首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
ABSTRACT: The U.S. Geological Survey examined 25 agricultural streams in eastern Wisconsin the determine relations between fish, invertebrate, and algal metrics and multiple spatial scales of land cover, geologic setting, hydrologic, aquatic habitat, and water chemistry data. Spearman correlation and redundancy analyses were used to examine relations among biotic metrics and environmental characteristics. Riparian vegetation, geologic, and hydrologic conditions affected the response of biotic metrics to watershed agricultural land cover but the relations were aquatic assemblage dependent. It was difficult to separate the interrelated effects of geologic setting, watershed and buffer land cover, and base flow. Watershed and buffer land cover, geologic setting, reach riparian vegetation width, and stream size affected the fish IBI, invertebrate diversity, diatom IBI, and number of algal taxa; however, the invertebrate FBI, percentage of EPT, and the diatom pollution index were more influenced by nutrient concentrations and flow variability. Fish IBI scores seemed most sensitive to land cover in the entire stream network buffer, more so than watershed‐scale land cover and segment or reach riparian vegetation width. All but one stream with more than approximately 10 percent buffer agriculture had fish IBI scores of fair or poor. In general, the invertebrate and algal metrics used in this study were not as sensitive to land cover effects as fish metrics. Some of the reach‐scale characteristics, such as width/depth ratios, velocity, and bank stability, could be related to watershed influences of both land cover and geologic setting. The Wisconsin habitat index was related to watershed geologic setting, watershed and buffer land cover, riparian vegetation width, and base flow, and appeared to be a good indicator of stream quality Results from this study emphasize the value of using more than one or two biotic metrics to assess water quality and the importance of environmental characteristics at multiple scales.  相似文献   

2.
We used invertebrate bioassessment, habitat analysis, geographic information system analysis of land use, and water chemistry monitoring to evaluate tributaries of a degraded northeast Nebraska, USA, reservoir. Bimonthly invertebrate collections and monthly water chemistry samples were collected for two years on six stream reaches to identify sources contributing to reservoir degradation and test suitability of standard rapid bioassessment methods in this region. A composite biotic index composed of seven commonly used metrics was effective for distinguishing between differentially impacted sites and responded to a variety of disturbances. Individual metrics varied greatly in precision and ability to discriminate between relatively impacted and unimpacted stream reaches. A modified Hilsenhoff index showed the highest precision (reference site CV = 0.08) but was least effective at discriminating among sites. Percent dominance and the EPT (number of Ephemeroptera, Plecoptera, and Trichoptera taxa) metrics were most effective at discriminating between sites and exhibited intermediate precision. A trend of higher biotic integrity during summer was evident, indicating seasonal corrections should differ from other regions. Poor correlations were evident between water chemistry variables and bioassessment results. However, land-use factors, particularly within 18-m riparian zones, were correlated with bioassessment scores. For example, there was a strong negative correlation between percentage of rangeland in 18-m riparian zones and percentage of dominance in streams (r 2 = 0.90, P < 0.01). Results demonstrate that standard rapid bioassessment methods, with some modifications, are effective for use in this agricultural region of the Great Plains and that riparian land use may be the best predictor of stream biotic integrity.  相似文献   

3.
To determine useful metrics for assessing stream water quality in the Southeastern Coastal Plain, we examined differences among two buffered and three unbuffered streams in an agricultural landscape in southwestern Georgia. Potential indicators included amphibian diversity and abundance, aquatic macroinvertebrate populations, riparian vegetative structure, water quality, and stream physical parameters. Variability among sites and treatments (buffered vs. unbuffered) existed, with sites in the same treatment as most similar, and disturbances from a nearby eroding gully strongly affecting one unbuffered site. Of the invertebrate metrics examined, percentages of clingers, Ephemeroptera-Plecoptera-Trichoptera (EPT), Elmidae (Coleoptera), Crustacea (Decapoda and Amphipoda), and dipterans were found to be possible indicators of stream health for perennial streams within this region. Overall, buffered sites showed higher percentages of sensitive invertebrate groups and showed lower and more stable concentrations of nitrate N, suspended solids, and fecal coliforms (FCs). Percent canopy cover was similar among sites; however, riparian vegetative coverage and percent leaf litter were greatest at buffered sites. No differences in amphibian abundance, presence, and absence within the riparian area were apparent between sites; however, instream larval salamanders were more abundant at buffered streams. In this study, stream buffers appeared to decrease nutrient and sediment loads to adjacent streams, enhancing overall water quality. Selected benthic macroinvertebrate metrics and amphibian abundance also appeared sensitive to agricultural influences. Amphibians show potential as indicator candidates, however further information is needed on their responses and tolerances to disturbances from the microhabitat to landscape levels.  相似文献   

