首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract:  Water‐resource managers need to forecast streamflow in the Lower Colorado River Basin to plan for water‐resource projects and to operate reservoirs for water supply. Statistical forecasts of streamflow based on historical records of streamflow can be useful, but statistical assumptions, such as stationarity of flows, need to be evaluated. This study evaluated the relation between climatic fluctuations and stationarity and developed regression equations to forecast streamflow by using climatic fluctuations as explanatory variables. Climatic fluctuations were represented by the Atlantic Multidecadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), and Southern Oscillation Index (SOI). Historical streamflow within the 25‐ to 30‐year positive or negative phases of AMO or PDO was generally stationary. Monotonic trends in annual mean flows were tested at the 21 sites evaluated in this study; 76% of the sites had no significant trends within phases of AMO and 86% of the sites had no significant trends within phases of PDO. As climatic phases shifted in signs, however, many sites had nonstationary flows; 67% of the sites had significant changes in annual mean flow as AMO shifted in signs. The regression equations developed in this study to forecast streamflow incorporate these shifts in climate and streamflow, thus that source of nonstationarity is accounted for. The R2 value of regression equations that forecast individual years of annual flow for the central part of the study area ranged from 0.28 to 0.49 and averaged 0.39. AMO was the most significant variable, and a combination of indices from both the Atlantic and Pacific Oceans explained much more variation in flows than only the Pacific Ocean indices. The average R2 value for equations with PDO and SOI was 0.15.  相似文献   

2.
Kallis, Jahn, Leo Bodensteiner, and Anthony Gabriel, 2010. Hydrological Controls and Freshening in Meromictic Soap Lake, Washington, 1939-2002. Journal of the American Water Resources Association (JAWRA) 46(4): 744-756. DOI: 10.1111/j.1752-1688.2010.00446.x Abstract: The chemically stratified layer of naturally formed meromictic lakes exhibits unusual and often extreme physical and chemical conditions that have resulted in the evolution of uniquely adapted species. The Columbia Basin Irrigation Project appears to have had a marked effect on the hydrology of Soap Lake, a meromictic lake in the Grand Coulee of central Washington. The relation of hydrology to salinity was assessed by analyzing water budgets before and after the introduction of the irrigation project. Before irrigation, water gains were balanced by losses; after irrigation began groundwater gains approximately doubled. To manage lake levels and reduce groundwater influx, wells were installed to intercept groundwater. Although the hydrological cycle has been restored to pre-irrigation conditions, the meromictic character of the lake continues to change. Interception wells remove 10 to 16 Mm3 of groundwater annually, but influx continues based on change in the monimolimnion. From 1958 to 2003 the chemocline descended 1.1 m and the volume of the monimolimnion from 698,000 m3 to 114,000 m3. Annual loss of volume is occurring at a rate of 1.9% since 1958. Although groundwater interception wells are maintaining the volume of the entire lake, the recession of the chemocline indicates that conditions that have maintained meromixis at Soap Lake are currently not in equilibrium.  相似文献   

3.
Wildman, Richard A., Jr. and Noelani A. Forde, 2012. Management of Water Shortage in the Colorado River Basin: Evaluating Current Policy and the Viability of Interstate Water Trading. Journal of the American Water Resources Association (JAWRA) 48(3): 411-422. DOI: 10.1111/j.1752-1688.2012.00665.x Abstract: The water of the Colorado River of the southwestern United States (U.S.) is presently used beyond its reliable supply, and the flow of this river is forecast to decrease significantly due to climate change. A recent interim report of the Colorado River Basin Water Supply and Demand Study is the first acknowledgment of these facts by U.S. federal water managers. In light of this new stance, we evaluate the current policy of adaptation to water shortages in the Colorado River Basin. We find that initial shortages will be borne only by the cities of Arizona and Nevada and farms in Arizona whereas the other Basin states have no incentive to reduce consumptive use. Furthermore, the development of a long-term plan is deferred until greater water scarcity exists. As a potential response to long-term water scarcity, we evaluate the viability of an interstate water market in the Colorado River Basin. We inform our analysis with newly available data from the Murray-Darling Basin of Australia, which has used interstate water trading to create vital flexibility during extreme aridity during recent years. We find that, despite substantial obstacles, an interstate water market is a compelling reform that could be used not only to adapt to increased water scarcity but also to preserve core elements of Colorado River Basin law.  相似文献   

4.
南四湖的供用水管理尚存在诸多不完善之处,诸如供用水管理权限不清、用水纠纷、法治建设落后于实际需要、执法难等问题一直困扰着当地经济和社会的发展。采取完善法治、优化现有管理体制、改善行政执法条件等措施,将有利于完善南四湖供用水管理机制,有利于南四湖水资源的管理与利用,促进当地经济和社会的可持续发展。  相似文献   

