首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The supply of particulate material to the sea-bed as well as the oxygen consumption and the redox potential of the sea-bed were measured during a one-year period (1979/1980) at 60 and 90 m depth in the inner part of a west Norwegian fjord, Fanafjorden. At both sites, uniform sedimentation rates of total particulate material (825 and 885 g m-2 yr-1, respectively) and particulate inorganic material (576 and 616 g m-2 yr-1, respectively) were found. The sedimentation rates of particulate organic carbon (96 and 107 g m-2 yr-1, respectively) and particulate organic nitrogen (10 and 12 g m-2 yr-1, respectively) were low in winter, higher in summer and autumn, with maxima in May/June, reflecting similar maxima in the phytoplankton biomass in the area, with 6 to 8 wk delay. The oxygen consumption of the sea-floor was lowest in winter/spring and highest in summer. Thirtytwo and 38 g C m-2 yr-1 (respiration quotient=0.85) were metabolized by the sediment at 60 and 90 m, respectively. The simultaneous measurements of sedimentation rates and sediment oxygen uptake throughout a whole year demonstrated that the benthic mineralization is governed by the sedimentation over a longer time-scale, but that seasonal imbalances do occur. A box-model of the flux of particulate organic carbon to the sediment surface is presented, and includes the relevant processes and some quantitative estimates.  相似文献   

2.
Abstract

Spatial and temporal variations and the factors influencing primary production have been studied in three different mangrove waters (Pichavaram, Ennore Creek and Adyar Estuary) of South India characterised by different anthropogenic impacts. the gross primary productivity in the unpolluted Pichavaram mangrove was 113 g Cm?2yr?1 exhibiting natural variability with the environmental forcing factors. Human activities have elevated primary productivity in the Ennore Creek mangrove (157g Cm?2yr?1) primarily through the direct discharge of fertilizer effluents. By contrast, a combination of domestic and industrial effluent discharges into the Adyar Estuary mangrove has considerably reduced phytoplankton primary productivity 83g Cm?2yr?1 the Redfield N: P ratio varies from 0.96 N: 1P at Ennore Creek, 1.75N: 1P at Adyar Estuary to 15.2 N: 1P at Pichavaram mangroves. This suggests that the Pichavaram mangroves represent a well equilibrated ecosystem with N: P ratio close to steady-state values in contrast to the anthropogenically altered mangrove ecosystems studied. Results show a significant temporal variability in nutrient concentration in the three mangrove areas. Distinct differences in nutrient concentrations between the dry and the wet seasons have been observed.  相似文献   

3.
We describe and apply a method of using tree-ring data and an ecosystem model to reconstruct past annual rates of ecosystem production. Annual data on merchantable wood volume increment and mortality obtained by dendrochronological stand reconstruction were used as input to the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) to estimate net ecosystem production (NEP), net primary production (NPP), and heterotrophic respiration (Rh) annually from 1975 to 2004 at 10 boreal jack pine (Pinus banksiana Lamb.) stands in Saskatchewan and Manitoba, Canada. From 1975 (when sites aged 41-60 years) to 2004 (when they aged 70-89 years), all sites were moderate C sinks except during some warmer than average years where estimated Rh increased. Across all sites and years, estimated annual NEP averaged 57 g Cm−2 yr−1 (range −31 to 176 g Cm−2 yr−1), NPP 244 g Cm−2 yr−1 (147-376 g Cm−2 yr−1), and Rh 187 g Cm−2 yr−1 (124-270 g Cm−2 yr−1). Across all sites, NPP was related to stand age and density, which are proxies for successional changes in leaf area. Regionally, warm spring temperature increased NPP and defoliation by jack pine budworm 1 year previously reduced NPP. Our estimates of NPP, Rh, and NEP were plausible when compared to regional eddy covariance and carbon stock measurements. Inter-annual variability in ecosystem productivity contributes uncertainty to inventory-based assessments of regional forest C budgets that use yield curves predicting averaged growth over time. Our method could expand the spatial and temporal coverage of annual forest productivity estimates, providing additional data for the development of empirical models accounting for factors not presently considered by these models.  相似文献   