4.
ABSTRACT: Multivariate analyses and correlations revealed strong relations between watershed and riparian‐corridor land cover, and reach‐scale habitat versus fish and macroinvertebrate assemblages in 38 warmwater streams in eastern Wisconsin. Watersheds were dominated by agricultural use, and ranged in size from 9 to 71 km2 Watershed land cover was summarized from satellite‐derived data for the area outside a 30‐m buffer. Riparian land cover was interpreted from digital orthophotos within 10‐, 10‐to 20‐, and 20‐to 30‐m buffers. Reach‐scale habitat, fish, and macroinvertebrates were collected in 1998 and biotic indices calculated. Correlations between land cover, habitat, and stream‐quality indicators revealed significant relations at the watershed, riparian‐corridor, and reach scales. At the watershed scale, fish diversity, intolerant fish and EPT species increased, and Hilsenhoff biotic index (HBI) decreased as percent forest increased. At the riparian‐corridor scale, EPT species decreased and HBI increased as riparian vegetation became more fragmented. For the reach, EPT species decreased with embeddedness. Multivariate analyses further indicated that riparian (percent agriculture, grassland, urban and forest, and fragmentation of vegetation), watershed (percent forest) and reach‐scale characteristics (embeddedness) were the most important variables influencing fish (IBI, density, diversity, number, and percent tolerant and insectivorous species) and macroinvertebrate (HBI and EPT) communities.  相似文献   

5.
Watershed characteristics such as land‐use and land‐cover affect stream condition at multiple scales, but it is widely accepted that conditions in close proximity to the stream or survey site tend to have a stronger influence. Although spatially weighted watershed metrics have existed for years, nonspatial lumped landscape metrics (i.e., areal mean or percentage) are still widely used because relatively few technical skills are needed to implement them. The Inverse Distance Weighted Percent Land Use for Streams (IDW‐Plus) custom ArcGIS toolset provides the functionality to efficiently calculate six spatially explicit watershed metrics which account for the Euclidean or flow length distance to the stream or outlet, as well as the probability for overland runoff. These include four distance‐weighted metrics, those being inverse Euclidean distance to the stream or outlet, and the inverse flow length to the stream or outlet. Two tools are also included to generate hydrologically active (i.e., runoff potential), inverse flow length to the stream or outlet metrics. We demonstrate the tools using real data from Southeast Queensland, Australia. We also provide detailed instructions, so readers can recreate the examples themselves before applying the tools to their own data.  相似文献   

6.
Abstract: Nutrient dose‐response bioassays were conducted using water from three sites along the North Bosque River. These bioassays provided support data for refinement of the Soil and Water Assessment Tool (SWAT) model used in the development of two phosphorus TMDLs for the North Bosque River. Test organisms were native phytoplanktonic algae and stock cultured Pseudokirchneriella subcapitata (Korshikov) Hindak. Growth was measured daily by in vivo fluorescence. Algal growth parameters for maximum growth (μmax) and half‐saturation constants for nitrogen (KN) or phosphorus (KP) were determined by fitting maximum growth rates associated with each dose level to a Monod growth rate function. Growth parameters of native algae were compared between locations and to growth parameters of P. subcapitata and literature values. No significant differences in half‐saturation constants were indicated within nutrient treatment for site or algal type. Geometric mean KN was 32 μg/l and for KP 7 μg/l. A significant difference was detected in maximum growth rates between algae types but not between sites or nutrient treatments. Mean μmax was 1.5/day for native algae and 1.2/day for stock algae. These results indicate that watershed‐specific maximum growth rates may need to be considered when modeling algal growth dynamics with regard to nutrients.  相似文献   

