首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT. Despite radical differences in water laws, water management agencies, approaches to water planning, and financial resources, Mexico and the United States forged a common program to manage water and related land on the Rio Grande. Actions of Rio Grande Commissions related to stream gaging, boundary definition, and multiple-purpose construction projects are among the more successful international water-management efforts in the world. Cost-sharing arrangements promoted rapid completing of international works. However, joint action accomplished only part of expectations. International developments were competitive rather than complementary until basin water appropriation was virtually complete. Moreover, Commissions were not empowered to consider long-range competitive water needs, or regional water requirements, throughout the basin. International groundwater use coordination does not exist. International structures produce less than anticipated benefits. Hydroelectric generators are financial liabilities, irrigated acreage exceeds dependable streamflow, and soil salinization is experienced. Unanticipated environmental changes occurred in every major program. The Rio Grande experience points to the need for society to specify goals to which the use of water should contribute and to specify priorities for water use among different sectors of river basins and various segments of society.  相似文献   

2.
Assessing Public Perceptions of Computer-Based Models   总被引:1,自引:1,他引:0  
Although there is a solid body of research on both collaborative decision-making and on processes using models, there is little research on general public attitudes about models and their use in making policy decisions. This project assessed opinions about computer models in general and attitudes about a specific model being used in water planning in the Middle Rio Grande Region of New Mexico, United States. More than 1000 individuals were surveyed about their perceptions of computer-based models in general. Additionally, more than 150 attendees at public meetings related to the Middle Rio Grande planning effort were surveyed about their perceptions of the specific Rio Grande-based model. The results reveal that the majority of respondents are confident in their ability to understand models and most believe that models are appropriate tools for education and for making policy decisions. Responses also reveal that trust in who develops a model is a key issue related to public support. Regarding the specific model highlighted in this project, the public revealed tremendous support for its usefulness as a public engagement tool as well as a tool to assist decision-makers in regional water planning. Although indicating broad support for models, the results do raise questions about the role of trust in using models in contentious decisions.  相似文献   

3.
Abstract: The Rio Grande basin shares problems faced by many arid regions of the world: growing and competing demands for water and river flows and uses that are vulnerable to drought and climate change. In recent years legislation, administrative action, and other measures have emerged to encourage private investment in efficient agricultural water use. Nevertheless, several institutional barriers discourage irrigators from investing in water conservation measures. This article examines barriers to agricultural water conservation in the Rio Grande basin and identifies challenges and opportunities for promoting it. Several barriers to water conservation are identified: clouded titles, water transfer restrictions, illusory water savings, insecure rights to conserved water, shared carry‐over storage, interstate compacts, conservation attitudes, land tenure arrangements, and an uncertain duty of water. Based on data on water use and crop production costs, price is found to be a major factor influencing water conservation. A low water price discourages water conservation even if other institutions promote it. A high price of water encourages conservation even in the presence of other discouraging factors. In conclusion, water‐conserving policies can be more effectively implemented where water institutions and programs are designed to be compatible with water’s underlying economic scarcity.  相似文献   

4.
Leidner, Andrew J., M. Edward Rister, Ronald D. Lacewell, and Allen W. Sturdivant, 2011. The Water Market for the Middle and Lower Portions of the Texas Rio Grande Basin. Journal of the American Water Resources Association (JAWRA) 47(3):597‐610. DOI: 10.1111/j.1752‐1688.2011.00527.x Abstract: Regional water management on the United States’ side of the middle and lower portions of the Rio Grande basin of Texas has been aided by a functioning water market since the early 1970s. The water market operates over a region that stretches from the Amistad Reservoir to the Rio Grande’s terminus into the Gulf of Mexico. This article provides an overview of the organizations, institutions, policies, and geographic particulars of the region’s water‐management system and its water market. In recent years, this region has experienced high population growth, periodic droughts, and a reallocation of water resources from the area’s agricultural sector to the municipal sector. Demand growth for potable water and a relatively fixed supply of raw water are reflected in increasing prices for domestic, municipal, and industrial water rights. Rising prices in the presence of scarcity and the transfer of water from lower‐value to higher‐value uses indicate that the market is operating as suggested by economic theory. Reasons for the market’s functionality are presented and discussed. Finally, suggestions are presented which might mitigate potential complications to market operations from aquifer depletion and aid the management of instream river flows.  相似文献   

