首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The shallow‐water component of the Chesapeake Bay Environmental Model Package emphasizes the regions of the system inside the 2‐m depth contour. The model of these regions is unified with the system‐wide model but places emphasis on locally significant components and processes, notably submerged aquatic vegetation (SAV), sediment resuspension, and their interaction with light attenuation (Ke). The SAV model is found to be most suited for computing the equilibrium distribution of perennial species. Addition of plant structure and propagation are recommended to improve representation of observed trends in SAV area. Two approaches are taken to examining shallow‐water Ke. The first compares observed and computed differences between deep‐ and shallow‐water Ke. No consistent difference in observations is noted. In the preponderance of regions examined, computed shallow‐water Ke exceeds computed deep‐water Ke. The second approach directly compares Ke measured in shallow water with modeled results. Model values are primarily lower than observed, in contrast to results in deep water where model values exceed observed. The shortfall in computed Ke mirrors a similar shortfall in computed suspended solids. Improved model representation of Ke requires process‐based investigations into suspended solids dynamics as well as increased model resolution in shallow‐water regions.  相似文献   

2.
Achieving and maintaining the water quality conditions necessary to protect the aquatic living resources of the Chesapeake Bay and its tidal tributaries has required a foundation of quantifiable water quality criteria. Quantitative criteria serve as a critical basis for assessing the attainment of designated uses and measuring progress toward meeting water quality goals of the Chesapeake Bay Program partnership. In 1987, the Chesapeake Bay Program partnership committed to defining the water quality conditions necessary to protect aquatic living resources. Under section 303(c) of the Clean Water Act, States and authorized tribes have the primary responsibility for adopting water quality standards into law or regulation. The Chesapeake Bay Program partnership worked with U.S. Environmental Protection Agency to develop and publish a guidance framework of ambient water quality criteria with designated uses and assessment procedures for dissolved oxygen, water clarity, and chlorophyll a for Chesapeake Bay and its tidal tributaries in 2003. This article reviews the derivation of the water quality criteria, criteria assessment protocols, designated use boundaries, and their refinements published in six addendum documents since 2003 and successfully adopted into each jurisdiction's water quality standards used in developing the Chesapeake Bay Total Maximum Daily Load.  相似文献   

3.
Brakebill, John W., Scott W. Ator, and Gregory E. Schwarz, 2010. Sources of Suspended-Sediment Flux in Streams of the Chesapeake Bay Watershed: A Regional Application of the SPARROW Model. Journal of the American Water Resources Association (JAWRA) 46(4): 757-776. DOI: 10.1111/j.1752-1688.2010.00450.x Abstract: We describe the sources and transport of fluvial suspended sediment in nontidal streams of the Chesapeake Bay watershed and vicinity. We applied SPAtially Referenced Regressions on Watershed attributes, which spatially correlates estimated mean annual flux of suspended sediment in nontidal streams with sources of suspended sediment and transport factors. According to our model, urban development generates on average the greatest amount of suspended sediment per unit area (3,928 Mg/km2/year), although agriculture is much more widespread and is the greatest overall source of suspended sediment (57 Mg/km2/year). Factors affecting sediment transport from uplands to streams include mean basin slope, reservoirs, physiography, and soil permeability. On average, 59% of upland suspended sediment generated is temporarily stored along large rivers draining the Coastal Plain or in reservoirs throughout the watershed. Applying erosion and sediment controls from agriculture and urban development in areas of the northern Piedmont close to the upper Bay, where the combined effects of watershed characteristics on sediment transport have the greatest influence may be most helpful in mitigating sedimentation in the bay and its tributaries. Stream restoration efforts addressing floodplain and bank stabilization and incision may be more effective in smaller, headwater streams outside of the Coastal Plain.  相似文献   

4.
/ Maryland, Virginia, and Pennsylvania, USA, have agreed to reduce nutrient loadings to Chesapeake Bay by 40% by the year 2000. This requires control of nonpoint sources of nutrients, much of which comes from agriculture. Riparian forest buffer systems (RFBS) provide effective control of nonpoint source (NPS) pollution in some types of agricultural watersheds. Control of NPS pollution is dependent on the type of pollutant and the hydrologic connection between pollution sources, the RFBS, and the stream. Water quality improvements are most likely in areas of where most of the excess precipitation moves across, in, or near the root zone of the RFBS. In areas such as the Inner Coastal Plain and Piedmont watersheds with thin soils, RFBS should retain 50%-90% of the total loading of nitrate in shallow groundwater, sediment in surface runoff, and total N in both surface runoff and groundwater. Retention of phosphorus is generally much less. In regions with deeper soils and/or greater regional groundwater recharge (such as parts of the Piedmont and the Valley and Ridge), RFBS water quality improvements are probably much less. The expected levels of pollutant control by RFBS are identified for each of nine physiographic provinces of the Chesapeake Bay Watershed. Issues related to of establishment, sustainability, and management are also discussed.KEY WORDS: Riparian forest buffers; Chesapeake Bay; Nonpoint source pollution; Nitrogen; Phosphorus; Sediment  相似文献   