7.
Benthic chlorophyll a (BChl a) and environmental factors that influence algal biomass were measured monthly from February through October in 22 streams from three agricultural regions of the United States. At‐site maximum BChl a ranged from 14 to 406 mg/m2 and generally varied with dissolved inorganic nitrogen (DIN): 8 out of 9 sites with at‐site median DIN >0.5 mg/L had maximum BChl a >100 mg/m2. BChl a accrued and persisted at levels within 50% of at‐site maximum for only one to three months. No dominant seasonal pattern for algal biomass accrual was observed in any region. A linear model with DIN, water surface gradient, and velocity accounted for most of the cross‐site variation in maximum chlorophyll a (adjusted R2 = 0.7), but was no better than a single value of DIN = 0.5 mg/L for distinguishing between low and high‐biomass sites. Studies of nutrient enrichment require multiple samples to estimate algal biomass with sufficient precision given the magnitude of temporal variability of algal biomass. An effective strategy for regional stream assessment of nutrient enrichment could be based on a relation between maximum BChl a and DIN based on repeat sampling at sites selected to represent a gradient in nutrients and application of the relation to a larger number of sites with synoptic nutrient information.  相似文献   

8.
Watson, Tara K., Dorothy Q. Kellogg, Kelly Addy, Arthur J. Gold, Mark H. Stolt, Sean W. Donohue, and Peter M. Groffman, 2010. Groundwater Denitrification Capacity of Riparian Zones in Suburban and Agricultural Watersheds. Journal of the American Water Resources Association (JAWRA) 46(2):237-245. DOI: 10.1111/j.1752-1688.2010.00418.x Abstract: We evaluated the relationship of dominant watershed land use to the structure and nitrogen (N) sink function of riparian zones. We focused on groundwater denitrification capacity, water table dynamics, and the presence and pattern of organically enriched deposits. We used the push-pull method (measurement of 15N-enriched denitrification gases derived from an introduced groundwater plume of 15N-enriched nitrate) to evaluate groundwater denitrification capacity on nine forested wetland riparian sites developed in alluvial or outwash parent materials in southern New England. Three replicate sites were located in each of the three watershed types, those with substantial (1) irrigated agriculture, (2) suburban development, and (3) forest. Soil morphology and water table dynamics were assessed at each site. We found significantly lower mean annual water tables at sites within watersheds with substantial irrigated agriculture or suburban development than forested watersheds. Water table dynamics were more variable at sites within suburban watersheds, especially during the summer. Groundwater denitrification capacity was significantly greater at sites within forested watersheds than in watersheds with substantial irrigated agriculture. Because of the high degree of variability observed in riparian sites within suburban watersheds, groundwater denitrification capacity was not significantly different from either forested or agricultural watersheds. The highly variable patterns of organically enriched deposits and water tables at sites within suburban watersheds suggests that depositional events are irregular, limiting the predictability of groundwater N dynamics in these riparian zones. The variability of riparian N removal in watersheds with extensive suburbia or irrigated agriculture argues for N management strategies emphasizing effective N source controls in these settings.  相似文献   