4.
Phytoplankton species diversity was generally high throughout the year at two stations in the central Red Sea (Lat. 21°30N), and species of Mediterranean and Indian Ocean origin were represented, reflecting seasonal monsoonal influence. Low phytoplankton cell numbers accompanying high production rates suggest the significance of nanoplankton or picoplankton which were not enumerated. Production was high year-round, and averaged 390 gC m-2 yr-1, despite the virtual lack of nutrient additions from rainfall or land runoff or demonstrable upwelling. Highest nutrient levels followed the first seasonal peak of production. Biomass and production were seasonally bi- or tri-modal, with major peaks in December–February and June–August, 1977–1978. The first peak of production, populated by diatoms, occurred at the onset of seasonal stratification, but the second peak, populated by Trichodesmium spp., occurred at the height of seasonal stratification and lowest nutrient concentrations. There is no clear relationship between the timing of monsoon activity and the annual production cycle.  相似文献   

5.
The relationship between Penaeus merguiensis protozoea larvae and their phytoplankton diet was examined using seasonal plankton surveys and in situ rearing experiments. Larval abundance, phytoplankton community structure, and chlorophyll a concentration in Albatross Bay, Gulf of Carpentaria, were monitored monthly for 2 yr. Larval abundance peaked in November (spring) and March (autumn), at which times diatoms were the most abundant group in net samples of phytoplankton and in the guts of larvae. During November 1989 and March 1990, larvae were reared in nylon mesh enclosures positioned throughout the water column at three depths: 0 to 3 m, 3 to 6 m and 6 to 9 m. Overall, larval survival and gut fullness were both higher in November than in March. In both months, larval survival was lower at the surface than at other depths. This correlated with lower chlorophyll a concentrations, but lower total cell densities were not detected. During the in situ experiments, diatoms were the most abundant phytoplankton group in the water column and in the guts of larvae and, therefore, appeared to be the principal diet of larvae. Pigment analysis demonstrated that while gut contents generally reflected the composition of the phytoplankton community, the larvae were not feeding exclusively on diatoms. They also ingested green algae and possibly seagrass detritus. The in situ experiments demonstrated that the predominantly diatom flora in Albatross Bay can provide a nutritionally adequate environment for prawn larvae even at seasonally low levels. It is unlikely, therefore, that starvation is a major cause of mortality of P. merguiensis larvae during either of the biannual peaks in their abundance in Albatross Bay, Gulf of Carpentaria.  相似文献   

6.
The microalgal community associated with Eudendrium racemosum, a marine hydroid widely distributed in the Mediterranean Sea, was studied during an annual cycle, at monthly frequency, in a coastal station of the Ligurian Sea. Microalgae were represented mainly by diatoms, which exhibited higher abundance and biomass values between autumn and spring (max 46,752 cells mm−2 and 1.94 μg C mm−2, respectively), while during summer a significant decrease was observed (min 917 cells mm−2 and 0.013 μg C mm−2). High levels of abundance of filamentous cyanobacteria were observed in summer. Spatial distribution of epibiontic microalgae showed a markedly increasing gradient from the basal to the apical part of hydroid colonies. Considering the growth forms of diatom communities, motile diatoms (mainly small naviculoid taxa) were the most abundant in all the periods. Adnate (Amphora and Cocconeis spp.) were distributed mainly in the basal and central part of hydroid colonies and showed two peaks (autumn and summer). Erect forms (mainly Tabularia tabulata, Licmophora spp., Cyclophora tenuis) were mainly distributed in the apical part of the colonies and showed their maximum densities in spring–summer. Tube-dwelling (Berkeleya rutilans, Parlibellus sp.) were observed at low densities throughout the study period, without any significant temporal or spatial variability. Comparing the microalgal communities on marine hydroid to those grown on mimic substrata placed in the sampling station during summer, significantly higher values of abundance were observed in the hydroid, suggesting that microalgae may benefit from the polyp catabolites. This fact was particularly evident for the adnate diatoms, whose temporal trend paralleled the cycle of hydroid host.  相似文献   