5.
6.
The Phase 5.3 Watershed Model simulates the Chesapeake watershed land use, river flows, and the associated transport and fate of nutrient and sediment loads to the Chesapeake Bay. The Phase 5.3 Model is the most recent of a series of increasingly refined versions of a model that have been operational for more than two decades. The Phase 5.3 Model, in conjunction with models of the Chesapeake airshed and estuary, provides estimates of management actions needed to protect water quality, achieve Chesapeake water quality standards, and restore living resources. The Phase 5.3 Watershed Model tracks nutrient and sediment load estimates of the entire 166,000 km2 watershed, including loads from all six watershed states. The creation of software systems, input datasets, and calibration methods were important aspects of the model development process. A community model approach was taken with model development and application, and the model was developed by a broad coalition of model practitioners including environmental engineers, scientists, and environmental managers. Among the users of the Phase 5.3 Model are the Chesapeake watershed states and local governments, consultants, river basin commissions, and universities. Development and application of the model are described, as well as key scenarios ranging from high nutrient and sediment load conditions if no management actions were taken in the watershed, to low load estimates of an all‐forested condition.  相似文献   

7.
In response to concerns regarding the health of streams and receiving waters, the United States Environmental Protection Agency established a total maximum daily load for nitrogen in the Chesapeake Bay watershed for which practices must be in place by 2025 resulting in an expected 25% reduction in load from 2009 levels. The response of total nitrogen (TN) loads delivered to the Bay to nine source reduction and land use change scenarios was estimated using a Spatially Referenced Regression on Watershed Attributes model. The largest predicted reduction in TN load delivered to the Bay was associated with a scenario in which the mass of TN as fertilizer applied to agricultural lands was decreased. A 25% decrease in the mass of TN applied as fertilizer resulted in a predicted reduction in TN loading to the Bay of 11.3%, which was 2.5–5 times greater than the reductions predicted by other scenarios. Eliminating fertilizer application to all agricultural land in the watershed resulted in a predicted reduction in TN load to the Bay of 45%. It was estimated that an approximate 25% reduction in TN loading to the Bay could be achieved by eliminating fertilizer applied to the 7% of subwatersheds contributing the greatest fertilizer‐sourced TN loads to the Bay. These results indicate that management strategies aimed at decreasing loading from a small number of subwatersheds may be effective for reducing TN loads to the Bay, and similar analyses are possible in other watersheds.  相似文献   

8.
Nutrient load allocations and subsequent reductions in total nitrogen and phosphorus have been applied in the Chesapeake watershed since 1992 to reduce hypoxia and to restore living resources. In 2010, sediment allocations were established to augment nutrient allocations supporting the submerged aquatic vegetation resource. From the initial introduction of nutrient allocations in 1992 to the present, the allocations have become more completely applied to all areas and loads in the watershed and have also become more rigorously assessed and tracked. The latest 2010 application of nutrient and sediment allocations were made as part of the Chesapeake Bay total maximum daily load and covered all six states of the Chesapeake watershed. A quantitative allocation process was developed that applied principles of equity and efficiency in the watershed, while achieving all tidal water quality standards through an assessment of equitable levels of effort in reducing nutrients and sediments. The level of effort was determined through application of two key watershed scenarios: one where no action was taken in nutrient control and one where maximum nutrient control efforts were applied. Once the level of effort was determined for different jurisdictions, the overall load reduction was set watershed‐wide to achieve dissolved oxygen water quality standards. Further adjustments were made to the allocation to achieve the James River chlorophyll‐a standard.  相似文献   