9.
We examined the effect of instream large wood on denitrification capacity in two contrasting, lower order streams — one that drains an agricultural watershed with no riparian forest and minimal stores of instream large wood and another that drains a forested watershed with an extensive riparian forest and abundant instream large wood. We incubated two types of wood substrates (fresh wood blocks and extant streambed wood) and an artificial stone substrate for nine weeks in each stream. After in situ incubation, we collected the substrates and their attached biofilms and established laboratory‐based mesocosm assays with stream water amended with 15N‐labeled nitrate‐N. Wood substrates at the forested site had significantly higher denitrification than wood substrates from the agricultural site and artificial stone substrates from either site. Nitrate‐N removal rates were markedly higher on woody substrates compared to artificial stones at both sites. Nitrate‐N removal rates were significantly correlated with biofilm biomass. Denitrification capacity accounted for only a portion of nitrate‐N removal observed within the mesocosms in both the wood controls and instream substrates. N2 accounted for 99.7% of total denitrification. Restoration practices that generate large wood in streams should be encouraged for N removal and do not appear to generate high risks of instream N2O generation.  相似文献   

10.
ABSTRACT: Activities such as agriculture, silviculture, and mining contribute nonpoint pollution to Alabama's streams through polluted runoff and excessive sedimentation. Highly erodible soils characteristic of the Choctawhatchee‐Pea Rivers watershed, combined with intense rainfall and land use practices, contribute large amounts of sediment to streams. Biological monitoring can reflect the acute impacts of pollutants as well as prolonged effects of habitat alteration, and development of biological criteria is important for the establishment of enforceable laws regarding nonpoint source pollution. Macroinvertebrates were collected from 49 randomly selected sites from first through sixth‐order streams in the Choctawhatchee‐Pea Rivers watershed and were identified to genus level. Thirty‐eight candidate metrics were examined, and an invertebrate community index (ICI) was calibrated by eliminating metrics that failed to separate impaired from unimpaired streams. Each site was scored with those metrics, and narrative scores were assigned based on ICI scores. Least impacted sites scored significantly lower than sites impacted by row crop agriculture, cattle, and urban land uses. Conditions in the watershed suggest that the entire area has experienced degradation through past and current land use practices. An initial validation of the index was performed and is described. Additional evaluations of the index are in progress.  相似文献   

11.
Orzetti, Leslie L., R. Christian Jones, and Robert F. Murphy, 2010. Stream Condition in Piedmont Streams with Restored Riparian Buffers in the Chesapeake Bay Watershed. Journal of the American Water Resources Association (JAWRA) 46(3):473-485. DOI: 10.1111/j.1752-1688.2009.00414.x Abstract: This study tested the efficacy of restored forest riparian buffers along streams in the Chesapeake Bay watershed by examining habitat, selected water quality variables, and benthic macroinvertebrate community metrics in 30 streams with buffers ranging from zero to greater than 50 years of age. To assess water quality we measured in situ parameters (temperature, dissolved oxygen, and conductivity) and laboratory-analyzed grab samples (soluble reactive phosphorus, total phosphorus, nitrate, ammonium, and total suspended solids). Habitat conditions were scored using the Environmental Protection Agency Rapid Bioassessment Protocols for high gradient streams. Benthic macroinvertebrates were quantified using pooled riffle/run kick samples. Results showed that habitat, water quality, and benthic macroinvertebrate metrics generally improved with age of restored buffer. Habitat scores appeared to stabilize between 10 and 15 years of age and were driven mostly by epifaunal substrate availability, sinuosity, embeddedness, and velocity depth regime. Benthic invertebrate taxa richness, percent Ephemeroptera, Plecoptera, Trichoptera minus hydropsychids (%EPT minus H), % Ephemeroptera, and the Family Biotic Index were among the metrics which improved with age of buffer zone. Results are consistent with the hypothesis that forest riparian buffers enhance instream habitat, water quality, and resulting benthic macroinvertebrate communities with noticeable improvements occurring within 5-10 years postrestoration, leading to conditions approaching those of long established buffers within 10-15 years of restoration.  相似文献   