5.
As freshwater resources become more scarce and water management becomes more contentious, new planning approaches are essential to maintain ecologic, economic, and social stability. One technique involves cooperative modeling in which scientists and stakeholders work together to develop a computer simulation model to assist in planning efforts. In the Middle Rio Grande region of New Mexico, where water management is hotly debated, a stakeholder team used a system dynamics approach to create a computer simulation model to facilitate producing a regional plan. While the model itself continues to be valuable, the process for creating the model was also valuable in helping stakeholders jointly develop understanding of and approaches to addressing complex issues. In this paper, the authors document results from post‐project interviews designed to identify strengths and weaknesses of cooperative modeling; to determine if and how the model facilitated the planning process; and to solicit advice for others considering model aided planning. Modeling team members revealed that cooperative modeling did facilitate water planning. Interviewees suggested that other groups try to reach consensus on a guiding vision or philosophy for their project and recognize that cooperative modeling is time intensive. The authors also note that using cooperative modeling as a tool to build bridges between science and the public requires consistent communication about both the process and the product.  相似文献   

6.
Observed streamflow and climate data are used to test the hypothesis that climate change is already affecting Rio Grande streamflow volume derived from snowmelt runoff in ways consistent with model‐based projections of 21st‐Century streamflow. Annual and monthly changes in streamflow volume and surface climate variables on the Upper Rio Grande, near its headwaters in southern Colorado, are assessed for water years 1958–2015. Results indicate winter and spring season temperatures in the basin have increased significantly, April 1 snow water equivalent (SWE) has decreased by approximately 25%, and streamflow has declined slightly in the April–July snowmelt runoff season. Small increases in precipitation have reduced the impact of declining snowpack on trends in streamflow. Changes in the snowpack–runoff relationship are noticeable in hydrographs of mean monthly streamflow, but are most apparent in the changing ratios of precipitation (rain + snow, and SWE) to streamflow and in the declining fraction of runoff attributable to snowpack or winter precipitation. The observed changes provide observational confirmation for model projections of decreasing runoff attributable to snowpack, and demonstrate the decreasing utility of snowpack for predicting subsequent streamflow on a seasonal basis in the Upper Rio Grande Basin.  相似文献   

7.
Abstract: Previous investigations observed significant seepage losses from the Rio Grande to the shallow aquifer between Socorro and San Antonio, New Mexico. High‐resolution telescopic modeling was used along a 10‐km reach of the Rio Grande and associated drains and canals to evaluate several management alternatives aimed at improving river conveyance efficiency. Observed data consisted of ground‐water and surface‐water elevations, seepage rates along the Rio Grande and associated canals and drains, and borehole geology. Model calibration was achieved by adjusting hydraulic conductivity and specific storage until the output matched observed data. Sensitivity analyses indicated that the system was responsive to changes in hydrogeologic properties, especially when such alterations increased vertical connectivity between layers. The calibrated model predicted that removal of the low flow conveyance channel, a major channel draining the valley, would not only decrease river seepage by 67%, but also decrease total flow through the reach by 75%. The decreased flow through the reach would result in increased water logging and an average increase in ground‐water elevations of 1.21 meter. Simulations of the system with reduced riparian evapotranspiration rates or a relocated river channel also predicted decreased river seepage, but to a much lesser degree.  相似文献   

8.
Providing environmental flows is increasingly a management obligation in many water resource systems. Evaluating the impacts of environmental flow alternatives on other water uses in a basin can be a challenge, especially when collaborating with stakeholders. We demonstrate the use of system dynamics (SD) modeling to assess the impacts of four environmental flow alternatives in the Rio Chama, New Mexico. The model was developed to examine impacts of each alternative on reservoir storage and releases, hydropower production and revenue, and whitewater boating access. We simulated each alternative within a stochastic framework in order to explicitly incorporate hydrologic uncertainty into the analyses. The environmental flow alternatives were developed at a collaborative workshop of geomorphology, hydrology, and ecology experts. Results from the model indicate that the proposed flow recommendations on the Rio Chama will generally decrease annual reservoir storage, increase median flows, and have minimal impacts on hydropower production and whitewater rafting on the system. The Rio Chama case study is a promising example of how SD modeling can be used in the early stages of environmental flow studies and why it is compatible with collaborative modeling.  相似文献   

