首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Airborne thermal remote sensing from four flights on a single day from a single‐engine airplane was used to collect thermal infrared data of a 10.47‐km reach of the upper East Branch Pecatonica River in southwest Wisconsin. The study uses a one‐dimensional stream temperature model calibrated with the longitudinal profiles of stream temperature created from the four thermal imaging flights and validated with three days of continuous stream temperature data from instream data loggers on the days surrounding the thermal remote‐sensing campaign. Model simulations were used to quantify the sensitivity of stream thermal habitat to increases in air and groundwater temperature and changes in base flow. The simulations indicate that stream temperatures may reach critical maximum thresholds for brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta) mortality, particularly if both air temperature increases and base flow declines. The approach demonstrates that thermal infrared data can greatly assist stream temperature model validation due to its high spatial resolution, and that this spatially continuous stream temperature data can be used to pinpoint spatial heterogeneity in groundwater inflow to streams. With this spatially distributed data on thermal heterogeneity and base‐flow accretion, stream temperature models considering various climate change scenarios are able to identify thermal refugia that will be critical for fisheries management under a changing climate.  相似文献   

2.
    
The Ganges Delta in Bangladesh is an example of water‐related catastrophes in a major rural river basin where limitations in quantity, quality, and timing of available water are producing disastrous conditions. Water availability limitations are modifying the hydrologic characteristics especially when water allocation is controlled from the upstream Farakka Barrage. This study presents the changes and consequences in the hydrologic regime due to climate‐ and human‐induced stresses. Flow duration curves (FDCs), rainfall elasticity, and temperature sensitivity were used to assess the pre‐ and post‐barrage water flow patterns. Hydrologic and climate indices were computed to provide insight on hydro‐climatic variability and trend. Significant increases in temperature, evapotranspiration, hot days, heating, and cooling degree days indicate the region is heading toward a warmer climate. Moreover, increase in high‐intensity rainfall of short duration is making the region prone to extreme floods. FDCs depict a large reduction in river flows between pre‐ and post‐barrage periods, resulting in lower water storage capacity. The reduction in freshwater flow increased the extent and intensity of salinity intrusion. This freshwater scarcity is reducing livelihood options considerably and indirectly forcing population migration from the delta region. Understanding the causes and directions of hydrologic changes is essential to formulate improve water resources management in the region.  相似文献   

3.
Mayer, Timothy D. and Seth W. Naman, 2011. Streamflow Response to Climate as Influenced by Geology and Elevation. Journal of the American Water Resources Association (JAWRA) 47(4):724‐738. DOI: 10.1111/j.1752‐1688.2011.00537.x Abstract: This study examines the regional streamflow response in 25 predominately unregulated basins to warmer winter temperatures and snowpack reductions over the last half century in the Klamath Basin of California and Oregon. Geologic controls of streamflow in the region result in two general stream types: surface‐dominated and groundwater‐dominated basins. Surface‐dominated basins were further differentiated into rain basins and snowmelt basins on the basis of elevation and timing of winter runoff. Streamflow characteristics and response to climate vary with stream type, as discussed in the study. Warmer winter temperatures and snowpack reductions have caused significantly earlier runoff peaks in both snowmelt and groundwater basins in the region. In the groundwater basins, the streamflow response to changes in snowpack is smoothed and delayed and the effects are extended longer in the summer. Our results indicate that absolute decreases in July‐September base flows are significantly greater, by an order of magnitude, in groundwater basins compared to surface‐dominated basins. The declines are important because groundwater basins sustain Upper Klamath Lake inflows and mainstem river flows during the typically dry summers of the area. Upper Klamath Lake April‐September net inflows have decreased an estimated 16% or 84 thousand acre‐feet (103.6 Mm3) since 1961, with the summer months showing proportionately more decline. These changes will exacerbate water supply problems for agriculture and natural resources in the region.  相似文献   