12.
Nutrient inputs generally are increased by human-induced land use changes and can lead to eutrophication and impairment of surface waters. Understanding the scale at which land use influences nutrient loading is necessary for the development of management practices and policies that improve water quality. The authors assessed the relationships between land use and stream nutrients in a prairie watershed dominated by intermittent stream flow in the first-order higher elevation reaches. Total nitrogen, nitrate, and phosphorus concentrations were greater in tributaries occupying the lower portions of the watershed, closely mirroring the increased density of row crop agriculture from headwaters to lower-elevation alluvial areas. Land cover classified at three spatial scales in each sub-basin above sampling sites (riparian in the entire catchment, catchment land cover, and riparian across the 2 km upstream) was highly correlated with variation in both total nitrogen (r2 = 53%, 52%, and 49%, respectively) and nitrate (r2 = 69%, 65%, and 56%, respectively) concentrations among sites. However, phosphorus concentrations were not significantly associated with riparian or catchment land cover classes at any spatial scale. Separating land use from riparian cover in the entire watershed was difficult, but riparian cover was most closely correlated with in-stream nutrient concentrations. By controlling for land cover, a significant correlation of riparian cover for the 2 km above the sampling site with in-stream nutrient concentrations could be established. Surprisingly, land use in the entire watershed, including small intermittent streams, had a large influence on average downstream water quality although the headwater streams were not flowing for a substantial portion of the year. This suggests that nutrient criteria may not be met only by managing permanently flowing streams.  相似文献   

13.
ABSTRACT: Temperature is an important variable structuring lotic biotas, but little is known about how montane landscapes function to determine stream temperatures. We developed an a priori hypothesis that was used to predict how watershed elements would interact to affect stream temperatures. The hypothesis was tested in a series of path analyses using temperature data from 26 sites on second‐order to fourth‐order streams across a fifth‐order Rocky Mountain watershed. Based on the performance of the first hypothesis, two revised versions of the hypothesis were developed and tested that proved to be more accurate than the original hypothesis. The most plausible of the revised hypotheses accounted for 82 percent of the variation in maximum stream temperature, had a predicted data structure that did not deviate from the empirical data structure, and was the most parsimonious. The final working hypothesis suggested that stream temperature maxima were directly controlled by a large negative effect from mean basin elevation (direct effect = ‐0.57, p < 0.01) and smaller effects from riparian tree abundance (direct effect = ‐0.28, p = 0.03), and cattle density (direct effect = 0.24, p = 0.05). Watershed slope, valley constraint, and the abundance of grass across a watershed also affected temperature maxima, but these effects were indirect and mediated through cattle density and riparian trees. Three variables included in the a priori hypothesis ‐ watershed aspect, stream width, and watershed size ‐ had negligible effects on maximum stream temperatures and were omitted from the final working hypothesis.  相似文献   

14.
Romeis, J. Joshua, C. Rhett Jackson, L. Mark Risse, Andrew N. Sharpley, and David E. Radcliffe, 2011. Hydrologic and Phosphorus Export Behavior of Small Streams in Commercial Poultry‐Pasture Watersheds. Journal of the American Water Resources Association (JAWRA) 1‐19. DOI: 10.1111/j.1752‐1688.2011.00521.x Abstract: Few watershed‐scale studies have evaluated phosphorus export in streamflow from commercial poultry‐pasture operations. Continuous streamflow and mixed‐frequency water quality datasets were collected from nine commercial poultry‐pasture (AG) and three forested (FORS) headwater streams (2.4‐44 ha) in the upper Etowah River basin of Georgia to estimate total P (TP) loads and examine variability of hydrologic response and water quality of storm and nonstorm‐flow regimes. Data collection duration ranged from 18 to 22 months, and approximately 1,600 water quality samples were collected. Significant (p < 0.1) inverse relationships were detected between peak flow response variables and both drainage area and fraction of forest cover. Order‐of‐magnitude differences in TP and dissolved reactive P (DRP) concentration were observed between AG and FORS sites and among AG sites. TP yields of FORS sites ranged from 0.01 to 0.1 kg P/ha. Yields of AG sites ranged from 0.031 to 3.17 kg P/ha (median = 0.354 kg P/ha). With 95% confidence intervals, AG yields ranged from 0.025 to 13.1 kg P/ha. These small‐watershed‐scale yields were similar to field‐scale yields measured in other studies in other regions. TP yields were significantly related to area‐weighted Mehlich‐1 soil test P concentrations (p = 0.0073) and base‐flow water sample P concentrations (p 0.0005). Water quality sampling during base‐flow conditions may be a useful screening tool for P risk‐based management programs.  相似文献   