9.
Abstract: Interactions between surface irrigation water, shallow ground water, and river water may have effects on water quality that are important for both drinking water supplies and the ecological function of rivers and floodplains. We investigated water quality in surface water and ground water, and how water quality is influenced by surface water inputs from an unlined irrigation system in the Alcalde Valley of the Rio Grande in northern New Mexico. From August 2005 to July 2006, we sampled ground water and surface water monthly and analyzed for concentrations of major cations and anions, specific conductance, pH, dissolved oxygen, and water levels. Results indicate that irrigation ditch seepage caused an increase in ground water levels and that the Rio Grande is a gaining stream in this region. Temporal and spatial differences were found in ion concentrations in shallow ground water as it flowed from under the ditch toward the river. Ground‐water ion concentrations were higher when the ditch was not flowing compared with periods during peak irrigation season when the ditch was flowing. Ditch inputs diluted ion concentrations in shallow ground water at well positions near the ditch. Specifically, lower ion concentrations were detected in ground water at well positions located near the ditch and river compared with well positions located in the middle of an agricultural field. Results from this project showed that ditch inputs influenced ion concentrations and were associated with ground‐water recharge. In arid region river valleys, careful consideration should be given to management scenarios that change seepage from irrigation systems, because in some situations reduced seepage could negatively affect ground‐water recharge and water quality.  相似文献   

10.
ABSTRACT: The U.S. Endangered Species Act (ESA) restricts federal agencies from carrying out actions that jeopardize the continued existence of any endangered species. The U.S. Supreme Court has emphasized that the language of the ESA and its amendments permits few exceptions to the requirement to give endangered species the highest priority. This paper estimates economic costs associated with one measure for increasing instream flows to meet critical habitat requirements of the endangered Rio Grande silvery minnow. Impacts are derived from an integrated regional model of the hydrology, economics, and institutions of the upper Rio Grande Basin in Colorado, New Mexico, Texas, and Mexico. One proposal for providing minimum streamflows to protect the silvery minnow from extinction would provide guaranteed year round streamflows of at least 50 cubic feet per second in the San Acacia reach of the upper Rio Grande. These added flows can be accomplished through reduced surface diversions by New Mexico water users in dry years when flows would otherwise be reduced below the critical level required by the minnow. Based on a 44‐year simulation of future inflows to the basin, we find that some agricultural users suffer damages, but New Mexico water users as a whole do not incur damages from a policy that reduces stream depletions sufficiently to provide habitat for the minnow. The same policy actually benefits downstream users, producing average annual benefits of over $200,000 per year for west Texas agriculture, and over $1 million for El Paso municipal and industrial water users, respectively. Economic impacts of instream flow deliveries for the minnow are highest in drought years.  相似文献   

11.
To achieve water quality goals and wastewater treatment cost optimisation in a river basin, a water quality management model has been developed through the integration of a genetic algorithm (GA) and a mathematical water quality model. The developed model has been applied to the Youngsan River, where water quality has decreased due to heavy pollutant loads from Kwangju City and surrounding areas. Pollution source, land use, geographic features and measured water quality data of the river basin were incorporated into the Arc/View geographic information system database. With the database, the management model calculated treatment type and treatment cost for each wastewater treatment plant in the river basin. Until now, wastewater treatment policy for polluted rivers in Korea has been, first of all, to construct secondary treatment plants for untreated areas, and secondarily, to construct advanced treatment plants for the river sections whose water quality is impaired and for which the water quality goal of the Ministry of Environment is not met. Four scenarios that do not use the GA were proposed and they were compared with the results of the management model using the GA. It became clear that the results based on the GA were much better than those for the other four scenarios from the viewpoint of the achievement of water quality goals and cost optimisation.  相似文献   