7.
The abundance and biomass of marine planktonic ciliates were determined at monthly intervals at two stations in Southampton Water between June 1986 and June 1987. The two stations, an outer one at Calshot and an inner one at N. W. Netley, were subject to differing marine and terrestrial influences. The potential ciliate production at cach station on each visit was estimated from these data. Enumeration of ciliates and measurements of biovolume were performed on Lugol's iodinepreserved samples and potential production was calculated using a predictive relationship based on temperature and cell volume. Heterotrophic ciliate abundance and biomass were greatest at both stations during spring and summer months, with respective maxima of 16x103 organisms 1-1 and 219 g Cl-1 recorded at N. W. Netley. Estimates of the potential production of the ciliate community ranged from <1 to 18 g Cl-1 d-1 at Calshot and <1 to 141 g Cl-1 at N. W. Netley, with annual values of 2 and 9 mg Cl-1 yr-1, respectively. Abundances, biomass and potential production estimates were generally greater at N. W. Netley than at Calshot. Carbon flow through the ciliate community was assessed using annual production values from both this study and the literature. The annual ciliate carbon requirement was equivalent to 9 and 11% of annual primary production at Calshot and N. W. Netley, and potential annual ciliate production was equivalent to 34% and >100% of the energy requirements of metazoan zooplankton at these locations, although comprising only 8 and 10% of their available food.  相似文献   

8.
The spatiotemporal distributions of major phytoplankton taxa were quantified to estimate the relative contribution of different microalgal groups to biomass and bloom dynamics in the eutrophic Neuse River Estuary, North Carolina, USA. Biweekly water samples and ambient physical and chemical data were examined at sites along a salinity gradient from January 1994 through December 1996. Chemosystematic photopigments (chlorophylls and carotenoids) were identified and quantified using high-performance liquid chromatography (HPLC). A recently-developed factor-analysis procedure (CHEMTAX) was used to partition the algal group-specific chlorophyll a (chl a) concentrations based on photopigment concentrations. Results were spatially and temporally integrated to determine the ecosystem-level dynamics of phytoplankton community-constituents. Seasonal patterns of phytoplankton community-composition changes were observed over the 3 yr. Dinoflagellates reached maximum abundance in the late winter to early spring (January to March), followed by a spring diatom bloom (May to July). Cyanobacteria were more prevalent during summer months and made a large contribution to phytoplankton biomass, possibly in response to nutrient-enriched freshwater discharge. Cryptomonad blooms were not associated with a particular season, and varied from year to year. Chlorophyte abundance was low, but occasional blooms occurred during spring and summer. Over the 3 yr period, the total contribution of each algal group, in terms of chl a, was evenly balanced, with each contributing nearly 20% of the total chl a. Cryptomonad, chlorophyte, and cyanobacterial dynamics did not exhibit regular seasonal bloom patterns. High dissolved inorganic-nitrogen loading during the summer months promoted major blooms of cryptomonads, chlorophytes, and cyanobacteria. Received: 12 September 1997 / Accepted: 12 December 1997  相似文献   

9.
At the compacted, north-south line of the ice edge, phytoplankton were sampled during early austral autumn of 1986 in the northwestern Weddell Sea. Cells from discrete water bottle samples from 12 stations on two east-west transects were counted to gain quantitative information on the composition, abundance, distribution, and condition of the phytoplankton in water-column assemblages. Over 70 species were found. The highest numbers of total cells (integrated through the top 150 m) were found in open water, well-separated from and to the east of the ice edge on the southern transect, with 6.01×1010 cells m-2. The relative abundance of diatoms was low at ice-convered stations (< 35% of the total phytoplankton in preserved samples) and high at open-water stations (> 80%); however, the relative abundance of the prymnesiophyte Phaeocystis sp. was high at ice-covered stations (> 60%) and low at open-water stations (< 16%), with lower absolute abundances than during a previous austral-spring phytoplankton increase. In the open ocean, the dominants were the pennate diatoms Fragilariopsis cylindrus, Pseudonitzschia prolongatoides, F. curta, and a small form of the centric diatom Chaetoceros dichaeta in chains. Although the three pennate diatoms were frequently dominant in number, they represented less biomass than C. dichaeta in open waters. Mean phytoplankton abundance was low (0.2×106 cells l-1) but, overall, the diatom cell density (0.14×106 cells l-1) was similar to that found previously during a northward transect from ice-covered to ice-free water at the Weddell-Scotia Sea ice edge (spring 1983). The phytoplankton spatial patterns in the two autumn transects differed, with the more southerly transect exhibiting a higher abundance of diatoms and dinoflagellates. The ratio of full to empty diatoms was higher on the southern transect, indicating a healthy population, while lower ratios of full/empty frustules on the northern transect suggested a generally declining population. However, Phaeocystis sp. was more abundant on the northern transect.  相似文献   