4.
Abstract: Since the 1940s, snow water equivalent (SWE) has decreased throughout the Pacific Northwest, while water use has increased. Climate has been proposed as the primary cause of base‐flow decline in the Scott River, an important coho salmon rearing tributary in the Klamath Basin. We took a comparative‐basin approach to estimating the relative contributions of climatic and non‐climatic factors to this decline. We used permutation tests to compare discharge in 5 streams and 16 snow courses between “historic” (1942‐1976) and “modern” (1977‐2005) time periods, defined by cool and warm phases, respectively, of the Pacific Decadal Oscillation. April 1 SWE decreased significantly at most snow courses lower than 1,800 m in elevation and increased slightly at higher elevations. Correspondingly, base flow decreased significantly in the two streams with the lowest latitude‐adjusted elevation and increased slightly in two higher‐elevation streams. Base‐flow decline in the Scott River, the only study stream heavily utilized for irrigation, was larger than that in all other streams and larger than predicted by elevation. Based on comparison with a neighboring stream draining wilderness, we estimate that 39% of the observed 10 Mm3 decline in July 1‐October 22 discharge in the Scott River is explained by regional‐scale climatic factors. The remainder of the decline is attributable to local factors, which include an increase in irrigation withdrawal from 48 to 103 Mm3/year since the 1950s.  相似文献   

5.
    
Ephemeral and intermittent streams are abundant in the arid and semiarid landscapes of the Western and Southwestern United States (U.S.). Connectivity of ephemeral and intermittent streams to the relatively few perennial reaches through runoff is a major driver of the ecohydrology of the region. These streams supply water, sediment, nutrients, and biota to downstream reaches and rivers. In addition, they provide runoff to recharge alluvial and regional groundwater aquifers that support baseflow in perennial mainstem stream reaches over extended periods when little or no precipitation occurs. Episodic runoff, as well as groundwater inflow to surface water in streams support limited naturally occurring riparian communities. This paper provides an overview and comprehensive examination of factors affecting the hydrologic, chemical, and ecological connectivity of ephemeral and intermittent streams on perennial or intermittent rivers in the arid and semiarid Southwestern U.S. Connectivity as influenced and moderated through the physical landscape, climate, and human impacts to downstream waters or rivers is presented first at the broader Southwestern scale, and secondly drawing on a specific and more detailed example of the San Pedro Basin due to its history of extensive observations and research in the basin. A wide array of evidence clearly illustrates hydrologic, chemical, and ecological connectivity of ephemeral and intermittent streams throughout stream networks.  相似文献   

6.
    
Using nonparametric Mann‐Kendall tests, we assessed long‐term (1953‐2012) trends in streamflow and precipitation in Northern California and Southern Oregon at 26 sites regulated by dams and 41 “unregulated” sites. Few (9%) sites had significant decreasing trends in annual precipitation, but September precipitation declined at 70% of sites. Site characteristics such as runoff type (groundwater, snow, or rain) and dam regulation influenced streamflow trends. Decreasing streamflow trends outnumbered increasing trends for most months except at regulated sites for May‐September. Summer (July‐September) streamflow declined at many sites, including 73% of unregulated sites in September. Applying a LOESS regression model of antecedent precipitation vs. average monthly streamflow, we evaluated the underlying streamflow trend caused by factors other than precipitation. Decreasing trends in precipitation‐adjusted streamflow substantially outnumbered increasing trends for most months. As with streamflow, groundwater‐dominated sites had a greater percent of declining trends in precipitation‐adjusted streamflow than other runoff types. The most pristine surface‐runoff‐dominated watersheds within the study area showed no decreases in precipitation‐adjusted streamflow during the summer months. These results suggest that streamflow decreases at other sites were likely due to more increased human withdrawals and vegetation changes than to climate factors other than precipitation quantity.  相似文献   

7.
    