12.
Solid waste management (SWM) is at the forefront of environmental concerns in the Lower Rio Grande Valley (LRGV), South Texas. The complexity in SWM drives area decision makers to look for innovative and forward-looking solutions to address various waste management options. In decision analysis, it is not uncommon for decision makers to go by an option that may minimize the maximum regret when some determinant factors are vague, ambiguous, or unclear. This article presents an innovative optimization model using the grey mini-max regret (GMMR) integer programming algorithm to outline an optimal regional coordination of solid waste routing and possible landfill/incinerator construction under an uncertain environment. The LRGV is an ideal location to apply the GMMR model for SWM planning because of its constant urban expansion, dwindling landfill space, and insufficient data availability signifying the planning uncertainty combined with vagueness in decision-making. The results give local decision makers hedged sets of options that consider various forms of systematic and event-based uncertainty. By extending the dimension of decision-making, this may lead to identifying a variety of beneficial solutions with efficient waste routing and facility siting for the time frame of 2005 through 2010 in LRGV. The results show the ability of the GMMR model to open insightful scenario planning that can handle situational and data-driven uncertainty in a way that was previously unavailable. Research findings also indicate that the large capital investment of incineration facilities makes such an option less competitive among municipal options for landfills. It is evident that the investment from a municipal standpoint is out of the question, but possible public–private partnerships may alleviate this obstacle.  相似文献   

13.
ABSTRACT: Storm water detention is an effective and popular method for controlling the effects of increased urbanization and development. Detention basins are used to control both increases in flow rates and sedimentation. While numerous storm water management policies have been proposed, they most often fail to give adequate consideration to maintenance of the basin. Sediment accumulation with time and the growth of grass and weeds in the emergency spillway are two maintenance problems. A model that was calibrated with data from a storm water detention basin in Montgomery County, Maryland, is used to evaluate the effect of maintenance on the efficiency of the detention basin. Sediment accumulation in the basin caused the peak reduction factor to decrease while it increased as vegetation growth in the emergency spillway increased. Thus, the detention basin will not function as intended in the design when the basin is not properly maintained. Thus, maintenance of detention basins should be one component of a comprehensive storm water management policy.  相似文献   

14.
To aid in planning and design of additional flood protection on the Lower Rio Grande, the Hydroraeteorological Branch prepared a probable maximum precipitation study for the International Boundary and Water Commission (United States and Mexico) and the Republic of Mexico. Five drainages from 2,000 to over 17,000 square miles in area between Falcon and Anzalduas Dams including Rio San Juan and Rio Alamo in Mexico are the areas of concern. The great rains of hurricane Beulah, September 19–24, 1967 verified that additional protection is needed. Procedures for estimating probable maximum precipitation (PMP) are described. A particular problem was to estimate rainfall potential for the Sierra Madre Oriental in Rio San Juan and Alamo drainages. These mountains form a north-south windward-facing slope and barrier of over 7000 feet in elevation. A detailed study was made of rains from hurricane Beulah. The storm produced the greatest known rain depths in North America for 50,000 square miles or greater, and durations longer than 48 hours.  相似文献   

15.
Abstract: Managing drought in agriculture has taken on growing importance as population growth and environmental concerns place increasing pressures on agricultural water use. One alternative for agricultural water resource management in areas of recurrent drought is allocation through market mechanisms. While past research has aimed to explain why farmers are reluctant to participate in already established water markets, this research seeks to identify the appropriate market mechanism given farmers’ preexisting attitudes toward water markets. Statistical analysis of survey data from 166 farmer interviews in the Rio Grande Basin indicate that farmers are significantly more likely to participate in short‐term water mechanisms, such as spot water markets and water banks than in permanent transfer mechanisms, particularly those that fully separate water rights from land. In sharp contrast to expectations, the choice of market mechanism did not differ significantly between farmers based on their a priori intention to buy, sell or both buy and sell in these markets. Choice of market mechanism also did not differ among farmer types although small, lifestyle or hobby farmers clearly preferred spot water markets to other types of short‐term mechanisms. Evaluating these attitudes a priori may help to design more suitable water market mechanisms for the basin.  相似文献   

16.
A statistical procedure is developed to adjust natural streamflows simulated by dynamical models in downstream reaches, to account for anthropogenic impairments to flow that are not considered in the model. The resulting normalized downstream flows are appropriate for use in assessments of future anthropogenically impaired flows in downstream reaches. The normalization is applied to assess the potential effects of climate change on future water availability on the Rio Grande at a gage just above the major storage reservoir on the river. Model‐simulated streamflow values were normalized using a statistical parameterization based on two constants that relate observed and simulated flows over a 50‐year historical baseline period (1964–2013). The first normalization constant is a ratio of the means, and the second constant is the ratio of interannual standard deviations between annual gaged and simulated flows. This procedure forces the gaged and simulated flows to have the same mean and variance over the baseline period. The normalization constants can be kept fixed for future flows, which effectively assumes that upstream water management does not change in the future, or projected management changes can be parameterized by adjusting the constants. At the gage considered in this study, the effect of the normalization is to reduce simulated historical flow values by an average of 72% over an ensemble of simulations, indicative of the large fraction of natural flow diverted from the river upstream from the gage. A weak tendency for declining flow emerges upon averaging over a large ensemble, with tremendous variability among the simulations. By the end of the 21st Century the higher‐emission scenarios show more pronounced declines in streamflow.  相似文献   