5.
艾比湖湖水很浅,湖底平坦,沉积着巨厚的细沙和淤泥。依据自身特征及其他因素,针对艾比湖水量的收支情况,建立艾比湖的储水量和需水量的数学模型。其中艾比湖湖面面积数据是重要参数之一,利用遥感技术,采用资源卫星影像,结合Modis数据,解译提取获得。通过艾比湖储水量和需水量数据可以进一步预测艾比湖湖面面积的变化趋势,对本地区的生态及农业生产具有指征意义,为决策层制定防治对策提供科学依据。  相似文献   

6.
Devils Lake is a terminal lake located in northeast North Dakota. Because of its glacial origin and accumulated salts from evaporation, the lake has a high concentration of sulfate compared to the surrounding water bodies. From 1993 to 2011, Devils Lake water levels rose by ~10 m, which flooded surrounding communities and increased the chance of an overspill to the Sheyenne River. To control the flooding, the State of North Dakota constructed two outlets to pump the lake water to the river. However, the pumped water has raised concerns about of water quality degradation and potential flooding risk of the Sheyenne River. To investigate these perceived impacts, a Soil and Water Assessment Tool (SWAT) model was developed for the Sheyenne River and it was linked to a coupled SWAT and CE‐QUAL‐W2 model that was developed for Devils Lake in a previous study. While the current outlet schedule has attempted to maintain the total river discharge within the confines of a two‐year flood (36 m3/s), our simulation from 2012 to 2018 revealed that the diversion increased the Sheyenne River sulfate concentration from an average of 125 to >750 mg/L. Furthermore, a conceptual optimization model was developed with a goal of better preserving the water quality of the Sheyenne River while effectively mitigating the flooding of Devils Lake. The optimal solution provides a “win–win” outlet management that maintains the efficiency of the outlets while reducing the Sheyenne River sulfate concentration to ≤600 mg/L.  相似文献   

7.
Vegetation in subalpine meadows in the Sierra Nevada Mountains is particularly vulnerable to lowering of groundwater levels because wet meadow vegetation is reliant upon shallow groundwater during the dry summer growing season. These ecosystems are especially vulnerable to channel incision as meadow aquifers are hydrologically connected to tributaries, and many have not yet recovered from previous anthropogenic influences. While instream restoration projects have become a common approach, lack of postrestoration monitoring and communication often result in a trial‐and‐error approach. In this study we demonstrate that preimplementation modeling of possible instream restoration solutions, chosen to raise stream stage and subsequently groundwater levels, is a useful tool for evaluating and comparing potential channel modifications. Modeling allows us to identify strategic locations and specific methods. Results show additional sediment depth and roughness on tributaries along with introduced woody debris (simulated by high roughness) on the Tuolumne River are the most effective means of raising stream stage. Results demonstrate that restoration efforts are most efficient in tributary streams. Managers and planners can more efficiently direct resources while minimizing the potential for negative impacts or failed restoration projects by modeling the possible effects of multiple restoration scenarios before implementation.  相似文献   

8.
Mayer, Timothy D. and Seth W. Naman, 2011. Streamflow Response to Climate as Influenced by Geology and Elevation. Journal of the American Water Resources Association (JAWRA) 47(4):724‐738. DOI: 10.1111/j.1752‐1688.2011.00537.x Abstract: This study examines the regional streamflow response in 25 predominately unregulated basins to warmer winter temperatures and snowpack reductions over the last half century in the Klamath Basin of California and Oregon. Geologic controls of streamflow in the region result in two general stream types: surface‐dominated and groundwater‐dominated basins. Surface‐dominated basins were further differentiated into rain basins and snowmelt basins on the basis of elevation and timing of winter runoff. Streamflow characteristics and response to climate vary with stream type, as discussed in the study. Warmer winter temperatures and snowpack reductions have caused significantly earlier runoff peaks in both snowmelt and groundwater basins in the region. In the groundwater basins, the streamflow response to changes in snowpack is smoothed and delayed and the effects are extended longer in the summer. Our results indicate that absolute decreases in July‐September base flows are significantly greater, by an order of magnitude, in groundwater basins compared to surface‐dominated basins. The declines are important because groundwater basins sustain Upper Klamath Lake inflows and mainstem river flows during the typically dry summers of the area. Upper Klamath Lake April‐September net inflows have decreased an estimated 16% or 84 thousand acre‐feet (103.6 Mm3) since 1961, with the summer months showing proportionately more decline. These changes will exacerbate water supply problems for agriculture and natural resources in the region.  相似文献   