Water‐level trends spanning 20, 30, 40, and 50 years were tested using month‐end groundwater levels in 26, 12, 10, and 3 wells in northern New England (Maine, New Hampshire, and Vermont), respectively. Groundwater levels for 77 wells were used in interannual correlations with meteorological and hydrologic variables related to groundwater. Trends in the contemporary groundwater record (20 and 30 years) indicate increases (rises) or no substantial change in groundwater levels in all months for most wells throughout northern New England. The highest percentage of increasing 20‐year trends was in February through March, May through August, and October through November. Forty‐year trend results were mixed, whereas 50‐year trends indicated increasing groundwater levels. Whereas most monthly groundwater levels correlate strongly with the previous month's level, monthly levels also correlate strongly with monthly streamflows in the same month; correlations of levels with monthly precipitation are less frequent and weaker than those with streamflow. Groundwater levels in May through August correlate strongly with annual (water year) streamflow. Correlations of groundwater levels with streamflow data and the relative richness of 50‐ to 100‐year historical streamflow data suggest useful proxies for quantifying historical groundwater levels in light of the relatively short and fragmented groundwater data records presently available.  相似文献   

8.
    
The water resources of the atolls of the Republic of Maldives are under continual threat from climatic and anthropogenic stresses, including land surface pollution, increasing population, drought, and sea‐level rise (SLR). These threats are particularly acute for groundwater resources due to the small land surface area and low elevation of each island. In this study, the groundwater resources, in terms of freshwater lens thickness, total volume of fresh groundwater, and safe yield are estimated for the 52 most populous islands of the Maldives for current conditions and for the year 2030, with the latter accounting for projected SLR and associated shoreline recession. An algebraic model, designed in previous studies to estimate the lens thickness of atoll islands, is expanded in this study to also estimate volume of groundwater. Results indicate that average current lens thickness, groundwater volume, and per capita safe yield are approximately 4.6 m, 1,300 million liters, and 300 l/day, and that these values will decrease by approximately 10, 11, and 34%, respectively, by the year 2030. Based on results, it is demonstrated that groundwater, in terms of quantity, is a viable source of water for the islands of the Maldives both now and in coming decades, particularly for islands with large surface area and low population. Study results can provide water resource managers and government officials with valuable data for consideration in water security measures.  相似文献   

9.
    
The hydrologic response to statistically downscaled general circulation model simulations of daily surface climate and land cover through 2099 was assessed for the Apalachicola‐Chattahoochee‐Flint River Basin located in the southeastern United States. Projections of climate, urbanization, vegetation, and surface‐depression storage capacity were used as inputs to the Precipitation‐Runoff Modeling System to simulate projected impacts on hydrologic response. Surface runoff substantially increased when land cover change was applied. However, once the surface depression storage was added to mitigate the land cover change and increases of surface runoff (due to urbanization), the groundwater flow component then increased. For hydrologic studies that include projections of land cover change (urbanization in particular), any analysis of runoff beyond the change in total runoff should include effects of stormwater management practices as these features affect flow timing and magnitude and may be useful in mitigating land cover change impacts on streamflow. Potential changes in water availability and how biota may respond to changes in flow regime in response to climate and land cover change may prove challenging for managers attempting to balance the needs of future development and the environment. However, these models are still useful for assessing the relative impacts of climate and land cover change and for evaluating tradeoffs when managing to mitigate different stressors.  相似文献   

10.
Galloway, Gerald E., 2011. If Stationarity Is Dead, What Do We Do Now? Journal of the American Water Resources Association (JAWRA) 47(3):563‐570. DOI: 10.1111/j.1752‐1688.2011.00550.x Abstract: In January 2010, hydrologists, climatologists, engineers, and scientists met in Boulder, Colorado, to discuss the report of the death of hydrologic stationarity and the implications this might have on water resources planning and operations in the United States and abroad. For decades planners have relied on design guidance from the Interagency Advisory Committee on Water Data Bulletin 17B that was based upon the concept of stationarity. After 2½ days of discussion it became clear that the assembled community had yet to reach an agreement on whether or not to replace the assumption of stationarity with an assumption of nonstationarity or something else. Hydrologists were skeptical that data gathered to this point in the 21st Century point to any significant change in river parameters. Climatologists, on the other hand, point to climate change and the predicted shift away from current conditions to a more turbulent flood and drought filled future. Both groups are challenged to provide immediate guidance to those individuals in and outside the water community who today must commit funds and efforts on projects that will require the best estimates of future conditions. The workshop surfaced many approaches to dealing with these challenges. While there is good reason to support additional study of the death of stationarity, its implications, and new approaches, there is also a great need to provide those in the field the information they require now to plan, design, and operate today’s projects.  相似文献   

11.
    