17.
ABSTRACT: The cascade correlation neural network was used to predict the two-year peak discharge (Q2) for major regional river basins of the continental United States (US). Watersheds ranged in size by four orders of magnitude. Results of the neural network predictions ranged from correlations of 0.73 for 104 test data in the Souris-Red Rainy river basin to 0.95 for 141 test data in California. These results are improvements over previous multilinear regressions involving more variables that showed correlations ranging from 0.26 to 0.94. Results are presented for neural networks trained and tested on drainage area, average annual precipitation, and mean basin elevation. A neural network trained on regional scale data in the Texas Gulf was comparable to previous estimates of Q2 by regression. Our research shows Q2 was difficult to predict for the Souris-Red Rainy, Missouri, and Rio Grande river basins compared to the rest of the US, and acceptable predictions could be made using only mean basin elevation and drainage areas of watersheds.  相似文献   

18.
Sharing waters: Post-Rio international water management   总被引:4,自引:0,他引:4  
Transcending human-defined political and administrative boundaries, the world's transboundary freshwater resources pose particularly challenging management problems. Water resource users at all scales frequently find themselves in direct competition for this economic and life-sustaining resource, in turn creating tensions, and indeed conflict, over water supply, allocation, and quality. At the international scale, where the potential for conflict is of particular concern, significant efforts are underway to promote greater cooperation in the world's international river basins, with notable achievements in the past decade following the Dublin and Rio conferences. Over the past ten years, the international community has adopted conventions, declarations, and legal statements concerning the management of international waters, while basin communities have established numerous new basin institutions. Despite these developments, significant vulnerabilities remain. Many international basins still lack any type of joint management structure, and certain fundamental management components are noticeably absent from those that do. An understanding of these weaknesses, however, offers an opportunity for both the international and basin communities to better respond to the specific institution-building needs of basin communities and thereby foster broader cooperation over the world's international water resources.  相似文献   

19.
ABSTRACT: In the arid West, the development and implementation of water policy often results in disputes among water users, resource managers, and policy makers. Although significant attempts have been made to improve public involvement and dispute resolution in water resources planning, the traditional planning process has not historically played this role for a variety of reasons. Water resources planning can become a forum for proactively resolving water policy disputes by employing the principles of environmental dispute resolution. The purpose of this article is to explore the role of collaborative, consensus-building planning processes in resolving water policy disputes. The Montana State Water Plan is evaluated as an example of such a process, and a model state water planning process is outlined.  相似文献   

20.
ABSTRACT: The snowmelt-runoff model (SRM) was used to produce accurate simulations of streamfiow during the snowmelt period (April-September) for ten years on the Rio Grande Basin (3419 km2) near Del Norte, Colorado, U.S.A. In order to use SRM in the forecast situation, it was necessary to develop a family of snow cover depletion curves for each elevation zone based on accumulated snow water equivalent on April 1. Selection of an appropriate curve for a particular year from snow course measurements allows input of the daily snow cover extent to SRM for forecast purposes. Data from three years (1980, 1981, and 1985) were used as a quasi-forecast test of the procedure. In these years forecasted snow cover extent data were input to SRM, but observed temperature and precipitation data were used. The resulting six-month hydrographs were very similar to the hydrographs in the ten simulation years previously tested based on comparisons of performance evaluation criteria. Based on this result, the Soil Conservation Service (SCS) requested SRM forecasts for 1987 on the Rio Grande. Using the same procedure but with SCS estimated temperature and precipi-tation data, SRM produced a forecast hydrograph that had a r2= 0.82 and difference in seasonal volume of 4.4 percent. To approximate actual operational conditions, SRM computed daily flows were updated every seven days with measured flows. The resulting forecast hydrograph had a R2= 0.90 and a difference in volume of 3.5 percent. The method developed needs to be refined and tested on additional years and basins, but the approach appears to be applicable to operational runoff forecasting using remote sensing data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号