10.
Seasonal abundance of planktonic larvae of the sand dollar Dendraster excentricus was determined in Monterey Bay, California, USA. Larvae were counted from two offshore stations and also over a coastal sand dollar bed, and these data were compared with settlement in the sand dollar bed, with adult population structure and with adult reproductive condition. These measurements were made during the period July 1978 to October 1980 and in October 1981. Sand dollar larvae were most abundant in the plankton during the summer, a period when phytoplankton productivity tended to be high and currents were relatively slow and variable. In some years, small-scale current variations appeared to prevent many larvae in the open bay from reaching the nearshore sand dollar beds; however, in other years, massive shoreward transport of the larvae evidently did occur, since the adult population in the sand dollar bed exhibited a mode in size, indicating a large settlement. A comparison of settled individuals in 1980 and the adult size-frequency distribution in 1981 gives an estimated mortality rate of 88% yr-1 for early juveniles of D. excentricus.  相似文献   

11.
The vertical distribution and migration (seasonal, diel and ontogenetic) of Calanus helgolandicus are described from the shallow (100 m) shelf-seas to the south-west of the British Isles. In 1978 and 1979, the overwintering population of C. helgolandicus consisted primarily of Stage V copepodites and adults. By late winter/early spring the copepodites had moulted to adult females (>90%), which matured and bred the first cohorts of the year, prior to onset of the spring phytoplankton bloom in April/May. C. helgolandicus reached a peak of numerical abundance in August of 20x103 copepodites m-2 (over the depth range sampled -0 to 70 m), which was 200 times the population in winter. The seasonal peak of abundance occurred 4 mo after the peak of the bloom of phytoplankton in spring. The yearly development of the copepod was not always out of phase with the diatom bloom, as seen when the data from 1978 was placed in the context of a longer time-series collected at 10 m over 22 yr (1960–1981, inclusive). Large vertical migrations were observed in the younger copepodites (CI and II) in May from below to above the thermocline. In the remainder of the year, the CI and CII stages behaved differently and were located above the thermocline within the euphotic zone. The largest vertical displacements of biomass were seen in the summer months due to the migrations of the CV stages and adults, which had developed from the spring cohorts. It was contended that the seasonal and vertical migrations of C. helgolandicus are part of a more complex pattern of inherent behavior than has been reported previously and that, however difficult this is to discern in the natural populations, it always expresses itself.  相似文献   

