFIE) was an undertaking that initiated a transformation in national hydrologic forecasting by providing streamflow forecasts at high spatial resolution over the whole country. This type of large‐scale, high‐resolution hydrologic modeling requires flexible and scalable tools to handle the resulting computational loads. While high‐throughput computing (HTC) and cloud computing provide an ideal resource for large‐scale modeling because they are cost‐effective and highly scalable, nevertheless, using these tools requires specialized training that is not always common for hydrologists and engineers. In an effort to facilitate the use of HTC resources the National Science Foundation (NSF) funded project, CI‐WATER, has developed a set of Python tools that can automate the tasks of provisioning and configuring an HTC environment in the cloud, and creating and submitting jobs to that environment. These tools are packaged into two Python libraries: CondorPy and TethysCluster. Together these libraries provide a comprehensive toolkit for accessing HTC to support hydrologic modeling. Two use cases are described to demonstrate the use of the toolkit, including a web app that was used to support the NFIE national‐scale modeling.  相似文献   

5.
    
Arc StormSurge is a data model that integrates geographic information systems and the hurricane wave and surge model SWAN+ADCIRC, which is the coupling of the Simulating WAves Nearshore (SWAN) wave model and the Advanced Circulation (ADCIRC) hydrodynamic model. The Arc StormSurge data model is a geodatabase, which is a relational database that can contain georeferenced information. It includes feature classes in feature datasets and tables, all related among them through relationship classes, and raster catalogs and grids. In addition to the data model schema, Arc StormSurge includes a number of pre‐ and post‐processing tools that help integrate spatial data and numerical modeling. As an illustration, Arc StormSurge was used to support the modeling of Hurricane Bret, which made landfall in the Corpus Christi area in Texas in 1999. By using Arc StormSurge, it was possible to take advantage of already available geo‐referenced information (e.g., base maps, land cover datasets, and monitoring station locations) for the model setup, and for identifying spatial patterns in the model results by presenting them in map format.  相似文献   

6.
    
National Water Model (NWM) simulates the hydrologic cycle and produces streamflow forecasts for 2.7 million reaches in the National Hydrography Dataset for continental United States (U.S.). NWM uses Muskingum–Cunge channel routing, which is based on the continuity equation. However, the momentum equation also needs to be considered to obtain more accurate estimates of streamflow and stage in rivers, especially for applications such as flood‐inundation mapping. Here, we used a steady‐state backwater version of Simulation Program for River NeTworks (SPRNT) model. We evaluated SPRNT’s and NWM’s abilities to predict inundated area for the record flood of Hurricane Matthew in October 2016. The Neuse River experienced record‐breaking floods and was well‐documented by U.S. Geological Survey. Streamflow simulations from NWM retrospective analysis were used as input for the SPRNT simulation. Retrospective NWM discharge predictions were converted to stage. The stages (from both SPRNT and NWM) were utilized to produce flood‐inundation maps using the Height Above Nearest Drainage method which uses the local relative heights to find out the local draining potentials and provide spatial representation of inundated area. The inundated‐area accuracies for NWM and SPRNT (based on comparison to a remotely sensed dataset) were 65.1% and 67.6%, respectively. These results show using steady‐state SPRNT results in a modest improvement of inundation‐forecast accuracy compared to NWM.  相似文献   

7.
    
A genetic algorithm (GA) was used to reduce cross section data for a hypothetical example consisting of 41 data points and for 10 cross sections on the Kootenai River. The number of data points for the Kootenai River cross sections ranged from about 500 to more than 2,500. The GA was applied to reduce the number of data points to a manageable dataset because most models and other software require fewer than 100 data points for management, manipulation, and analysis. Results indicated that the program successfully reduced the data. Fitness values from the genetic algorithm were lower (better) than those in a previous study that used standard procedures of reducing the cross section data. On average, fitnesses were 29 percent lower, and several were about 50 percent lower. Results also showed that cross sections produced by the genetic algorithm were representative of the original section and that near‐optimal results could be obtained in a single run, even for large problems. Other data also can be reduced in a method similar to that for cross section data.  相似文献   

8.
    