9.
The Pacific Northwest is expected to witness changes in temperature and precipitation due to climate change. In this study, we enhance the Snake River Planning Model (SRPM) by modeling the feedback loop between incidental recharge and surface water supply resulting from surface water and groundwater extraction for irrigation and provide a case study involving climate change impacts and management scenarios. The new System Dynamics‐Snake River Planning Model (SD‐SRPM) is calibrated to flow at Box Canyon Springs located along a major outlet of the East Snake Plain Aquifer. A calibration of the model to flow at Box Canyon Springs, based on historic diversions (1950‐1995) resulted in an r2 value of 0.74 and a validation (1996‐2005) r2 value of 0.60. After adding irrigation entities to the model an r2 value of 0.91, 0.88, and 0.87 were maintained for modeled vs. observed (1991‐2005) end‐of‐month reservoir content in Jackson Lake, Palisades, and American Falls, the three largest irrigation reservoirs in the system. The scenarios that compared the impacts of climate change were based on ensemble mean precipitation change scenarios and estimated changes to crop evapotranspiration (ET). Increased ET, despite increased precipitation, generally increased surface water shortages and discharge of springs. This study highlights the need to develop and implement models that integrate the human‐natural system to understand the impacts of climate change.  相似文献   

10.
Groundwater pumping depletes streamflow, which can have significant ecological impacts depending on the magnitude of depletion relative to environmental flow needs. Streamflow depletion estimates from groundwater pumping have been quantified using both analytical and numerical methods, but are not routinely compared to environmental flow needs or used in practical water management tools. Decision support tools that incorporate groundwater dynamics are becoming increasingly necessary for water managers as groundwater regulations become more important in environmental policy, particularly concerning the preservation of environmental flow needs. We develop and apply methods for a web‐based decision support tool for conjunctive groundwater and surface water management, demonstrated using a case study watershed in British Columbia, Canada. Open‐source data are analyzed with a combination of spatial algorithms and previously developed analytical models, such that the tool can be applied to other regions. Streamflow depletion estimates are calculated in four regions in the largely undeveloped Bulkley Valley, British Columbia. Our transparent methodology has geographic and data input flexibility which is a significant improvement on currently existing water management tool methods.  相似文献   

11.
The Denver Basin Aquifer System (DBAS) is a critical groundwater resource along the Colorado Front Range. Groundwater depletion has been documented over the past few decades due to the increased water use among users, presenting long‐term sustainability challenges. A spatiotemporal geostatistical analysis is used to estimate potentiometric surfaces and evaluate groundwater storage changes between 1990 and 2016 in each of the four DBAS aquifers. Several key depletion patterns and spatial water‐level changes emerge in this work. Hydraulic head changes are the largest in the west‐central side of the DBAS and have decreased in some areas by up to 180 m since 1990, while areas to the northwest show increases in hydraulic head by over 30.5 m. The Denver and Arapahoe aquifers show the largest groundwater storage losses, with the highest rates occurring in the 2000s. The results highlight uncertainty in the volumetric predictions under various storage coefficient calculations and emphasize the importance of representative aquifer characterization. The observed groundwater storage depletions are due to a combination of factors, which include population growth increasing the demand for water, variable precipitation, and drought influencing recharge, and increased groundwater pumping. The methods applied in this study are transferable to other groundwater systems and provide a framework that can help assess groundwater depletion and inform management decisions at other locations.  相似文献   

12.
Brockman, Ruth R., Carmen T. Agouridis, Stephen R. Workman, Lindell E. Ormsbee, and Alex W. Fogle, 2012. Bankfull Regional Curves for the Inner and Outer Bluegrass Regions of Kentucky. Journal of the American Water Resources Association (JAWRA) 48(2): 391‐406. DOI: 10.1111/j.1752‐1688.2011.00621.x Abstract: Bankfull regional curves that relate channel dimensions and discharge to watershed drainage area are useful tools for assisting in the correct identification of bankfull elevation and in stream restoration and reconstruction. This study assessed 28 stable streams located in two physiographic regions of Kentucky: the Inner Bluegrass and the Outer Bluegrass. Bankfull channel dimensions, discharge, and return period as well as average channel slope, median bed material size, sinuosity, Rosgen stream classification, and percent impervious area were determined. Significant relationships were found between drainage area and the bankfull characteristics of cross‐sectional area, width, mean depth, and discharge for both the Inner Bluegrass and Outer Bluegrass regions (α = 0.05). It was also found that the percent impervious area in a watershed had minimal effect on bankfull dimensions, which is attributed to the well‐vegetated nature of the streambanks, cohesive streambank materials, and bedrock control. No significant differences between any of the Inner Bluegrass and Outer Bluegrass regional curves were found (α = 0.05). Comparisons were made between the Inner Bluegrass and Outer Bluegrass curves and others developed in karst‐influenced areas in the Eastern United States. Although few significant differences were found between the regional curves for bankfull discharge and width, a number of the curves differed with regards to bankfull cross‐sectional area and mean depth.  相似文献   