12.
An oceanographic transet,, extending from Yugoslavia across the Northern Adriatic Sea to the Po delta in Italy, was occupied during 1972 and 1973 to establish the effect of Po river discharge on the phytoplankton communities of the region. Density distribution showed distinct seasonal features: a winter-spring period of low stability throughout the water column, and a summer period of stratification. The total water-column plant nutrients (nitrate, nitrite, phosphate, silicate) showed a 1.3 to 4.5-fold decrease eastward, with semi-eutrophic conditions restricted to an area off the Po delta. Nannoplankton usually dominated the phytoplankton community, in terms of cell density, surface chlorophyll a concentrations, and surface primary production rates. However, all significant maxima in these characteristics resulted from increases in the microplankton component. Changes in the frequency of major microplankton groups characterized three periods of the annual cycle: September–December, neritic, temperate diatom flora with some littoral elements (e.g. Nitzschia seriata); January–May, neritic, temperate diatom flora of different composition (e.g. Lauderia borealis, Skeletonema costatum); May–August, dinoflagellates (e.g. Prorocentrum micans) at western stations and dinoflagellates plus neritic, warm-water diatoms at eastern stations. The seasonal cycle was characterized by spring and fall maxima tending to coincide with maximum Po river discharge and/or periods of low water-column stability and vertical mixing. The higher nutrient input at western stations was correlated with the co-dominance of only a few species of microplankton during bloom periods, suggesting that these species (S. costatum, N. seriata, and 5 others) can serve as indicators of eutrophic conditions in this region. Assimilation ratios of both the micro- and nannoplankton suggested borderline nutrient conditions. Phosphate was implicated as the limiting nutrient.  相似文献   

13.
The composition and productivity of four different size-fractions (<20, 20 to 60, 60 to 100, >100 μm) of the phytoplankton of lower Narragansett Bay (USA) were followed over an annual cycle from November, 1972 to October, 1973. Diatoms dominated the population in the winter-spring bloom and in the fall, the summer population was dominated by flagellates. The nannoplankton (<20 μm) were the most important, accounting for 46.6% of the annual biomass as chlorophyll a and 50.8% of the total production. The relative importance of the different fractions showed a marked seasonality. During the winter-spring and fall blooms the netplankton fractions (>20 μm) were the most important. Nannoplankters domnated in the summer. The yearly mean assimilation numbers for the different fractions were not signfficantly different. During the winter-spring bloom, however, the assimilation numbers for the netplankters were significantly higher than those for the nannoplankton fraction. Temperature accounted for most of the variability in assimilation numbers; a marked nutrient stress was observed on only two occasions. Growth rates calculated from 14C uptake and adenosine triphosphate (ATP)-cell carbon were generally quite high; maxima were >1.90 doublings per day during blooms of a flagellate in the summer and of Skeletonema costatum in the fall. The series of short cycles observed in which the dominant species changed were related to changes in the physiological state of the population. Higher growth rates were generally observed at times of peak phytoplankton abundance while lower growth rates were observed between these peaks. The high growth rates and assimilation numbers usually found suggest that the phytoplankton in lower Narragansett Bay was not generally nutrient-limited between November, 1972 and October, 1973. Nutrient regeneration in this shallow estuary, therefore, must be very rapid when in situ nutrient levels are low.  相似文献   

14.
The seasonal productivity cycle and factors controlling annual variation in the timing and magnitude of the winter–spring bloom were examined for several locations (range: 42°20.35′–42°26.63′N; 70°44.19′–70°56.52′W) in Boston Harbor and Massachusetts Bay, USA, from 1995 to 1999, and compared with earlier published data (1992–1994). Primary productivity (mg C m−2 day−1) in Massachusetts Bay from 1995 to 1999 was generally characterized by a well-developed winter–spring bloom of several weeks duration, high but variable production during the summer, and a prominent fall bloom. The bulk of production (mg C m−3 day−1) typically occurred in the upper 15 m of the water column. At a nearby Boston Harbor station a gradual pattern of increasing areal production from winter through summer was more typical, with the bulk of production restricted to the upper 5 m. Annual productivity in Massachusetts Bay and Boston Harbor ranged from a low of 160 g C m−2 year−1 to a high of 787 g C m−2 year−1 from 1992 to 1999. Mean annual productivity was higher (mean=525 g C m−2 year−1) and more variable near the harbor entrance than in western Massachusetts Bay. At the harbor station productivity varied more than 3.5-fold (CV=40%) over an 8 year sampling period. Average annual productivity (305–419 g C m−2 year−1) and variability around the means (CV=25–27%) were lower at both the outer nearfield and central nearfield regions of Massachusetts Bay. Annual productivity in 1998 was unusually low at all three sites (<220 g C m−2 year−1) due to the absence of a winter–spring phytoplankton bloom. Potential factors influencing the occurrence of a spring bloom were investigated. Incident irradiance during the winter–spring period was not significantly different (P > 0.05) among years (1995–1999). The mean photic depth during the bloom period was significantly deeper (P < 0.05) in 1998, signifying greater light availability with depth. Nutrients were also in abundance during the winter–spring of 1998 with stratified conditions not observed until May. In general, the magnitude of the winter–spring bloom in Massachusetts Bay from 1995 to 1999 was significantly correlated with winter water temperature (r 2=0.78) and zooplankton abundance (r 2=0.74) over the bloom period (typically February–April). The absence of the 1998 bloom was associated with higher than average water temperature and elevated levels of zooplankton abundance just prior to, and during, the peak winter–spring bloom period. Received: 3 July 2000 / Accepted: 6 December 2000  相似文献   