15.
Benthic macroinvertebrate communities in streams adjacent to cornfields, streams where cows had unrestricted access, and reference locations without agriculture were compared to examine the effects of local land use and land use/land cover in the watershed. At each local site, macroinvertebrates and a variety of habitat parameters were measured upstream, adjacent, downstream, and farther downstream of the local land use. A geographic information system (GIS) was used to calculate drainage basin area, land use/land cover percentages in each basin, and the distance from sample sites to the stream source. Three‐way analysis of covariance (ANCOVA) tests with date, site type, and sampling location as main effects were used to explore differences in macroinvertebrate metrics using median substrate size, percent hay/pasture area, and stream depth as covariates. The covariates significantly improved model fit and showed that multiple contributing factors influence community composition. Local impacts were greatest at sites where cows had access, probably because of sedimentation and embeddedness in the substrate. Differences between the upstream and the adjacent and downstream locations were not as great as expected, perhaps because upstream recolonization was reduced by agricultural impacts or because of differences in the intensity or proximity of agriculture to riparian areas in the watershed. The results underscore the importance of both local and watershed factors in controlling stream community composition.  相似文献   

16.
Abstract: We examine the potential for nutrient limitation of algal periphyton biomass in blackwater streams draining the Georgia coastal plain. Previous studies have investigated nutrient limitation of planktonic algae in large blackwater rivers, but virtually no scientific information exists regarding how algal periphyton respond to nutrients under different light conditions in smaller, low‐flow streams. We used a modification of the Matlock periphytometer (nutrient‐diffusing substrata) to determine if algal growth was nutrient limited and/or light limited at nine sites spanning a range of human impacts from relatively undisturbed forested basins to highly disturbed agricultural sites. We employed four treatments in both shaded and sunny conditions at each site: (1) control, (2) N (NO3‐N), (3) P (PO4‐P), and (4) N + P (NO3‐N + PO4‐P). Chlorophyll a response was measured on 10 replicate substrates per treatment, after 15 days of in situ exposure. Chlorophyll a values did not approach what have been defined as nuisance levels (i.e., 100‐200 mg/m2), even in response to nutrient enrichment in sunny conditions. For Georgia coastal plain streams, algal periphyton growth appears to be primarily light limited and can be secondarily nutrient limited (most commonly by P or N + P combined) in light gaps and/or open areas receiving sunlight.  相似文献   

17.
Best management practices (BMPs) have been developed to address soil loss and the resulting sedimentation of streams, but information is lacking regarding their benefits to stream biota. We compared instream physical habitat and invertebrate and fish assemblages from farms with BMP to those from farms with conventional agricultural practices within the Whitewater River watershed of southeastern Minnesota, USA, in 1996 and 1997. Invertebrate assemblages were assessed using the US EPA's rapid bioassessment protocol (RBP), and fish assemblages were assessed with two indices of biotic integrity (IBIs). Sites were classified by upland land use (BMP or conventional practices) and riparian management (grass, grazed, or wooded buffer). Physical habitat characteristics differed across buffer types, but not upland land use, using an analysis of covariance, with buffer width and stream as covariates. Percent fines and embeddedness were negatively correlated with buffer width. Stream sites along grass buffers generally had significantly lower percent fines, embeddedness, and exposed streambank soil, but higher percent cover and overhanging vegetation when compared with sites that had grazed or wooded buffers. RBP and IBI scores were not significantly different across upland land use or riparian buffer type but did show several correlations with instream physical habitat variables. RBP and IBI scores were both negatively correlated with percent fines and embeddedness and positively correlated with width-to-depth ratio. The lack of difference in RBP or IBI scores across buffer types suggests that biotic indicators may not respond to local changes, that other factors not measured may be important, or that greater improvements in watershed condition are necessary for changes in biota to be apparent. Grass buffers may be a viable alternative for riparian management, especially if sedimentation and streambank stability are primary concerns.  相似文献   