It has been documented in the literature that, in some cases, widely used regression‐based models can produce severely biased estimates of long‐term mean river fluxes of various constituents. These models, estimated using sample values of concentration, discharge, and date, are used to compute estimated fluxes for a multiyear period at a daily time step. This study compares results of the LOADEST seven‐parameter model, LOADEST five‐parameter model, and the Weighted Regressions on Time, Discharge, and Season (WRTDS) model using subsampling of six very large datasets to better understand this bias problem. This analysis considers sample datasets for dissolved nitrate and total phosphorus. The results show that LOADEST‐7 and LOADEST‐5, although they often produce very nearly unbiased results, can produce highly biased results. This study identifies three conditions that can give rise to these severe biases: (1) lack of fit of the log of concentration vs. log discharge relationship, (2) substantial differences in the shape of this relationship across seasons, and (3) severely heteroscedastic residuals. The WRTDS model is more resistant to the bias problem than the LOADEST models but is not immune to them. Understanding the causes of the bias problem is crucial to selecting an appropriate method for flux computations. Diagnostic tools for identifying the potential for bias problems are introduced, and strategies for resolving bias problems are described.  相似文献   

9.
Abstract: The U.S. Environmental Protection Agency (USEPA) Office of Pesticide Programs (OPP) has completed an evaluation of three watershed‐scale simulation models for potential use in Food Quality Protection Act pesticide drinking water exposure assessments. The evaluation may also guide OPP in identifying computer simulation tools that can be used in performing aquatic ecological exposure assessments. Models selected for evaluation were the Soil Water Assessment Tool (SWAT), the Nonpoint Source Model (NPSM), a modified version of the Hydrologic Simulation Program‐Fortran (HSPF), and the Pesticide Root Zone Model‐Riverine Water Quality (PRZM‐RIVWQ) model. Simulated concentrations of the pesticides atrazine, metolachlor, and trifluralin in surface water were compared with field data monitored in the Sugar Creek watershed of Indiana’s White River basin by the National Water Quality Assessment (NAWQA) program. The evaluation not only provided USEPA with experience in using watershed models for estimating pesticide concentration in flowing water but also led to the development of improved statistical techniques for assessing model accuracy. Further, it demonstrated the difficulty of representing spatially and temporally variable soil, weather, and pesticide applications with relatively infrequent, spatially fixed, point estimates. It also demonstrated the value of using monitoring and modeling as mutually supporting tools and pointed to the need to design monitoring programs that support modeling.  相似文献   

10.
    
Extreme hydrometeorological events such as flash floods have caused considerable loss of life and damage to infrastructure over recent years. Flood events in the Mediterranean region between 1990 and 2006 caused over 4,500 fatalities and cost over €29 billion in damage, with Italy one of the worst affected countries. The Distributed Computing Infrastructure for Hydro‐Meteorology (DRIHM) project is a European initiative aiming at providing an open, fully integrated eScience environment for predicting, managing, and mitigating the risks related to such extreme weather phenomena. Incorporating both modeled and observational data sources, it enables seamless access to a set of computing resources with the objective of providing a collection of services for performing experiments with numerical models in meteorology, hydrology, and hydraulics. The purpose of this article is to demonstrate how this flexible modeling architecture has been constructed using a set of standards including the NetCDF and WaterML2 file formats, in‐memory coupling with OpenMI, controlled vocabularies such as CF Standard Names, ISO19139 metadata, and a Model MAP (Metadata, Adaptors, Portability) gateway concept for preparing numerical models for standardized use. Hydraulic results, including the impact to buildings and hazards to people, are given for the use cases of the severe and fatal flash floods, which occurred in Genoa, Italy in November 2011 and October 2014.  相似文献   

11.
ABSTRACT: The study of wind generated waves is important because waves affect sediment resuspension in lakes. Measurements of wind velocity and wave elevation were made at three different stations in Lake Okeechobee. Significant wave heights were computed using a direct count from the recorded data, and verified by the root-mean-square value approach. The correlation between wind stress and significant wave height also was analyzed. The data revealed a strong correlation. In addition to field measurements, a Boussinesq-type wind-wave model was developed to simulate wind-generated, long-propagating waves. This model included the effects of wind stress and bottom viscous dissipation. Wave elevation and velocity field were evaluated numerically. A six-day simulation using 1996 wind data was conducted. Simulated significant wave heights were found to agree reasonably well with measured values. A predictive wind-wave model provides information about wind generated waves, which is used to compute bottom shear stresses required for sediment resuspension studies.  相似文献   

12.
Abstract: Mass (solute) transport in a stream or lake sediment bed has a significant effect on chemical mass balances and microbial activities in the sediment. A “1D vertical dispersion model” is a useful tool to analyze or model solute transfer between river or lake water and a sediment bed. Under a motionless water column, solute transfer into and within the sediment bed is by molecular diffusion. However, surface waves or bed forms create periodic pressure waves along the sediment/water interface, which in turn induce flows in the pores of the sediment bed. The enhancement of solute transport by these interstitial periodic flows in the pores has been incorporated in a 1D depth‐dependent “enhanced dispersion coefficient (DE).” Typically, DE diminishes exponentially with depth in the sediment bed. Relationships have been developed to estimate DE as a function of the characteristics of sediment (particle size, hydraulic conductivity, and porosity) and pressure waves (wave length and height). In this paper, we outline and illustrate the calculation of DE as well as the penetration depth (dp) of the flow effect. Sample applications to illustrate the computational procedure are provided for dissolved oxygen transfer into a stream gravel bed and release of phosphorus from a lake bed. The sensitivity of the results to input parameter values is illustrated, and compared with the errors obtained when interstitial flow is ignored. Maximum values of DE near the sediment surface can be on the order of 1 cm2/s in a stream gravel bed with standing waves, and 0.001 cm2/s in a fine sand lake bed under progressive surface waves, much larger than molecular diffusion coefficients.  相似文献   

13.
    