15.
Seasonal changes in abundance, size and aspects of the population structure of Meganyctiphanes norvegica (M. Sars) and Nyctiphanes couchi (Bell) are described from samples taken with the Continuous Plankton Recorder at 10 m depth over a 2 yr period (1966 and 1967) in the North Atlantic Ocean and the North Sea. M. norvegica lived for a maximum of just over 2 yr, and adults of both year-classes spawned during a limited breeding season in the spring or summer. N. couchi spawned over a prolonged breeding season, giving rise to a complex of cohorts with overlapping size ranges. It was concluded that 3 or 4 cohorts were spawned in each year and that the maximum life span was probably greater than 1 yr, although maturity may be attained in less than a year. Estimated annual production at 10 m depth for M. norvegica ranged from 0.80 to 18.74 mg m-3yr-1 and for N. couchi from 0.67 to 8.23 mg m-3yr-1. P:B ratios ranged from 1.3:1 to 6.3:1 for M. norvegica and 4.0:1 to 5.5:1 for N. couchi.  相似文献   

16.
Productivities of two cohorts of Chordaria flagelliformis (O. F. Müll.) C. Ag. were estimated from measured changes in biomass and survivorship over time. Maximum productivity during the summer growing season was 2.6 g C m-2 d-1. Although this figure is relatively high, the short growing season results in an annual production of only 89 g C m-2. The significance of primary production by C. flagelliformis lies in its seasonal timing. During the summer growth period, 50% of production was recycled directly by detrital material. During the same time period, productivity and biomass losses of other seaweeds are at their lowest.  相似文献   

17.
Two abundant macrozooplankters, Oikopleura vanhoeffeni (Lohmann) and Calanus finmarchicus (Gunnerus) were collected from the coastal waters off Newfoundland in different seasons during 1990–1991 and incubated in natural seawater to collect freshly egested, field produced, fecal pellets. The densities of fecal pellets from O. vanhoeffeni and C. finmarchicus were measured in an isosmotic density gradient. These are the first reported seasonal measurements of fecal pellet densities from two different types of macrozooplankters, O. vanhoeffeni, a larvacean, filter feeder and C. finmarchicus, a crustacean, suspension feeder. Pellet density ranges and medians were significantly different among seasons for both species, depending primarily on the type of phytoplankton ingested and its ability to be compacted. Winter O. vanhoeffeni and fall C. finmarchicus feces filled with nanoplankters and soft bodied organisms had less open space [packing index (% open area) = 3.5 and 4% for O. vanhoeffeni and C. finmarchicus, respectively] and were more dense (1.23 and 1.19 g cm-3) than spring feces filled with diatoms (packing index = 15 and 23%, density = 1.13 and 1.11 gcm-3). For copepods, these results contrast with previously published density values and with the predicted copepod fecal pellet density calculated, in the present study, using the conventional mass/volume relationship. Copepod spring and summer diatom-filled feces had a calculated density of 1.12 and 1.24 gcm-3 vs a measured median density of 1.11 gcm-3 for both spring and summer feces; the fall feces containing nanoplankters had a calculated density of 1.08 gcm-3 vs a measured median density of 1.19 gcm-3. Knowledge of the seasonal variations in fecal pellet densities is important for the development of flux models.  相似文献   