9.
Devils Lake is an endorheic lake in the Red River of the North basin in northeastern North Dakota. During the last two decades, the lake water level has risen by nearly 10 m, causing floods that have cost more than 1 billion USD in mitigation measures. Another increase of approximately 1.5 m in the lake water level would cause spillage into the Sheyenne River. To alleviate this potentially catastrophic spillage, two artificial outlets were constructed. However, the artificial drainage of water into the Sheyenne River raises water quality concerns because the Devils Lake water contains significantly higher concentrations of dissolved solids, particularly sulfate. In this study, the Soil and Water Assessment Tool (SWAT) was coupled with the CE‐QUAL‐W2 model to simulate both water balance and sulfate concentrations in the lake. The SWAT model performed well in simulating daily flow in tributaries with ENS > 0.5 and |PBIAS| < 25%, and reproduced the lake water level with a root mean square error of 0.35 m for the study period from 1995 to 2014. The water temperature and sulfate concentrations simulated by CE‐QUAL‐W2 for the lake are in general agreement with the field observations. The model results show that the operation of the two outlets since August 2005 has lowered the lake level by 0.70 m. Furthermore, the models show pumping water from the two outlets raises sulfate concentrations in the Sheyenne River from ~100 to >500 mg/L. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

10.
Spatial and temporal patterns in low streamflows were investigated for 183 streamgages located in the Chesapeake Bay Watershed for the period 1939–2013. Metrics that represent different aspects of the frequency and magnitude of low streamflows were examined for trends: (1) the annual time series of seven‐day average minimum streamflow, (2) the scaled average deficit at or below the 2% mean daily streamflow value relative to a base period between 1939 and 1970, and (3) the annual number of days below the 2% threshold. Trends in these statistics showed spatial cohesion, with increasing low streamflow volume at streamgages located in the northern uplands of the Chesapeake Bay Watershed and decreasing low streamflow volume at streamgages in the southern part of the watershed. For a small subset of streamgages (12%), conflicting trend patterns were observed between the seven‐day average minimum streamflow and the below‐threshold time series and these appear to be related to upstream diversions or the influence of reservoir‐influenced streamflows in their contributing watersheds. Using multivariate classification techniques, mean annual precipitation and fraction of precipitation falling as snow appear to be broad controls of increasing and decreasing low‐flow trends. Further investigation of seasonal precipitation patterns shows summer rainfall patterns, driven by the Atlantic Multidecadal Oscillation, as the main driver of low streamflows in the Chesapeake Bay Watershed.  相似文献   

11.
A numerical model, the Curvilinear Hydrodynamics in 3‐Dimensions, Waterway Experiment Station version (CH3D‐WES), was applied to represent transport processes of the Chesapeake Bay. Grid resolution and spatial coverage, tied with realistic bathymetry, ensured dynamic responses along the channel and near the shoreline. The model was run with the forcing ranges from high frequency astronomical tides to lower frequency meteorological forcing, given by surface wind and heat flux, as well as hydrological forcing given by fresh water inflows both from upstream and distributed sources along the shoreline. To validate the model, a long‐term simulation over seven‐year time period between 1994 and 2000 was performed. The model results were compared with existing observation data including water level time series, which spans over a wide spectrum of time scales, and long‐term variations in salinity structures over varying parts of the Bay. The validated model is set to provide an appropriate transport mechanism to the water quality model through linkage, warranting that the model takes into account the complexity in time and spatial scales associated with the dynamic processes in the Chesapeake.  相似文献   

12.
Application of integrated Chesapeake Bay models of the airshed, watershed, and estuary support air and water nitrogen controls in the Chesapeake. The models include an airshed model of the Mid‐Atlantic region which tracks the estimated atmospheric deposition loads of nitrogen to the watershed, tidal Bay, and adjacent coastal ocean. The three integrated models allow tracking of the transport and fate of nitrogen air emissions, including deposition in the Chesapeake watershed, the subsequent uptake, transformation, and transport to Bay tidal waters, and their ultimate influence on Chesapeake water quality. This article describes the development of the airshed model, its application to scenarios supporting the Chesapeake Total Maximum Daily Load (TMDL), and key findings from the scenarios. Key findings are that the atmospheric deposition loads are among the largest input loads of nitrogen in the watershed, and that the indirect nitrogen deposition loads to the watershed, which are subsequently delivered to the Bay are larger than the direct loads of atmospheric nitrogen deposition to Chesapeake tidal waters. Atmospheric deposition loads of nitrogen deposited in coastal waters, which are exchanged with the Chesapeake, are also estimated. About half the atmospheric deposition loads of nitrogen originate from outside the Chesapeake watershed. For the first time in a TMDL, the loads of atmospheric nitrogen deposition are an explicit part of the TMDL load reductions.  相似文献   