ABSTRACT: Soils represent a fundamental abiotic parameter in defining the characteristics of an ecosystem. The U.S. Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) produces the most detailed digital spatial soil datasets that are publicly available. The Soil Survey Geographic (SSURGO) database contains basic attributes for the continuous coverage of soils across the United States. In its standard format, the SSURGO database is incompatible for use within the ArcView Soil and Water Assessment Tool (SWAT). A modified version of the State Soil and Geographic (STATSGO) database is the template soils dataset used by ArcView SWAT. This paper presents the methodology and development of a SSURGO database preprocessor extension for the ArcView SWAT model. A case study for the Upper Sabinal River Watershed near Uvalde, Texas, is given. Results indicate that hydro‐logic output parameter differences occur when comparing the STATSGO and SSURGO database information in the ArcView SWAT model under identical modeling conditions. Specifically, the SSURGO model produced a greater daily mean water yield with evapotranspiration and surface runoff being found consistently lower across the watershed. The most likely causes assigned to this phenomenon were higher percolation and resulting ground water return flow values due to significantly larger saturated hydraulic conductivity values associated with the SSURGO 2.x database.  相似文献   

14.
    
Pressures on water resources due to changing climate, increasing demands, and enhanced recognition of environmental flow needs result in the need for hydrology information to support informed water allocation decisions. However, the absence of hydrometric measurements and limited access to hydrology information in many areas impairs water allocation decision‐making. This paper describes a water balance‐based modeling approach and an innovative web‐based decision‐support hydrology tool developed to address this need. Using high‐resolution climate, vegetation, and watershed data, a simple gridded water balance model, adjusted to account for locational variability, was developed and calibrated against gauged watersheds, to model mean annual runoff. Mean monthly runoff was modeled empirically, using multivariate regression. The modeled annual runoff results are within 20% of the observed mean annual discharge for 78% of the calibration watersheds, with a mean absolute error of 16%. Modeled monthly runoff corresponds well to observed monthly runoff, with a median Nash–Sutcliffe statistic of 0.92 and a median Spearman rank correlation statistic of 0.98. Monthly and annual flow estimates produced from the model are incorporated into a map‐ and watershed‐based decision‐support system referred to as the Northeast Water Tool, to provide critical information to decision makers and others on natural water supply, existing allocations, and the needs of the environment.  相似文献   

15.
    
Abstract:  The state of Michigan is interested in removing two low‐head dams in an 8.8 km reach of the Kalamazoo River between Plainwell and Otsego, Michigan, while minimizing impacts locally and to downstream reaches. The study was designed to evaluate the erosion, transport, and deposition of sediments over a 37.3‐year period using the channel evolution model CONCEPTS for three simulation scenarios: Dams In (DI), Dams Out (DO), and Design (D). The total mass of sediment emanating from the channel boundary, for the DI case, shows net deposition of 4,100 T/y for the study reach, with net transport (suspended and bed load) of 10,500 T/y passing the downstream boundary. For the DO case, net erosion is 19,200 T/y with net transport of 30,100 T/y (187% increase) passing the downstream boundary. For the D case, net deposition is 2,570 T/y (37% decrease) with transport of 14,200 T/y (35% increase) passing the downstream boundary. The most significant findings were: (1) removal of the low‐head dams will cause significant erosion of sediments stored behind the dams and increased sediment loads passing the downstream boundary and (2) sediment loads for the proposed channel design are similar to existing conditions and offer reduced fine‐sediment loadings.  相似文献   

16.
文章通过调研、分析美国和中国近年来油气系统中甲烷排放状况,对比分析美国与中国应用的主要甲烷计算方法,表明:美国油气系统中对甲烷排放量的计算方法可采用1996IPCC指南中提供的第一层次(Tier1)和第二层次(Tier2)法,计算结果相对比较准确,甲烷的排放呈逐年增加趋势;中国油气系统中甲烷排放量的计算方法目前只限于1996IPCC指南中提供的Tier1法,中国甲烷排放量相对于美国等发达国家较少,但整体呈增长趋势。  相似文献   