18.
Abstract: The eastern panhandle region of West Virginia is entirely within the Appalachian Ridge and Valley ecoregion. It is underlain by limestone in the eastern part and by shale and sandstone in the western part. Agricultural and urban development has affected the condition of the streams of this region. We examined samples from 165 stations in the Ridge and Valley, collected from 1998 to 2004. Land use, geological characteristics, physical and chemical parameters, and algal and macroinvertebrate assemblages were used to identify potential stressors that affect streams in the region. Our analyses indicated that both human land uses and ecoregional differences led to elevated nutrient concentrations in streams of the study areas. Multiple regression analyses indicated that both agricultural and urban land use in the watershed were associated with high nutrient concentrations (NO2+3, total nitrogen, and total phosphorus) in streams. These elevated nutrient concentrations have led to increased algal biomass, increased trophic state, and degradation of macroinvertebrate community in the streams. Values of the West Virginia Stream Condition Index, as well as several other benthic macroinvertebrate metrics, decreased with increased nutrient concentrations and conductivity, especially in the limestone region. When regional differences were partitioned out in the analysis, nutrient concentrations became the strongest stressor in the limestone region while conductivity exhibited less of an effect on macroinvertebrate metrics. Meanwhile, periphyton diagnostic metrics also responded to increased nutrient concentrations, suggesting nutrients could be a cause of biological degradation in the Eastern Ridge and Valley region. Multiple approaches and multiple lines of evidence (reference approach and stressor‐response approach) were applied to develop nutrient benchmarks for different geological regions in the study watershed.  相似文献   

19.
The U.S. Geological Survey's New Jersey and Iowa Water Science Centers deployed ultraviolet‐visible spectrophotometric sensors at water‐quality monitoring sites on the Passaic and Pompton Rivers at Two Bridges, New Jersey, on Toms River at Toms River, New Jersey, and on the North Raccoon River near Jefferson, Iowa to continuously measure in‐stream nitrate plus nitrite as nitrogen (NO3 + NO2) concentrations in conjunction with continuous stream flow measurements. Statistical analysis of NO3 + NO2 vs. stream discharge during storm events found statistically significant links between land use types and sampling site with the normalized area and rotational direction of NO3 + NO2‐stream discharge (N‐Q) hysteresis patterns. Statistically significant relations were also found between the normalized area of a hysteresis pattern and several flow parameters as well as the normalized area adjusted for rotational direction and minimum NO3 + NO2 concentrations. The mean normalized hysteresis area for forested land use was smaller than that of urban and agricultural land uses. The hysteresis rotational direction of the agricultural land use was opposite of that of the urban and undeveloped land uses. An r2 of 0.81 for the relation between the minimum normalized NO3 + NO2 concentration during a storm vs. the normalized NO3 + NO2 concentration at peak flow suggested that dilution was the dominant process controlling NO3 + NO2 concentrations over the course of most storm events.  相似文献   

20.
Riparian zones in semi‐arid, mountainous regions provide a disproportionate amount of the available wildlife habitat and ecosystem services. Despite their importance, there is little guidance on the best way to map riparian zones for broad spatial extents (e.g., large watersheds) when detailed maps from field data or high‐resolution imagery and terrain data are not available. Using well‐established accuracy metrics (e.g., kappa, precision, computational complexity), we evaluated eight methods commonly used to map riparian zones. Focusing on a semi‐arid, mountainous watershed, we found that the most accurate and robust method for mapping riparian zones combines data on upstream drainage area and valley topography. That method performed best regardless of stream order, and was most effective when implemented with fine resolution topographic and stream line data. Other commonly used methods to model riparian zones, such as those based on fixed‐width buffers, yielded inaccurate results. We recommend that until very‐high resolution (<1 m) elevation data are available at broad extents, models of riparian zones for semi‐arid mountainous regions should incorporate drainage area, valley topography, and quantify uncertainty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号