13.
Abstract:  Data interpretation and visualization software tools with geostatistical capabilities were adapted, customized, and tested to assist the Chesapeake Bay Program in improving its water‐quality modeling protocols. Tools were required to interpolate, map, and visualize three‐dimensional (3D) water‐quality data, with the capability to determine estimation errors. Components of the software, originally developed for ground‐water modeling, were customized for application in estuaries. Additional software components were developed for retrieval, and for pre‐ and post‐ processing of data. The Chesapeake Bay Program uses the 3D mapped data for input to the Bay water‐quality model that projects the future health of the Bay and its tidal tributary system. In determining water‐quality attainment criteria, 3D kriging estimation errors are needed as a statistical measure of uncertainty. Furthermore, given the high cost of installing and operating new monitoring stations, geostatistical techniques can assist the Chesapeake Bay Program in the identification of suitable data collection locations. Following the evaluation, selection, and development of the software components phase, 3D ordinary kriging techniques with directional semi‐variograms to account for anisotropy were successfully demonstrated for mapping 3D fixed station water‐quality data, such as dissolved oxygen and salinity. Additionally, an improved delineation tool was implemented to simulate the upper and lower pycnocline boundary surfaces allowing the segregation of the interpolated 3D data into three separate zones for a better characterization of the pycnocline layer.  相似文献   

14.
Walton‐Day, Katherine, Robert L. Runkel, and Briant A. Kimball, 2012. Using Spatially Detailed Water‐Quality Data and Solute‐Transport Modeling to Support Total Maximum Daily Load Development. Journal of the American Water Resources Association (JAWRA) 48(5): 949‐969. DOI: 10.1111/j.1752‐1688.2012.00662.x Abstract: Spatially detailed mass‐loading studies and solute‐transport modeling using OTIS (One‐dimensional Transport with Inflow and Storage) demonstrate how natural attenuation and loading from distinct and diffuse sources control stream water quality and affect load reductions predicted in total maximum daily loads (TMDLs). Mass‐loading data collected during low‐flow from Cement Creek (a low‐pH, metal‐rich stream because of natural and mining sources, and subject to TMDL requirements) were used to calibrate OTIS and showed spatially variable effects of natural attenuation (instream reactions) and loading from diffuse (groundwater) and distinct sources. OTIS simulations of the possible effects of TMDL‐recommended remediation of mine sites showed less improvement to dissolved zinc load and concentration (14% decrease) than did the TMDL (53‐63% decrease). The TMDL (1) assumed conservative transport, (2) accounted for loads removed by remediation by subtracting them from total load at the stream mouth, and (3) did not include diffuse‐source loads. In OTIS, loads were reduced near their source; the resulting concentration was decreased by natural attenuation and increased by diffuse‐source loads during downstream transport. Thus, by not including natural attenuation and loading from diffuse sources, the TMDL overestimated remediation effects at low flow. Use of the techniques presented herein could improve TMDLs by incorporating these processes during TMDL development.  相似文献   

15.
The effects of nutrient loading on estuaries are well studied, given the multitude of negative water quality and ecosystem effects that have been attributed to excess nitrogen and phosphorus. A current gap in this knowledge involves the sensitivity of seasonal cycles of estuarine biogeochemical processes to direct (warming) and indirect influences (nutrient load timing) of climate change. We used a coupled hydrologic–biogeochemical model to investigate changes in the phenology of hypoxia and related biogeochemical processes in Chesapeake Bay under three different hydrologic regimes. Shifts to earlier nutrient load timing during idealized simulations reduced the overall annual hypoxic volume, resulting from discernable, but relatively small reductions in phytoplankton biomass and both sediment and water-column respiration. Simulated increases in water temperature caused an increase in spring/early summer hypoxic volume associated with elevated respiration rates, but an associated exhaustion of organic matter in the early summer caused a decrease in late summer/fall hypoxic volume due to lowered respiration. Warming effects on hypoxia were larger than nutrient timing effects in scenarios where warming was restricted to spring and when it was applied to all months of the year. These idealized simulations begin the process of understanding the potential impacts of future climatic changes in the seasonal timing of key biogeochemical processes associated with eutrophication.  相似文献   