13.
Salinity, selenium, and uranium pose water‐quality challenges for the Arkansas River in southeastern Colorado and other rivers that support irrigation in semiarid regions. This study used 31 years of continuous discharge and specific conductance (SC) monitoring data to assess interannual patterns in water quality using mass balance on a 120‐km reach of river. Discrete sampling data were used to link the SC records to salinity, selenium, and uranium. Several important patterns emerged. Consumptive use reduced discharge by a median value of 33% and drove corresponding increases in salinity and uranium concentrations. Increased water availability for irrigation from rainfall and upstream snowpack in 1995–1999 flushed additional salinity and uranium into the river in 1996–2000; average annual total dissolved solids (salinity) concentrations increased 25%, and loads increased 131%. Smaller flushing events have occurred, sometimes lagging an increase in water availability by about one year. The pattern indicates flushing of salts temporarily stored, evaporatively concentrated, or of geologic origin. Mobilization of selenium from the reach was minor compared to salinity and uranium, and net selenium removal from the river was suggested in some years. Several processes related to irrigation could be removing selenium. The results provide context for efforts to improve water quality in the Arkansas River and rivers in other semiarid regions.  相似文献   

14.
The water resources of the atolls of the Republic of Maldives are under continual threat from climatic and anthropogenic stresses, including land surface pollution, increasing population, drought, and sea‐level rise (SLR). These threats are particularly acute for groundwater resources due to the small land surface area and low elevation of each island. In this study, the groundwater resources, in terms of freshwater lens thickness, total volume of fresh groundwater, and safe yield are estimated for the 52 most populous islands of the Maldives for current conditions and for the year 2030, with the latter accounting for projected SLR and associated shoreline recession. An algebraic model, designed in previous studies to estimate the lens thickness of atoll islands, is expanded in this study to also estimate volume of groundwater. Results indicate that average current lens thickness, groundwater volume, and per capita safe yield are approximately 4.6 m, 1,300 million liters, and 300 l/day, and that these values will decrease by approximately 10, 11, and 34%, respectively, by the year 2030. Based on results, it is demonstrated that groundwater, in terms of quantity, is a viable source of water for the islands of the Maldives both now and in coming decades, particularly for islands with large surface area and low population. Study results can provide water resource managers and government officials with valuable data for consideration in water security measures.  相似文献   

15.
陈翔  陈江海 《四川环境》2022,41(1):163-168
太湖西北部尤其是梅梁湖水质较差,新沟河延伸拓浚工程实施后,可通过外排梅梁湖水改变太湖的水动力水质环境.利用Mike21建立太湖二维水动力水质数学模型,研究该工程实施后对太湖水动力水质的影响.研究得到:新沟河工程实施后,可有效改善梅梁湖的水动力条件,梅梁湖换水周期缩短13.3%;同时,梅梁湖CODMn、 TP、TN等主要...  相似文献   

16.
The source of the Richelieu River is Lake Champlain, located between the states of New York, Vermont, and Québec. In 2011, the lake and the Richelieu River reached historical flood levels, raising questions about the influence of climate change on the watershed. The objectives of this work are to model the hydrology of the watershed, construct a reservoir model for the lake and to analyze flooding trends using climate simulations. The basin was modeled using the HSAMI lumped conceptual model from Hydro‐Québec with a semi‐distributed approach in order to estimate the inflows into Lake Champlain. The discharge at the Richelieu River was computed by using a mass balance equation between the inputs and outputs of Lake Champlain. Future trends were estimated over the 2041‐2070 and 2071‐2100 periods using a large number of outputs from general circulation models and regional climate models downscaled with constant scaling and daily translation methods. While there is a certain amount of uncertainty as to future trends, there is a decreasing tendency in the magnitude of the mean spring flood. A flood frequency analysis showed most climate projections indicate the severity of most extreme spring floods may be reduced over the two future periods although results are subject to a much larger uncertainty than for the mean spring flood. On the other hand, results indicate summer‐fall extreme events such as caused by hurricane Irene in August 2011 may become more frequent in the future.  相似文献   