18.
This paper describes a carbon budget for the spring phytoplankton bloom in Auke Bay, a subarctic bay in southeastern Alaska. The budget was constructed using semiweekly data on carbon production, particulate carbon in the water column, and cumulative sedimentation of carbon, chlorophyll a, and pheopigments. From these measured parameters, seasonal carbon consumption, utilization, and import/export terms were derived. The chlorophyll and pheopigment data were used to partition carbon sinking out of the photic zone between phytoplankton cells and fecal material. The difference between total carbon production and carbon available for consumption was attributed primarily to carbon import/export related to advection of water masses into and out of the bay. Separate budgets were developed for each of five sampling years (1985–1989). An average of 130±16 g C/m2 were produced by phytoplankton during each spring. Our model suggests that an average of 70% of this carbon was available for consumption by grazers within the bay; the remaining 30% is assumed to have been exported from the bay by advective transport. Of the available (non-exported) carbon, an average of 55% was consumed by grazers, 34% sank out of the photic zone in the form of uneaten algae, and about 11% remained at the end of the sampling period in the form of phytoplankton standing stocks. Overall, about 27% of the carbon produced each spring in Auke Bay (35 gC/m2) was used for growth and respiration by first-order consumers within the bay.  相似文献   

19.
Data for phytoplankton composition and abundance in the Marsdiep are presented for the period from 1969 to 1985 inclusive. Only a few species dominated the phytoplankton. A recurrent pattern was observed in the seasonal succession: in winter, total cell numbers were invariably low, but freshwater algae, sluiced into the Wadden Sea from IJssel Lake, showed highest densities in winter. A diatom spring peak was observed around mid-April, followed by a Phaeocystis pouchetii peak about three weeks later. Later in summer usually two more diatom peaks followed by non-diatom peaks were present. The exact timing of the spring peak varied from year to year, with the extremes being late March and early May. A relatively late spring peak usually coincided with a relatively high turbidity in the preceding winter. An increase in total cell numbers was found over the 17-year observation period. Diatoms decreased from 1969 to 1974 but have increased since then, reaching values above those of 1969 during recent years. Flagellates showed a consistent increase over the entire observation period.  相似文献   

20.
Biology of euphausiids in the subarctic waters north of Iceland   总被引:2,自引:0,他引:2  
The seasonal abundance, maturity, spawning, and population dynamics of Thysanoessa inermis (Krøyer, 1846), T. longicaudata (Krøyer, 1846), and Meganyctiphanes norvegica (M. Sars, 1857) were studied in the subarctic waters north of Iceland from February 1993 to February 1994. The material was sampled at approximately monthly intervals along a transect of eight stations extending from 66°16′ to 68°00′N at 18°50′W. Information on temperature and chlorophyll a concentrations is also presented. Spring warming of the water began in March to April and maximum temperatures were recorded in August (3.8?°C). The spring bloom of the phytoplankton started in late March and highest chlorophyll a concentrations were measured during middle to late April (7.0?mg chlorophyll a m?3). T. inermis was the dominant species in the samples, constituting 77% of juvenile, male and female euphausiids present. The greatest abundance of juvenile, male and female T. inermis and M. norvegica was observed during autumn and winter, with lower abundance in spring and summer. T. longicaudata showed only limited changes in seasonal abundance. Male T. inermis had spermatophores in their ejaculatory ducts from February to May, while mature females had spermatophores attached during April and May. T. longicaudata males bore spermatophores from February to July, whereas females only bore spermatophores in April and May. M. norvegica males had spermatophores from February to April, while the single female with spermatophores was caught in February. Euphausiid eggs were first recorded during the latter part of April; the highest numbers of eggs were observed in the samples taken in late May. Maximum numbers of nauplii of both Thysanoessa spp. and M. norvegica were recorded in late May. The main spawning of the euphausiids coincided with the phytoplankton spring bloom. Most male T. inermis took part in breeding at 1 yr of age while most females appeared not to mature until 2 yr of age. T. inermis has a life span of just over 2 yr, T. longicaudata appears to live just over 1 yr. Limited data did not allow the life span of M. norvegica to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号