16.
To assess historical loads of nitrogen (N), phosphorus (P), and suspended sediment (SS) from the nontidal Chesapeake Bay watershed (NTCBW), we analyzed decadal seasonal trends of flow‐normalized loads at the fall‐line of nine major rivers that account for >90% of NTCBW flow. Evaluations of loads by season revealed N, P, and SS load magnitudes have been highest in January‐March and lowest in July‐September, but the temporal trends have followed similar decadal‐scale patterns in all seasons, with notable exceptions. Generally, total N (TN) load has dropped since the late 1980s, but particulate nutrients and SS have risen since the mid‐1990s. The majority of these rises were from Susquehanna River and relate to diminished net trapping at the Conowingo Reservoir. Substantial rises in SS were also observed, however, in other rivers. Moreover, the summed rise in particulate P load from other rivers is of similar magnitude as from Susquehanna. Dissolved nutrient loads have dropped in the upland (Piedmont and above) rivers, but risen in two small rivers in the Coastal Plain affected by lagged groundwater input. In addition, analysis of fractional contributions revealed consistent N trends across the upland watersheds. Finally, total N:total P ratios have declined in most rivers, suggesting the potential for changes in nutrient limitation. Overall, this integrated study of historical data highlights the value of maintaining long‐term monitoring at multiple watershed locations.  相似文献   

17.
To facilitate the rapid simulation of accidental pollution releases, the Delaware River Basin Commission has developed applications which completely automate data retrieval and processing for the development of a hydrodynamic model input file, as well as running the model. Overnight, every night, the applications retrieve from the internet multiple datasets for constructing freshwater inflow and tidal boundary time series. The hydrodynamic model is run automatically, using the recently written model input file. When no release has occurred, the hydrodynamic output file is not used and is simply overwritten on the following evening, from the updated hydrodynamic model run. Automating the hydrodynamic model portion of the simulation dramatically reduces the time required to simulate the transport of an accidental release to the Delaware Estuary.  相似文献   

18.
Abstract: Knowledge of headwater influences on the water‐quality and flow conditions of downstream waters is essential to water‐resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water‐quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass‐balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water‐quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first‐order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first‐order headwaters contribute approximately 70% of the mean‐annual water volume and 65% of the nitrogen flux in second‐order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and 40% in fourth‐ and higher‐order rivers that include navigable waters and their tributaries. These results underscore the profound influence that headwater areas have on shaping downstream water quantity and water quality. The results have relevance to water‐resource management and regulatory decisions and potentially broaden understanding of the spatial extent of Federal CWA jurisdiction in U.S. waters.  相似文献   

19.
Abstract: Previous investigations observed significant seepage losses from the Rio Grande to the shallow aquifer between Socorro and San Antonio, New Mexico. High‐resolution telescopic modeling was used along a 10‐km reach of the Rio Grande and associated drains and canals to evaluate several management alternatives aimed at improving river conveyance efficiency. Observed data consisted of ground‐water and surface‐water elevations, seepage rates along the Rio Grande and associated canals and drains, and borehole geology. Model calibration was achieved by adjusting hydraulic conductivity and specific storage until the output matched observed data. Sensitivity analyses indicated that the system was responsive to changes in hydrogeologic properties, especially when such alterations increased vertical connectivity between layers. The calibrated model predicted that removal of the low flow conveyance channel, a major channel draining the valley, would not only decrease river seepage by 67%, but also decrease total flow through the reach by 75%. The decreased flow through the reach would result in increased water logging and an average increase in ground‐water elevations of 1.21 meter. Simulations of the system with reduced riparian evapotranspiration rates or a relocated river channel also predicted decreased river seepage, but to a much lesser degree.  相似文献   

20.
Abstract: The steady‐state response matrix has historically proved a valuable tool in computing the water quality response to loadings and in providing insight into the relative impact of individual loading sources. The insight obtained may be is particularly useful in modern applications of increasingly complex water quality models to problems involving multiple point and nonpoint sources, such as in the assessment of total maximum daily loads (TMDLs). Where appropriate and the underlying equations linear, the steady‐state response matrix can be used to synthesize the results of more complicated models and present them in a way easily understood by policy makers. A straightforward method is presented for generating the response matrix using complex models, and example applications discussed. Example applications include a simple demonstration; incorporation of the method into the Mississippi Department of Environmental Quality’s STREAM model used in TMDL development; a TMDL modeling study of the Grand Calumet River and Indiana Harbor Canal, Indiana, using CE‐QUAL‐ICM; and a TMDL modeling study of the Big Sunflower River, Mississippi, using the Water Analysis Simulation Program model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号