Headwater streams have a significant nexus or physical, chemical, and/or biological connection to downstream reaches. Generally, defined as 1st‐3rd order with ephemeral, intermittent, or perennial flow regimes, these streams account for a substantial portion of the total stream network particularly in mountainous terrain. Due to their often remote locations, small size, and large numbers, conducting field inventories of headwater streams is challenging. A means of estimating headwater stream location and extent according to flow regime type using publicly available spatial data is needed to simplify this complex process. Using field‐collected headwater point of origin data from three control watersheds, streams were characterized according to a set of spatial parameters related to topography, geology, and soils. These parameters were (1) compared to field‐collected point of origin data listed in three nearby Jurisdictional Determinations, (2) used to develop a geographic information system (GIS)‐based stream network for identifying ephemeral, intermittent, and perennial streams, and (3) applied to a larger watershed and compared to values obtained using the high‐resolution National Hydrography Dataset (NHD). The parameters drainage area and local valley slope were the most reliable predictors of flow regime type. Results showed the high‐resolution NHD identified no ephemeral streams and 9 and 65% fewer intermittent and perennial streams, respectively, than the GIS model.  相似文献   

12.
Maurer, Edwin P., Levi D. Brekke, and Tom Pruitt, 2010. Contrasting Lumped and Distributed Hydrology Models for Estimating Climate Change Impacts on California Watersheds. Journal of the American Water Resources Association (JAWRA) 46(5):1024–1035. DOI: 10.1111/j.1752-1688.2010.00473.x Abstract: We compare the projected changes to streamflows for three Sierra Nevada rivers using statistically downscaled output from 22 global climate projections. The downscaled meteorological data are used to drive two hydrology models: the Sacramento Soil Moisture Accounting model and the variable infiltration capacity model. These two models differ in their spatial resolution, computational time step, and degree and objective of calibration, thus producing significantly different simulations of current and future streamflow. However, the projected percentage changes in monthly streamflows through mid-21st Century generally did not differ, with the exceptions of streamflow during low flow months, and extreme low flows. These findings suggest that for physically based hydrology models applied to snow-dominated basins in Mediterranean climate regimes like the Sierra Nevada, California, model formulation, resolution, and calibration are secondary factors for estimating projected changes in extreme flows (seasonal or daily). For low flows, hydrology model selection and calibration can be significant factors in assessing impacts of projected climate change.  相似文献   

13.
    
An understanding of temporal trends in total stream‐flow (TSF), base flow (BF), and storm runoff (RO) can help in the development of water management plans for watersheds and local communities. In this study, 47 streams across Pennsylvania that were unregulated and unaffected by karst environments or coal mining were studied for flow trends and their relationships to selected climate parameters for the period 1971 to 2001. LOWESS curves for annual flow showed that almost all of the selected streams in Pennsylvania had downward trends in total TSF, BF, and RO. Using a seasonal Mann‐Kendall analysis, downward trends were significant at an α= 0.05 level for 68, percent 70 percent, and 62 percent of the streams and at an α= 0.10 level for another 19, 17, and 13 percent of the streams for TSF, BF, and RO, respectively. The ratio of BF to TSF (RBS) had significant upward trends for 34 percent of the streams at an α= 0.05 level and for another 9 percent of the streams at an α= 0.10 level, indicating that TSF decreased relative to BF for more than 40 percent of the streams during the previous 30 years. Downward trends in TSF, BF, and RO were most common for the months of June, July, and December. Trend analyses using monthly and annual total precipitation and mean temperature showed some association between climate and the streamflow trends, but Spearman's correlation and partial Mann‐Kendall analyses revealed that the trends in TSF, BF, and RO could not be explained by trends in precipitation and temperature alone, and thus urbanization and development may have played a role.  相似文献   

14.
    