17.
Abstract: Water right transfers are one of the basic means of implementing changes in water use in the highly appropriated water resource systems of the western United States. Many of these systems are governed by the Prior Appropriation Doctrine, which was not originally intended for application to ground‐water pumping and the conjunctive management of ground water and surface water, and thus creates an administrative challenge. That challenge results from the fact that ground‐water pumping can affect all interconnected surface‐water bodies and the effects may be immeasurably small relative to surface water discharge and greatly attenuated in time. Although we may have the ability to calculate the effects of ground‐water pumping and transfers of pumping location on surface‐water bodies, mitigating for all the impacts of each individual transfer is sufficiently inefficient that it impedes the transfer process, frustrates water users, and consequently inhibits economic development. A more holistic approach to ground‐water right transfers, such as a ground‐water accounting or banking scheme, may adequately control transfer third‐party effects while reducing mitigation requirements on individual transfers. Acceptance of an accounting scheme can accelerate the transfer process, and possibly reduce the administrative burden.  相似文献   

18.
We examined nitrogen transport and wetland primary production along hydrologic flow paths that link nitrogen‐fixing alder (Alnus spp.) stands to downslope wetlands and streams in the Kenai Lowlands, Alaska. We expected that nitrate concentrations in surface water and groundwater would be higher on flow paths below alder. We further expected that nitrate concentrations would be higher in surface water and groundwater at the base of short flow paths with alder and that streamside wetlands at the base of alder‐near flow paths would be less nitrogen limited than wetlands at the base of long flow paths with alder. Our results showed that groundwater nitrate‐N concentrations were significantly higher at alder‐near sites than at no‐alder sites, but did not differ significantly between alder‐far sites and no‐alder sites or between alder‐far sites and alder‐near sites. A survey of 15N stable isotope signatures in soils and foliage in alder‐near and no‐alder flow paths indicated the alder‐derived nitrogen evident in soils below alder is quickly integrated downslope. Additionally, there was a significant difference in the relative increase in plant biomass after nitrogen fertilization, with the greatest increase occurring in the no‐alder sites. This study demonstrates that streamside wetlands and streams are connected to the surrounding landscapes through hydrologic flow paths, and flow paths with alder stands are potential “hot spots” for nitrogen subsidies at the hillslope scale.  相似文献   

19.
Carbonate‐sandstone geology in southeastern Minnesota creates a heterogeneous landscape of springs, seeps, and sinkholes that supply groundwater into streams. Air temperatures are effective predictors of water temperature in surface‐water dominated streams. However, no published work investigates the relationship between air and water temperatures in groundwater‐fed streams (GWFS) across watersheds. We used simple linear regressions to examine weekly air‐water temperature relationships for 40 GWFS in southeastern Minnesota. A 40‐stream, composite linear regression model has a slope of 0.38, an intercept of 6.63, and R2 of 0.83. The regression models for GWFS have lower slopes and higher intercepts in comparison to surface‐water dominated streams. Regression models for streams with high R2 values offer promise for use as predictive tools for future climate conditions. Climate change is expected to alter the thermal regime of groundwater‐fed systems, but will do so at a slower rate than surface‐water dominated systems. A regression model of intercept vs. slope can be used to identify streams for which water temperatures are more meteorologically than groundwater controlled, and thus more vulnerable to climate change. Such relationships can be used to guide restoration vs. management strategies to protect trout streams.  相似文献   

20.
Johnson, R.L., B.R. Clark, M.K. Landon, L.J. Kauffman, and S.M. Eberts, 2011. Modeling the Potential Impact of Seasonal and Inactive Multi‐Aquifer Wells on Contaminant Movement to Public Water‐Supply Wells. Journal of the American Water Resources Association (JAWRA) 47(3):588‐596. DOI: 10.1111/j.1752‐1688.2011.00526.x Abstract: Wells screened across multiple aquifers can provide pathways for the movement of surprisingly large volumes of groundwater to confined aquifers used for public water supply (PWS). Using a simple numerical model, we examine the impact of several pumping scenarios on leakage from an unconfined aquifer to a confined aquifer and conclude that a single inactive multi‐aquifer well can contribute nearly 10% of total PWS well flow over a wide range of pumping rates. This leakage can occur even when the multi‐aquifer well is more than a kilometer from the PWS well. The contribution from multi‐aquifer wells may be greater under conditions where seasonal pumping (e.g., irrigation) creates large, widespread downward hydraulic gradients between aquifers. Under those conditions, water can continue to leak down a multi‐aquifer well from an unconfined aquifer to a confined aquifer even when those multi‐aquifer wells are actively pumped. An important implication is that, if an unconfined aquifer is contaminated, multi‐aquifer wells can increase the vulnerability of a confined‐aquifer PWS well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号