17.
In this work, an attempt has been made to harvest green energy from piezoelectric material using fluid flow in a conduit. Piezoelectric Energy Harvesting using Fluid Flow (PEHF) experimental model has been designed and the outputs obtained are compared with results obtained from simulations using ANSYS (computational fluid dynamics) and also with the mathematical modeling. The PEHF model has been utilized to analyze the effect of flow rate of water with reference to energy extracted. The full wave bridge rectifier and voltage doubler circuits have been used to obtain the direct current (DC) from the PEHF model. It is observed that the output obtained using experiments holds good in agreement with the results retrieved through simulations and mathematical results. The increase in flow rate of fluid leads to initially increase and then decrease in output of PEHF model as the maximum energy generated when flow rates (external force) matches with the frequency of excitation of the systems, i.e., at its resonance. The maximum energy output is generated at its resonance frequencies. It is observed that the full wave bridge rectifier circuit gives greater output as compared to a voltage doubler circuit.  相似文献   

18.
    
Watershed managers often use physical geomorphic and habitat assessments in making decisions about the biological integrity of a stream, and to reduce the cost and time for identifying stream stressors and developing mitigation strategies. Such analysis is difficult since the complex linkages between reach‐scale geomorphic and habitat conditions, and biological integrity are not fully understood. We evaluate the effectiveness of a generalized regression neural network (GRNN) to predict biological integrity using physical (i.e., geomorphic and habitat) stream‐reach assessment data. The method is first tested using geomorphic assessments to predict habitat condition for 1,292 stream reaches from the Vermont Agency of Natural Resources. The GRNN methodology outperforms linear regression (69% vs. 40% classified correctly) and improves slightly (70% correct) with additional data on channel evolution. Analysis of a subset of the reaches where physical assessments are used to predict biological integrity shows no significant linear correlation, however the GRNN predicted 48% of the fish health data and 23% of macroinvertebrate health. Although the GRNN is superior to linear regression, these results show linking physical and biological health remains challenging. Reasons for lack of agreement, including spatial and temporal scale differences, are discussed. We show the GRNN to be a data‐driven tool that can assist watershed managers with large quantities of complex, nonlinear data.  相似文献   

19.
    
Understanding spatial variability in contaminant fate and transport is critical to efficient regional water‐quality restoration. An approach to capitalize on previously calibrated spatially referenced regression (SPARROW) models to improve the understanding of contaminant fate and transport was developed and applied to the case of nitrogen in the 166,000 km2 Chesapeake Bay watershed. A continuous function of four hydrogeologic, soil, and other landscape properties significant (α = 0.10) to nitrogen transport from uplands to streams was evaluated and compared among each of the more than 80,000 individual catchments (mean area, 2.1 km2) in the watershed. Budgets (including inputs, losses or net change in storage in uplands and stream corridors, and delivery to tidal waters) were also estimated for nitrogen applied to these catchments from selected upland sources. Most (81%) of such inputs are removed, retained, or otherwise processed in uplands rather than transported to surface waters. Combining SPARROW results with previous budget estimates suggests 55% of this processing is attributable to denitrification, 23% to crop or timber harvest, and 6% to volatilization. Remaining upland inputs represent a net annual increase in landscape storage in soils or biomass exceeding 10 kg per hectare in some areas. Such insights are important for planning watershed restoration and for improving future watershed models.  相似文献   

20.
Hirsch, Robert M., Douglas L. Moyer, and Stacey A. Archfield, 2010. Weighted Regressions on Time, Discharge, and Season (WRTDS), With an Application to Chesapeake Bay River Inputs. Journal of the American Water Resources Association (JAWRA) 46(5):857-880. DOI: 10.1111/j.1752-1688.2010.00482.x Abstract: A new approach to the analysis of long-term surface water-quality data is proposed and implemented. The goal of this approach is to increase the amount of information that is extracted from the types of rich water-quality datasets that now exist. The method is formulated to allow for maximum flexibility in representations of the long-term trend, seasonal components, and discharge-related components of the behavior of the water-quality variable of interest. It is designed to provide internally consistent estimates of the actual history of concentrations and fluxes as well as histories that eliminate the influence of year-to-year variations in streamflow. The method employs the use of weighted regressions of concentrations on time, discharge, and season. Finally, the method is designed to be useful as a diagnostic tool regarding the kinds of changes that are taking place in the watershed related to point sources, groundwater sources, and surface-water nonpoint sources. The method is applied to datasets for the nine large tributaries of Chesapeake Bay from 1978 to 2008. The results show a wide range of patterns of change in total phosphorus and in dissolved nitrate plus nitrite. These results should prove useful in further examination of the causes of changes, or lack of changes, and may help inform decisions about future actions to reduce nutrient enrichment in the Chesapeake Bay and its watershed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号