Headwater streams are the most numerous in terms of both number and length in the conterminous United States and play important roles as spawning and rearing grounds for numerous species of anadromous fish. Stream temperature is a controlling variable for many physical, chemical, and biological processes and plays a critical role in the overall health and integrity of a stream. We investigated the controls on stream temperature in salmon‐bearing headwater streams in two common hydrogeologic settings on the Kenai Peninsula, Alaska: (1) drainage‐ways, which are low‐gradient streams that flow through broad valleys; and (2) discharge‐slopes, which are high gradient streams that flow through narrow valleys. We hypothesize local geomorphology strongly influences surface‐water and groundwater interactions, which control streamflow at the network scale and stream temperatures at the reach scale. The results of this study showed significant differences in stream temperatures between the two hydrogeologic settings. Observed stream temperatures were higher in drainage‐way sites than in discharge‐slope sites, and showed strong correlations as a continuous function with the calculated topographic metric flow‐weighted slope. Additionally, modeling results indicated the potential for groundwater discharge to moderate stream temperature is not equal between the two hydrogeologic settings, with groundwater having a greater moderating effect on stream temperature at the drainage‐way sites.  相似文献   

15.
    
Over the summer of 2015, the National Water Center hosted the National Flood Interoperability Experiment (NFIE) Summer Institute. The NFIE organizers introduced a national‐scale distributed hydrologic modeling framework that can provide flow estimates at around 2.67 million reaches within the continental United States. The framework generates discharges by coupling a given Land Surface Model (LSM) with the Routing Application for Parallel Computation of Discharge (RAPID). These discharges are then accumulated through the National Hydrography Dataset Plus stream network. The framework can utilize a variety of LSMs to provide the runoff maps to the routing component. The results obtained from this framework suggested that there still exists room for further enhancements to its performance, especially in the area of peak timing and magnitude. The goal of our study was to investigate a single source of the errors in the framework's discharge estimates, which is the routing component. The authors substitute RAPID which is based on the simplified linear Muskingum routing method by the nonlinear routing component the Iowa Flood Center have incorporated in their full hydrologic Hillslope‐Link Model. Our results show improvement in model performance across scales due to incorporating new routing methodology.  相似文献   

16.
    
We implement a spatially lumped hydrologic model to predict daily streamflow at 88 catchments within the state of Oregon and analyze its performance using the Oregon Hydrologic Landscape (OHL) classification. OHL is used to identify the physio‐climatic conditions that favor high (or low) streamflow predictability. High prediction catchments (Nash‐Sutcliffe efficiency of (NS) > 0.75) are mainly classified as rain dominated with very wet climate, low aquifer permeability, and low to medium soil permeability. Most of them are located west of the Cascade Mountain Range. Conversely, most low prediction catchments (NS < 0.6) are classified as snow‐dominated with high aquifer permeability and medium to high soil permeability. They are mainly located in the volcano‐influenced High Cascades region. Using a subset of 36 catchments, we further test if class‐specific model parameters can be developed to predict at ungauged catchments. In most catchments, OHL class‐specific parameters provide predictions that are on par with individually calibrated parameters (NS decline < 10%). However, large NS declines are observed in OHL classes where predictability is not high enough. Results suggest higher uncertainty in rain‐to‐snow transition of precipitation phase and external gains/losses of deep groundwater are major factors for low prediction in Oregon. Moreover, regionalized estimation of model parameters is more useful in regions where conditions favor good streamflow predictability.  相似文献   

17.
    
More than one billion South Asians are affected by water scarcity. Pressure on water resources is likely to grow as a result of population growth, urban expansion, and climate change. This paper assesses the impacts of these effects on the historical hydrological baseline, with particular focus on irrigation. A geospatial water balance model was developed for this purpose based on geo‐referenced information available in scientific public domain databases. Annual water supply and demand for a baseline period 1950–2000 were calculated and projected to 2050 using (1) outputs from 19 Global Circulation Models from the Coupled Model Intercomparison Project Phase 5 for a Representative Concentration Pathway 4.5; (2) population projections to 2050; and (3) historical land‐use patterns at the country level. Improvements in water use efficiency and storage capacity were analyzed using the Modified Water Scarcity Index of the baseline and the projected water balance in 2050 at the watershed scale.  相似文献   

18.
Payne, Scott M. and William W. Woessner, 2010. An Aquifer Classification System and Geographical Information System-Based Analysis Tool for Watershed Managers in the Western U.S. Journal of the American Water Resources Association (JAWRA) 46(5):1003-1023. DOI: 10.1111/j.1752-1688.2010.00472.x Abstract: Aquifers and groundwater systems can be classified using a variety of independent methods to characterize geologic and hydraulic properties, the degree of connection with surface water, and geochemical conditions. In light of a growing global demand for water, an approach for classifying groundwater systems at the watershed scale is needed. A comprehensive classification system is proposed that combines recognized methods and new approaches. The purpose of classification is to provide groundwater professionals, policy makers, and watershed managers with a widely applicable and repeatable system that reduces sometimes cumbersome complex databases and analyzes to straightforward terminology and graphical representations. The proposed classification system uses basin geology, aquifer productivity, water quality, and the degree of groundwater/surface water connection as classification criteria. The approach is based on literature values, reference databases, and fundamental hydrologic and hydrogeologic principles. The proposed classification system treats dataset completeness as a variable and includes a tiered assessment protocol that depends on the quality and quantity of data. In addition, it assembles and catalogs groundwater information using a consistent set of nomenclature. It is designed to analyze and display results using Geographical Information System mapping tools.  相似文献   

19.
    
In the northern hemisphere, summer low flows are a key attribute defining both quantity and quality of aquatic habitat. I developed one set of models for New England streams/rivers predicting July/August median flows averaged across 1985–2015 as a function of weather, slope, % imperviousness, watershed storage, glacial geology, and soils. These models performed better than most United States Geological Survey models for summer flows developed at a statewide scale. I developed a second set of models predicting interannual differences in summer flows as a function of differences in air temperature, precipitation, the North Atlantic Oscillation (NAO) index, and lagged NAO. Use of difference equations eliminated the need for transformations and accounted for serial autocorrelations at lag 1. The models were used in sequence to estimate time series for monthly low flows and for two derived flow metrics (tenth percentile [Q10] and minimum 3‐in‐5 year average flows). The first metric is commonly used in assessing risk to low‐flow conditions over time, while the second has been correlated with increased probability of localized extinctions for brook trout. The flow metrics showed increasing trends across most of New England for 1985–2015. However, application of summer flow models with average and extreme climate projections to the Taunton River, Massachusetts, a sensitive watershed undergoing rapid development, projected that low‐flow metrics will decrease over the next 50 years.  相似文献   

20.
    
Brockman, Ruth R., Carmen T. Agouridis, Stephen R. Workman, Lindell E. Ormsbee, and Alex W. Fogle, 2012. Bankfull Regional Curves for the Inner and Outer Bluegrass Regions of Kentucky. Journal of the American Water Resources Association (JAWRA) 48(2): 391‐406. DOI: 10.1111/j.1752‐1688.2011.00621.x Abstract: Bankfull regional curves that relate channel dimensions and discharge to watershed drainage area are useful tools for assisting in the correct identification of bankfull elevation and in stream restoration and reconstruction. This study assessed 28 stable streams located in two physiographic regions of Kentucky: the Inner Bluegrass and the Outer Bluegrass. Bankfull channel dimensions, discharge, and return period as well as average channel slope, median bed material size, sinuosity, Rosgen stream classification, and percent impervious area were determined. Significant relationships were found between drainage area and the bankfull characteristics of cross‐sectional area, width, mean depth, and discharge for both the Inner Bluegrass and Outer Bluegrass regions (α = 0.05). It was also found that the percent impervious area in a watershed had minimal effect on bankfull dimensions, which is attributed to the well‐vegetated nature of the streambanks, cohesive streambank materials, and bedrock control. No significant differences between any of the Inner Bluegrass and Outer Bluegrass regional curves were found (α = 0.05). Comparisons were made between the Inner Bluegrass and Outer Bluegrass curves and others developed in karst‐influenced areas in the Eastern United States. Although few significant differences were found between the regional curves for bankfull discharge and width, a number of the curves differed with regards to bankfull cross‐sectional area and mean depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号